
A Self-stabilizing Token-Based
k-out-of-� Exclusion Algorithm

Ajoy K. Datta1, Rachid Hadid�2, and Vincent Villain2

1 Department of Computer Science, University of Nevada, Las Vegas
2 LaRIA, Université de Picardie Jules Verne, France

Abstract. In this paper, we present the first self-stabilizing solution to the k out
of � exclusion problem [14] on a ring. The k out of � exclusion problem is a gen-
eralization of the well-known mutual exclusion problem— there are � units of the
shared resources, any process can request some number k (1 ≤ k ≤ �) of units
of the shared resources, and no resource unit is allocated to more than one process
at one time. The space requirement of the proposed algorithm is independent of �
for all processors except a special processor, called Root. The stabilization time
of the algorithm is only 5n, where n is the size of the ring.

Keywords: Fault-tolerance, k-out-of-� exclusion, mutual exclusion, resource al-
location, self-stabilization.

1 Introduction

Fault-tolerance is one of themost important requirements ofmodern distributed systems.
Various types of faults are likely to occur at various parts of the system. The distributed
systems go through the transient faults because they are exposed to constant change of
their environment. The concept of self-stabilization [7] is the most general technique to
design a system to tolerate arbitrary transient faults. A self-stabilizing system, regardless
of the initial states of the processors and initial messages in the links, is guaranteed
to converge to the intended behavior in finite time. In 1974, Dijkstra introduced the
property of self-stabilization in distributed systems and applied it to algorithms for
mutual exclusion.

The �-exclusion problem is a generalization of the mutual exclusion problem–� pro-
cessors are now allowed to execute the critical section concurrently. This problemmodels
the situation where there is a pool of � units of a shared resource and each processor
can request at most one unit. In the last few years, many self-stabilizing �-exclusion
algorithms have been proposed [2,8,9,10,18].

The k-out-of-� exclusion approach allows every processor to request k (1 ≤ k ≤ �)
units of the shared resource concurrently, but, no unit is allocated to multiple processors
at the same time [14]. One example of this type of resource sharing is the sharing of
channel bandwidth: the bandwidth requirements vary among the requests multiplexing

� Supported in part by the Pôle de Modélisation de Picardie, France and the Fonds Social Eu-
ropéen.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 553–562.
c© Springer-Verlag Berlin Heidelberg 2002

554 A.K. Datta, R. Hadid, and V. Villain

on the channel. For example, the demand would be quite different for a video than an
audio transmission request.

Algorithms for k-out-of-� exclusion were given in [3,12,13,14,15]. All these algo-
rithms are permission-based: a processor can access the resource after receiving a per-
mission from all the processors of the system [14,15] or from the processors constituting
the quorum it belongs to [12,13].

Contributions. In this paper, we present the first self-stabilizing protocol for the k-
out-of-� exclusion problem. Our algorithm works on uni-directional rings and is token-
based: a processor can enter its critical section, i.e., access the requested (k) units of the
shared resource only upon receipt of k tokens. The space requirement of our algorithm
is independent of � for all processors except Root. The stabilization time of the protocol
is only 5n, where n is the size of the ring.

Outline of the Paper. In Section 2, we describe the model used in this paper, and
present the specification of the problem solved. We propose a self-stabilizing k-out-of-�
exclusion protocol on rings in Section 31. Finally, we make some concluding remarks
in Section 4.

