
Reuse Distance-Based Cache Hint Selection

Kristof Beyls and Erik H. D’Hollander

Department of Electronics and Information Systems
Ghent University

Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

{kristof.beyls,erik.dhollander}@elis.rug.ac.be

Abstract. Modern instruction sets extend their load/store-instructions
with cache hints, as an additional means to bridge the processor-memory
speed gap. Cache hints are used to specify the cache level at which the
data is likely to be found, as well as the cache level where the data is
stored after accessing it. In order to improve a program’s cache behavior,
the cache hint is selected based on the data locality of the instruction.
We represent the data locality of an instruction by its reuse distance
distribution. The reuse distance is the amount of data addressed between
two accesses to the same memory location. The distribution allows to
efficiently estimate the cache level where the data will be found, and to
determine the level where the data should be stored to improve the hit
rate. The Open64 EPIC-compiler was extended with cache hint selection
and resulted in speedups of up to 36% in numerical and 23% in non-
numerical programs on an Itanium multiprocessor.

1 Introduction

The growing speed gap between the memory and the processor push computer
architects, compiler writers and algorithm designers to conceive ever more pow-
erful data locality optimizations. However, many programs still stall more than
half of their execution time, waiting for data to arrive from a slower level in the
memory hierarchy. Therefore, the efforts of reducing memory stall time should
be combined on the three different program levels: hardware, compiler and algo-
rithm. In this paper, a combined approach at the compiler and hardware level
is described.

Cache hints are emerging in new instruction set architectures. Typically they
are specified as attachments to regular memory instructions, and occur in two
kinds: source and target hints. The first kind, the source cache specifier, indicates
at which cache level the accessed data is likely to be found. The second kind,
the target cache specifier, indicates at which cache level the data is kept after
the instruction is executed. An example is given in fig. 1, where the effect of the
load instruction LD_C2_C3 is shown. The source cache specifier C2 suggests that
at the start of the instruction, the data is expected in the L2 cache. The target
cache specifier C3 causes the data to be kept in the L3 cache, instead of keeping
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Fig. 1. Example of the effect of the cache hints in the load instruction LD C2 C3. The
source cache specifier C2 in the instruction suggests that the data resides in the L2-
cache. The target cache specifier C3 indicates that the data should be stored no closer
than the L3-cache. As a consequence, the data is the first candidate for replacement in
the L2-cache.

it also in the L1 and L2 caches. After the execution, the data becomes the next
candidate for replacement in the L2 cache.

In an Explicitly Parallel Instruction Computing architecture (EPIC), the
source and destination cache specifiers are used in different ways.

The source cache specifiers are used by the compiler to know the estimated
data access latency. Without these specifiers, the compiler assumes that all mem-
ory instructions hit in the L1 cache. Using the source cache specifier, the compiler
is able determine the true memory latency of instructions. It uses this informa-
tion to schedule the instructions explicitly in parallel.

The target cache specifiers are used by the processor, where they indicate
the highest cache level at which the data should be kept. A carefully selected
target specifier will maintain the data at a fast cache level, while minimizing the
probability that it is replaced by intermediate accesses.

Small and fast caches are efficient when there is a high data locality, while
for larger and slower caches lower data locality suffices. To determine the data
locality, the reuse distance is measured and used as a discriminating function to
determine the most appropriate cache level and associated cache hints.

The reuse distance-based cache hint selection was implemented in an EPIC-
compiler and tested on an Itanium multiprocessor. On a benchmark of general
purpose and numerical programs, up to 36% speedup is measured, with an av-
erage speedup of 7%.

The emerging cache hints in EPIC instruction sets are discussed in sect. 2.
The definition of the reuse distance, and some interesting lemmas are stated
in sect. 3. The accurate selection of cache hints in an optimizing compiler is
discussed in sect. 4. The experiments and results can be found in sect. 5. The
related work is discussed in sect. 6. In sect. 7, the conclusion follows.
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2 Software Cache Control in EPIC

Cache hints and cache control instructions are emerging in both EPIC[4,7] and
superscalar[6,10] instruction sets. The most expressive and orthogonal cache
hints can be found in the HPL-PD architecture[7]. Therefore, we use them in
this work. The HPL-PD architecture defines 2 kinds of cache hints: source cache
specifiers and target cache specifiers. An example of a load instruction can be
found in fig. 1.

source cache specifier The source cache specifier indicates the highest cache
level where the data is assumed to be found,

target cache specifier The target cache specifier indicates the highest cache
level where the data should be stored. If the data is already present at
higher cache levels, it becomes the primary candidate for replacement at
those levels.