2 Preliminaries

2.1 The Model

The distributed system we consider in this paper is a uni-directional ring. It consists of
a set of processors denoted by 0,1,..,n-1 communicating asynchronously by exchanging
messages. Processors are anonymous. The subscripts 0,1,...,n-1 for the processors are
used for the presentation only. We assume the existence of a distinguished processor
(Processor 0), called Root. Each processor can distinguish its two neighbors: the left
neighbor fromwhich it can receivemessages and the right neighbor it can sendmessages
to. The left and right neighbors of Processor i are denoted by i−1 and i+1, respectively,
where indices are taken modulo n. We assume that the message delivery time is finite
but unbounded. We also consider a message to be in transit until it is processed by the
receiving processor.Moreover, each link is assumed to be of bounded capacity, FIFO, and
reliable (the messages are neither lost nor corrupted) during and after the stabilization
phase. Our protocols are semi-uniform as defined in [6] — every processor with the
same degree executes the same program, except one processor, Root. The messages are
of the following form:< message-type,message-value >. Themessage-value field
is omitted if themessage does not carry any value. Somemessages containmore than one
message-value. The programconsists of a collection of actions.An action is of the form:
<guard>−→ < statement>. A guard is a boolean expression over the variables of
the processor and/or an input message. A statement is a sequence of assignments and/or
message sending. An action can be executed only if its guard evaluates to true. We
assume that the actions are atomically executed, meaning that the evaluation of a guard
and the execution of the corresponding statement of an action, if executed, are done in
one atomic step. The atomic execution of an action of p is called a step of p. When
several actions of a processor are simultaneously enabled, then only the first enabled
1 Due to space limitations, the proof of correctness is omitted. See [5] for the proofs

A Self-stabilizing Token-Based k-out-of-� Exclusion Algorithm 555

action (as per the text of the protocol) is executed. The state of a processor is defined by
the values of its variables. The state of a system is a vector of n+1 components where
the first n components represent the state of n processors, and the last one refers to the
multi-set of messages in transit in the links. We refer to the state of a processor and the
system as a (local) state and configuration, respectively.

2.2 Self-stabilization

Definition 1 (Self-stabilization). A protocolP is self-stabilizing for a specification SP
(a predicate defined over the computations) if and only if every execution starting from an
arbitrary configuration will eventually reach (convergence) a configuration from which
it satisfies SP forever (closure).

In practice, we associate to P a predicate LP (called the legitimacy predicate) on
the system configurations. LP must satisfy the following property: Starting from a con-
figuration α satisfying LP , P always behaves according to SP , and any configuration
reachable fromα satisfiesLP (closure property).Moreover if any execution ofP starting
from an arbitrary configuration eventually reaches a configuration satisfying LP (con-
vergence property), we say that P stabilizes for LP (hence for SP). The worst delay to
reach a configuration satisfying LP is called the stabilization time.

2.3 The k-out-of-� Exclusion Problem

In this section, we present the specification of the (k, �)-exclusion problem. We will de-
fine the usual properties: safety and fairness. We also need to add another performance
metric, called (k, �)-liveness. An algorithm satisfying this property attempts to allow
several processors to execute their critical section simultaneously. In order to formally
define this property and get the proper meaning of the property, we assume that a pro-
cessor can stay in the critical section forever. Note that we make this assumption only to
define this property. Our algorithm does assume that the critical sections are finite. In-
formally, satisfying the (k, �)-liveness means that even if some processors are executing
their critical section for a long time, eventually some requesting processors can enter the
critical section provided the safety and fairness properties are still preserved.

Definition 2. (k, �)-Exclusion Specification
1. Safety: Any resource unit can be used by at most one process at one time.
2. Liveness: (a) Fairness: Every request is eventually satisfied.
(b) (k, �)-liveness: Let I be the set of processors executing their critical section

forever, and every processor i ∈ I using ki units of the shared resource such that∑
i∈I ki < �. Let α = �−∑

i∈I ki. Let J be the set of processors requesting the entry to
their critical section such that every processor j ∈ J needs kj ≤ α units of the resource.
Then some of the processors in J will be eventually granted entry to the critical section
provided they maintain the safety and fairness properties.

Note that fairness and (k, �)-liveness properties would not be related with each other if
we did not include the fairness property in the (k, �)-liveness property. On one hand,
a classical mutual exclusion protocol can be a solution of the (k, �)-exclusion problem

556 A.K. Datta, R. Hadid, and V. Villain

which does not satisfy the (k, �)-liveness property. On the other hand, it is easy to design
a protocol that always allows a processor in J (as defined in (k, �)-liveness property)
to enter the critical section. However, if the set J remains non-empty forever, then a
processor requesting more than α units (hence not in J) may never get a chance to enter
the critical section (starvation).

In uni-directional rings, we can use a token-based algorithm to maintain an ordering
among the requests by circulating the tokens in a consistent direction. Then this solution
would guarantee both fairness and (k, �)-liveness properties.

In the k-out-of exclusion problem, if the maximum number of units (denoted asK)
any process can request to access the critical section is known, then the space requirement
depends only onK. Obviously,K ≤ �.

A k-out-of-� exclusion algorithm is self-stabilizing if every computation starting
from an arbitrary initial configuration, eventually satisfies the safety, fairness, and (k, �)-
liveness requirements.

2.4 Parametric Composition

The parametric composition of protocols P1 and P2 was first presented in [10]. This is a
generalization of the collateral composition of [16] and conditional composition of [4].
It allows both protocols to read the variables written by the other protocol. This scheme
also allows the protocols to use the predicates defined in the other protocol. Informally,
P1 can be seen as a tool used by P2, where P2 calls some “public” functions of P1 (we
use the term function here with a generic meaning: it can be the variables used in the
collateral composition or the predicates as in the conditional composition), and P1 can
also use some functions of P2 via the “parameters”.

Definition 3 (Parametric composition). Let P1 be a protocol with a set of parameters
and a public part. Let P2 be a protocol such that P2 uses P1 as an “external protocol”.
P2 allows P1 to use some of its functions (function may return no result) by using the
parameters defined in P2. P1 allows protocol P2 to call some of its functions by using
the public part defined in P1. The parametric composition of P1 and P2, denoted as
P1 �P P2, is a protocol that has all the variables and all the actions of P1 and P2.

The implementation scheme of P1 and P2 is given in Algorithm 1. Let L1 and L2 be
predicates over the variables ofP1 andP2, respectively.Wenowdefine a fair composition
w.r.t. both protocols and define what it means for a parametrically composed algorithm
to be self-stabilizing.

Definition 4 (Fair execution). An execution e of P1 �P P2 is fair w.r.t. Pi (i ∈ {1, 2})
if either e is finite, or e contains infinitely many steps of Pi, or contains an infinite suffix
in which no step of Pi is enabled.

Definition 5 (Fair composition). P1 �P P2 is fair w.r.t. Pi (i ∈ {1, 2}) if any execution
of P1 �P P2 is fair w.r.t. Pi.

The following composition theorem and its corollary are obvious:

Theorem 1. If the compositionP1�PP2 is fair w.r.t.P1, is fair w.r.t.P2 ifP1 is stabilized
for L1, protocol P1 stabilizes for L1 even if P2 is not stabilized for L2, and protocol P2
stabilizes for L2 if L1 is satisfied, then P1 �P P2 stabilizes for L1 ∧ L2.

A Self-stabilizing Token-Based k-out-of-� Exclusion Algorithm 557

Algorithm 1. P1 �P P2
Protocol P2

Protocol P1(F′
1 : TF1, F′

2 : TF2, ..., F′
α : TFα); External Protocol P1(F1 : TF1, F2 : TF2,...,Fα : TFα);

Public Parameters
Pub1 : TP1 F1 : TF1

/* definition of Function Pub1 */ /* definition of Function F1 */
... ...
Pubβ : TPβ Fα : TFα

/* definition of Function Pubβ */ /* definition of Function Fα */

begin begin
... ...
[] < Guard > −→ < statement > [] < Guard > −→ < statement >

/* Functions F′
i can be used /* Functions P1.Pubi can be used

in Guards and/or statements */ in Guards and/or statements */
... ...
end end

Corollary 1. Let P1 �P P2 be a self-stabilizing protocol. If Protocol P1 stabilizes in t1
for L1 even if P2 is not stabilized for L2 and Protocol P2 stabilizes in t2 for L2 after P1
is stabilized for L1, then P1 �P P2 stabilizes for L1 ∧ L2 in t1 + t2 .