In an EPIC-architecture, the compiler is responsible for instruction schedul-
ing. Therefore, the source cache specifier is used inside the compiler to obtain
good estimates of the memory access latencies. Traditional compilers assume L1
cache hit latency for all load instructions. The source cache specifier allows the
scheduler to have a better view on the latency of memory instructions. In this
way, the scheduler can bridge the cache miss latency with parallel instructions.
After scheduling, the source cache specifier is not needed anymore.

The target cache specifier is communicated to the processor, so that it can
influence the replacement policy of the cache hierarchy. Since the source cache
specifier is not used by the processor, only the target cache specifier needs to be
encoded in the instruction. As such, the IA-64 instruction set only defines target
cache specifiers. Our experiments are executed on an IA-64 Itanium-processor,
since it is the only processor available with this rich set of target cache hints.
E.g., in the IA-64 instruction set, the target cache hints C1, C2, C3, C4 are
indicated by the suffixes .t1, .nt1, .nt2, .nta[4]. Further details about the
implementation of those cache hints in the Itanium processor can be found in
[12].

In order to select the most appropriate cache hints, the locality of references
to the same data is measured by the reuse distance.

3 Reuse Distance

The reuse distance is defined within the framework of the following definitions.
When data is moved between different levels of the cache hierarchy, a complete
cache line is moved. To take this effect into account when measuring the reuse
distance, a memory line is considered as the basic unit of data.

Definition 1. A memory line[2] is an aligned cache-line-sized block in the mem-
ory. When data is loaded from the memory, a complete memory line is brought
into the cache.
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Fig. 2. A short reference stream with indication of the reuses. The subscript of the
references indicates which memory line the reference accesses. The references rX , rZ , rY

and rW are not part of a reuse pair, since memory lines W, X, Y and Z are accessed
only once in the stream. Reuse pair 〈r1

A, r2
A〉 has reuse distance 4, while the reuse pair

〈r2
A, r3

A〉 has reuse distance 0. The forward reuse distance of r1
A is 4, its backward reuse

distance is ∞. The forward reuse distance of r2
A is 0, its backward reuse distance is 4.

Definition 2. A reuse pair 〈r1, r2〉 is a pair of references in the memory ref-
erence stream, accessing the same memory line, without intermediate references
to the same memory line. The set of reuse pairs of a reference stream s is de-
noted by Rs. The reuse distance of a reuse pair 〈r1, r2〉 is the number of unique
memory lines accessed between references r1 and r2.

Corollary 1. Every reference in a reference stream s occurs at most 2 times in
Rs: once as the first element of a reuse pair, once as the second element of a
reuse pair.

Definition 3. The forward reuse distance of a memory access x is the reuse
distance of the pair 〈x, y〉. If there is no reuse pair where x is the first element,
its forward reuse distance is ∞. The backward reuse distance of x is the reuse
distance of 〈w, x〉. If there is no such pair, the backward reuse distance is ∞.

Example 1. Figure 2 shows two reuse pairs in a short reference stream.

Lemma 1. In a fully associative LRU cache with n lines, a reference with back-
ward reuse distance d < n will hit. A reference with backward reuse distance
d ≥ n will miss.