3 Self-stabilizing k-out-of-� Exclusion Protocol

The protocol presented in this section is token-based,meaning that a requesting processor
receiving k (1 ≤ k ≤ �) tokens can enter the critical section. The protocol is based on a
couple of basic ideas. First, we need a scheme to circulate � tokens in the ring such that
a processor cannot keep more than k tokens while it is in the critical section. Second,
we use a method to make sure that any requesting processor eventually obtains the
requested tokens. We use the parametric composition of two protocols: Controller (see
Algorithm 2) and �-Token-Circulation (see Algorithms 3 and 4), denoted as Controller
�P�-Token-Circulation. We describe these two protocols next.

Controller. The protocol Controller (presented in Algorithm 2) implements several
useful functions in the process of designing the k-out-of-� exclusion algorithm. The
controller keeps track of the number of tokens in the system. If this number is less

Algorithm 2. Controller.
For Root For Other Processors
Controller(START, COUNT-ET) Controller(T-ENABLED)
Variables MySeq: 0..MaxSeq Variables MySeq: 0..MaxSeq

(Ac1) [] (receive <CToken, Seq>) (Ac4) [] (receive <CToken, Seq>) −→
∧ (MySeq = Seq) −→ if (MySeq �= Seq) then

MySeq := MySeq + 1 MySeq := Seq
START for t = 1 to T-ENABLED do
send <CToken, MySeq> send <Enabled Token>

send<CToken, MySeq>

(Ac2) [] receive <Enabled Token> −→ (Ac5) [] receive <Enabled Token> −→
COUNT-ET send <Enabled Token>

(Ac3) [] timeout −→ send <CToken, MySeq>

558 A.K. Datta, R. Hadid, and V. Villain

(more) than �, it replenishes (resp., destroys) tokens to maintain the right number (�)
of tokens in the system. The main burden of the above tasks (of the controller) is taken
by Root. Root maintains two special variables Ce and Cf to implement these tasks (in
Algorithm 3). We should point out here that these two variables are maintained only at
Root. The detailed use of these variables and the implementation of the controller are
explained below.

Root periodically initiates a status checking process by sending a special token,
called CToken (Actions Ac1 and Ac3 of Algorithm of 3). (Note that we refer to the
token used by the controller as CToken to distinguish it from the tokens used by the
k-out-of-� exclusion algorithm.) The CToken circulation scheme is similar to the ones
in [1,17]. Every timeRoot initiates aCToken, it uses a new sequence number (MySeq)
in the < CToken, Seq > message (Actions Ac1 and Ac3). Other processors use one
variable (MySeq) to store the old and new sequence numbers from the receivedCToken
messages (Actions Ac4). Now, we describe the maintenance of Ce and Cf at Root.
Variable Ce records the number of “enabled tokens” in the system. Processors maintain
two variables Th and Td in Algorithm 3. Th indicates the number of tokens received (or
originally held) by a processor. But, if a processor i is waiting to enter the critical section,
imaybe forced to “disable” someof these originally held active tokens. (Wewill describe
this process in detail in the next paragraph.) Td represents the number of disabled tokens.
The disabled tokens cannot be used by a processor to enter the critical section until they
are enabled later. The difference between Th and Td is what we call the “enabled tokens”
in a processor. This is computed by Function T-ENABLED in Algorithm 3. On receiving
a CTokenmessage from Root, a processor i computes the number of enabled tokens at
i and then sends the same number of <Enabled Token> message to its right number
(ActionAc4). These<Enabled Token>messages are forwarded by using ActionAc5.
<Enabled Token>messages eventually arrive atRootwhich then calculates the value
of Ce (Action Ac2). Upon entering or exiting the critical section, processors send the
extra enabled tokens (by using <Token> message) to their right neighbor. As these
<Token> messages traverse the ring, the processors either use them (if needed) or
forward to their right neighbor. The total number of these “free” enabled tokens are
saved in Cf at Root. (See Algorithm 3 and 4 for details.)

Self-stabilizing �-Token-Circulation. We briefly describe the interface between the
�-exclusion protocol and application program invoking thek-out-of-� exclusion protocol.
The interface comprises of three functions as described below:

1. FunctionSTATE returns avalue in{Request, In,Out}. The threevaluesRequest,
In, and Out represent three modes of the application program “requesting to enter”,
“inside”, and “outside” the critical section, respectively.

2. Function NEED returns the number of resource units (i.e., the tokens) requested
by a processor.

3. Function ECS does not return a value. This function is invoked by the �-exclusion
protocol to send the permission to the application process to enter the critical section.

A Self-stabilizing Token-Based k-out-of-� Exclusion Algorithm 559

Algorithm 3. �-Token-Circulation (Header).
For Root For Other Processors
$-Exclusion(STATE() : {Request, In, Out}, $-Exclusion(STATE() : {Request, In, Out},

NEED(): 0..k (k ≤ K ≤ $), ECS()) NEED(): 0..k (k ≤ K ≤ $), ECS())
External Controller(START(),COUNT-ET()) External Controller(T-ENABLED())
Parameters Parameters
Function START() Function T-ENABLED(): Integer

00: if (Ce + Cf + MyTc + MyTa) > $ then Return(Th − Td)
01: send <Disable> end Function
02: else for t = 1 to ($−(Ce+Cf +(MyTc+MyTa)) do −
03: send <Token> Function LOCK(): Boolean
04: if (MyTc + MyTa > 0) then Return(STATE = Request ∧
05: send <Allocate, MyTc + MyTa, MyOrder> (0 < Th < NEED))
06: send <Collect, 0> end Function
07: Ce := Th − Td; Cf := 0 Variables Th, Td : 0..K (K ≤ $)
08: MyTc := 0; MyTa := 0 MyTc: 0..MaxVc (K ≤ MaxVc ≤ $)
09: end Function MyTa: 0..Min(2 × MaxVc, $)
Function COUNT-ET() MyOrder: Boolean

if Cf < $ then Cf := Cf + 1
end Function

–
Function LOCK(): Boolean
Return(STATE() = Request ∧(0 < Th < NEED))

end Function
Variables Th, Td : 0..K (K ≤ $)

Ce, Cf : 0..$
MyTc: 0..MaxVc (K ≤ MaxVc ≤ $)
MyTa: 0..Min(2 × MaxVc, $)
MyOrder : Boolean

The basic objective of the algorithm in this section is to implement a circulation
of � tokens around the ring. A processor requesting k units of the resource can enter
the critical section upon receipt of k tokens. The obvious approach to implement this
would be the following: A requesting processor holds on to the tokens it receives until it
gets the requested number (k) of tokens. When it receives k tokens, it enters the critical
section. Upon completion of the critical section execution, it releases all the k tokens
by sending them out to the next processor in the ring. Unfortunately, the above hold-
and-wait approach is prone to deadlocks. Let α be the number of the (critical section
entry) requesting processors in the system and β the total number of tokens requested
by α processors. If β ≥ � + α, then � tokens can be allocated in such a manner that
every requesting processor is waiting for at least one token. So, the system has reached
a deadlock configuration. We solve the deadlock problem by pre-emptying tokens. The
methodworks in two phases as follows: 1. At leastK tokens are disabled by pre-empting
tokens from some processors. (Note that by definition, k ≤ K ≤ �.)

2. The disabled tokens are then used to satisfy the request of both the first waiting
processor (w.r.t. the token circulation) with disabled tokens and the privileged2 processor
(say i). Processor i then enters the critical section. In order to ensure both fairness and
(k, �)-liveness,we construct a fair order in the ring (w.r.t. the token circulation) as follows:
Every processor maintains a binary variableMyOrder (MyOrder ∈ {true, false}).
In Algorithms 3 and 4, two messages are used to implement the above two phases:
<Collect, Tc> and <Allocate, Ta, Order> message. Root initiates both messages in

2 The privileged processor is the first processor (w.r.t. the token circulation) whoseMyOrder is
equal to that ofRoot. If all processors have theirMyOrder equal, then the privileged processor
is Root.

560 A.K. Datta, R. Hadid, and V. Villain

Algorithm 4. �-Token-Circulation (Actions).
For Root For Other Processors
(Al1) [] STATE ∈ {Request, Out} ∧ (Al7) [] STATE ∈ {Request, Out} ∧

(Th + Td > 0) −→ (Th + Td > 0) −→
if STATE = Out then if STATE = Out then
for k = 1 to Th − Td do for k = 1 to Th − Td do
send <Token> send <Token>

Td := 0; Th := 0 Td := 0; Th := 0
else if (Th − Td ≥ NEED) then ECS else if (Th − Td ≥ NEED) then ECS

(Al2) [] (receive <Token>) −→ (Al8) [] (receive <Token>) −→
if (Cf + Ce < $) then if (STATE ∈ {Out, In}) then
Ce := Ce + 1 send < Token >
if (STATE ∈ {Out, In}) then else if Th < NEED then
send < Token > Th := Th + 1

else if Th < NEED then Th := Th + 1 else Td := Td − 1
else Td := Td − 1

(Al3) [] ((receive <Allocate, Ta, Order>) (Al9) [] ((receive <Allocate, Ta, Order>)
∧(MyOrder = Order)) −→ ∧(MyOrder �= Order)) −→

MyTa := Ta MyTa := Ta

if (STATE = Request) then if (STATE = Request) then
if (MyTa ≥ NEED − (Th − Td)) then if (MyTa ≥ NEED − (Th − Td)) then
MyTa:=MyTa−(NEED−(Th − Td)) MyTa:=MyTa−(NEED−(Th − Td))
Th := NEED ; Td := 0 Th := NEED ; Td := 0
MyOrder := MyOrder MyOrder := Order

else if (Td ≥ MyTa) then if MyTa > 0 then
Td := Td − MyTa send <Allocate, MyTa, Order>

else Th := Th + (MyTa − Td) else if (Td ≥ MyTa) then
Td := 0 Td := Td − MyTa

MyTa := 0 else Th := Th + (MyTa − Td)
else MyOrder := MyOrder Td := 0

MyTa := 0
else MyOrder := Order

send <Allocate, MyTa, Order>

(Al4) [] (receive <Allocate, Ta, Order>) −→ (Al10) [] (receive <Allocate, Ta, Order>) −→
MyTa := Ta MyTa := Ta

if (Td > 0 ∧ LOCK) then if (Td > 0 ∧ LOCK) then
if (MyTa ≥ NEED − (Th − Td)) then if (MyTa ≥ NEED − (Th) − Td) then
MyTa:= MyTa−(NEED−(Th − Td)) MyTa:= MyTa−(NEED−(Th − Td))
Th := NEED ; Td := 0 Th := NEED ; Td := 0

if MyTa > 0 then
send <Allocate, MyTa>

else send <Allocate, MyTa>

(Al5) [] (receive <Collect, Tc>)) −→ (Al11) [] (receive <Collect, Tc>)) −→
MyTc := Tc MyTc := Tc

if LOCK then if LOCK then
MyTc:=Min(MyTc+(Th−Td),MaxVc) MyTc:=Min(MyTc+(Th−Td),MaxVc)
Td := Td + (MyTc − Tc) Td := Td + (MyTc − Tc)

send <Collect, MyTc>

(Al6) [] (receive <Disable>) −→ (A12) [] (receive <Disable>) −→
Td := Th Td := Th; send <Disable>

Function START (Lines 05 and 06 of Algorithm 3). Root executes Function START
before initiating a new CToken message (see Algorithm 2).

The receipt of aCollectmessage at a processor i has the following effect (seeActions
Al5 and Al11 of Algorithms 4): If Processor i is waiting to enter the critical section
(because it did not receive enough tokens yet) (verified by using Function LOCK), then
the current enabled tokens at i are marked disabled and these tokens are added to the

A Self-stabilizing Token-Based k-out-of-� Exclusion Algorithm 561

pool of collected tokens in theCollectmessage. Finally, i forwards theCollectmessage
to its right neighbor. The field Tc in <Collect, Tc> message represents the number of
disabled tokens collected so far from theprocessors in the ring.Everyprocessormaintains
a variableMyTc corresponding to the message field Tc.

WhenRoot receives theCollectmessageback (ActionAl5), it stores the total number
of disabled tokens (collected from all the other processors) in its own variableMyTc.
When a processor i receives an <Allocate, Ta, Order> message, (the field Order
corresponds toMyOrder of Root), i does the following (see ActionsAl3,Al4,Al9, and
Al10): If i is waiting to enter the critical section (i.e., i is requesting and contains at least
one disabled token) or i is privileged (i.e., i is requesting and MyOrderi = Order),
then it will use some (or all) tokens from the pool of available tokens in the message
field Ta. This would allow i to enter the critical section by executing ActionAl7 (Action
Al1 for Root). If there are some available tokens, i.e., Ta is not zero, iwill pass on those
tokens to its right neighbor by sending anAllocatemessage. Thus, either Root receives
an Allocate message containing some left-over tokens, or all the available tokens are
consumed by other processors. It should be noted that Allocate message delivers its
tokens (available in Ta) to a privileged processor i even if i’s request cannot be granted
(Ta is not enough) (see ActionsAl3 andAl9). But, if i is waiting, thenAllocatemessage
delivers its tokens to i only if its request can be granted (Ta is enough) (see Actions Al4
and Al10). As discussed earlier, Root maintains two special counters: Ce and Cf . The
sum of Ce, Cf , MyTc, and MyTa represents the total number of tokens in the ring
at the end of the CToken traversal. If this number is more than �, then Root destroys
(or disables) all the tokens by sending a special message <Disable> (Lines 00-01 and
ActionsAl6 andAl12). But, ifRoot sees that there are somemissing tokens in the ring, it
replenishes them to maintain the right number (�) of tokens in the system (Lines 03-04).

Proof Outline. The movement of the CToken and enabled tokens are independent
of each other except that they are synchronized at the beginning of a new traversal of
the CToken (Action Ac1 and Function START). So, we can claim that the composed
Controller �P �-Token-Circulation is fair w.r.t. Controller. We can borrow the result
of [1,17] to claim that the CToken stabilizes for the predicate “there exist only one
CToken” in two CToken traversal time, i.e., in 2n. By the controller (Algorithm 2)
(it maintains the right number � of tokens in the system in at most three more CToken
traversal time) and the mechanism of pre-empting tokens, we can claim that deadlock
cannot occur (deadlock-freeness). Moreover, it ensures the (k, �)-liveness. By Algo-
rithms 3 and 4 (MyOrder construction), every processor iwill be eventually privileged
and i’request will eventually have higher priority than the rest of the requests in the
system. Therefore, the composedController �P �-Token-Circulation does not cause star-
vation of any processor. Then, our final result follows from Theorem 1 and Corollary 1:
Controller �P �-Token-Circulation stabilizes for the k-out-of-� exclusion specification
— safety, fairness, and (k, �)-liveness — in at most five CToken traversal time i.e., 5n.

4 Conclusions

In this paper, we present the first self-stabilizing protocol for k-out-of-� exclusion prob-
lem.We use a module called controller which can keep track of the the number of tokens

562 A.K. Datta, R. Hadid, and V. Villain

in the system bymaintaining only a counter variable only atRoot. One nice characteristic
of our algorithm is that its space requirement is independent of � for all processors except
Root. The stabilization time of the protocol is 5n. Our protocol works on uni-directional
rings. However, we can use a self-stabilizing tree construction protocol and the Euler
tour of the tree (virtual ring) to extend the algorithm for a general network.

References

1. Afek, Y., Brown, G.M : Self-stabilization over unreliable communication media. Distributed
Computing, Vol. 7 (1993) 27–34

2. Abraham, U., Dolev, S., Herman, T., Koll, I. : Self-Stabilizing �-exclusion. In Proceedings of
the third Workshop on Self-Stabilizing Systems, International Informatics Series 7, Carleton
University Press (1997) 48–63

3. Baldoni, R. : AnO(NM/M+1) distributed algorithm for the k-out of-M resources allocation
problem. In Proceedings of the 14th conference on Distributed Computing and System (1994)
81-85.

4. Datta, AK., Gurumurthy, S., Petit, F., Villain V. : Self-stabilizing network orientation algo-
rithms in arbitrary rooted networks. In Proceedings of the 20th IEEE International Conference
on Distributed Computing Systems (2000) 576–583

5. Datta, AK., Hadid, R., Villain V. : A Self-stabilizing Token-Based k-out-of-� Exclusion Al-
gorithm. Technical Report RR 2002-04, LaRIA, University of Picardie Jules Verne (2002).

6. Dolev, D., Gafni, E., Shavit, N. : Toward a non-atomic era: �-exclusion as test case. In Pro-
ceeding of the 20th Annual ACM Symposium on Theory of Computing, Chicago (1988)
78–92

7. Dijkstra, EW. : Self stabilizing systems in spite of distributed control. Communications of the
Association of the Computing Machinery, Vol. 17, No. 11 (1974) 643–644

8. Flatebo, M., Datta, AK., Schoone, AA. : Self-stabilizing multi-token rings. Distributed Com-
puting, Vol. 8 (1994) 133-142

9. Hadid, R. : Space and time efficient self-stabilizing �-exclusion in tree networks. In Journal
of parallel and distributed computing. To appear.

10. Hadid, R., Villain, V : A new efficient tool for the design of Self-stabilization �-exclusion
algorithms: the controller, In Proceedings of the 5th International Workshop, WSS (2001)
136-151.

11. Lamport , L. : Time, clocks, and the ordering of events in a distributed system. Communica-
tions of ACM, Vol. 21 (1978) 145-159

12. Manabe, Y., Tajima, N. : (h, k)-Arbiter for h-out of-kmutual exclusion problem. In Proceed-
ings of the 19th Conference on Distributed Computing Systems, (1999) 216-223.

13. Manabe, Y., Baldoni, R., Raynal, M., Aoyagi, S.: k-Arbiter: A safe and general scheme for
h-out of-k mutual exclusion. Theoretical Computer Science, Vol. 193 (1998) 97-112

14. Raynal, M. : A distributed algorithm for the k-out of-m resources allocations problem. In
Proceedings of the 1st conference onComputing and Informations, LectureNotes inComputer
Science, Vol. 497 (1991) 599-609

15. Raynal, M. : Synchronisation et état global dans les systèmes répartis. Eyrolles, collection
EDF (1992)

16. Tel, G. : Introduction to distributed algorithms. Cambridge University Press (1994)
17. Varghese G. : Self-stabilizing by counter flushing. Technical Report, Washington University

(1993)
18. Villain V. A Key Tool for Optimality in the State Model. DIMACSWorkshop on Distributed

Data and Structures, Proceedings in Informatics 6, Carleton Scientific, pages 133-148, 1999.

	1 Introduction
	2 Preliminaries
	2.1 The Model
	2.2 Self-stabilization
	2.3 The k-out-of-l Exclusion Problem
	2.4 Parametric Composition

	3 Self-stabilizing k-out-of-l Exclusion Protocol
	4 Conclusions
	References