Proof. In a fully-associative LRU cache with n cache lines, the n most recently
referenced memory lines are retained. When a reference has a backward reuse
distance d, exactly d different memory lines were referenced previously. If d ≥ n,
the referenced memory line is not one of the n most recently referenced lines,
and consequently will not be found in the cache. ��

Lemma 2. In a fully associative LRU cache with n lines, the memory line ac-
cessed by a reference with forward reuse distance d < n will stay in the cache
until the next access of that memory line. A reference with forward reuse distance
d ≥ n will be removed from the cache before the next access.
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Proof. If the forward reuse distance is infinite, the data will not be used in the
future, so there is no next access. Consider the forward reuse distance of reference
r1 and assume that the next access to the data occurs at reference r2, resulting
in a reuse pair 〈r1, r2〉. By definition, the forward reuse distance d of r1 equals
the backward reuse distance of r2, i.e. d. Lemma 1 stipulates that the data will
be found in the cache at reference r2, if and only if d < n. ��

Lemmas 1 and 2 indicate that the reuse distance can be used to precisely indi-
cate the cache behavior of fully-associative caches. However, previous research[1]
indicates that also for lower-associative, and even for direct mapped caches, the
reuse distance can be used to obtain a good estimation of the cache behavior.

4 Cache Hint Selection

4.1 Reuse Distance-Based Selection

The cache hint selection is based on the forward and backward reuse distances
of the accesses. Lemma 1 is used to select the most appropriate source cache
specifier for a fully associative cache, i.e. the smallest and fastest cache level
where data will be found upon reference. This is the smallest cache level with
a size larger than the backward reuse distance. Similarly, lemma 2 yields the
following target cache specifier selection: the specifier must indicate the smallest
cache where the data will be found upon the next reference, i.e. the cache level
with a size larger than the forward reuse distance. This mapping from reuse
distance to cache hint is graphically shown in fig. 3(a). Notice that a single reuse
distance metric allows to handle all the cache levels. Cache hint selection based
on a cache hit/miss metric would need a separate cache simulation for all cache
levels.

For every memory access, the most appropriate cache hint can be determined.
However, a single memory instruction can generate multiple memory accesses
during program execution. Those accesses can demand different cache hints. It
is not possible to specify different cache hints for them, since the cache hint is
specified on the instruction. As a consequence, all accesses originating from the
same instruction share the same cache hint. Because of this, it is not possible to
assign the most appropriate cache hint to all accesses. In order to select a cache
hint which is reasonable for most memory accesses generated by an instruction,
we use a threshold value. In our experiments, the cache hint indicates the smallest
cache level appropriate for at least 90% of the accesses, as depicted in fig. 3(b).

4.2 Cache Data Dependencies

The source cache specifier makes the compiler aware of the cache behavior.
However, adding cache dependencies, in combination with source cache speci-
fiers further refines the compilers view on the latency of memory instructions.
Consider fig 4. Two loads access data from the same cache line in a short time
period. The first load misses the cache. Since the first load brings the data into
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(b) Cumulative reuse distance distribu-
tion (CDF) of an instruction The 90th
percentile determines the cache hint.

Fig. 3. The selection of cache hints, based on the reuse distance. In (a), it is shown how
the reuse distance of a single memory access maps to a cache level and an accompanying
cache hint. For example, a reuse distance larger than the cache size of L1, but smaller
than L2 results in cache hints C2. In (b), a cumulative reuse distance distribution for
an instruction is shown and how a threshold value of 90% maps it to cache hint C2.

the fastest cache level, the second load hits the cache. However, the second load
can only hit the cache if the first load had enough time to bring the data into
the cache. Therefore, the second load is cache dependent on the first load. If
this dependence is not visible to the scheduler, it could schedule the second load
with cache hit latency, before the first load has brought the data into the cache.
This can lead to a schedule where the instructions dependent on the second load
would be issued before their input data is available, leading to processor stall on
an in-order EPIC machine.

One instruction can generate multiple accesses, with the different accesses
coming from the same instruction dictating different cache dependencies. A
threshold is used to decide if an instruction is cache dependent on another in-
struction. If a load instruction y accesses a memory line at a certain cache level,
and that memory line is brought to that cache level by instruction x in at least
5% of the accesses, a cache dependence from instruction x to instruction y is
inserted.

5 Experiments

The Itanium processor, the first implementation of the IA-64 ISA, was chosen
to test the cache hint selection scheme described above. The Itanium processor
provides cache hints as described in sect. 2.
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LD_C3_C1  r1=[r33]

LD_C1_C1  r2=[r33+1]

ADD       r3=r5+r2

// [0 : 0]

// [0 : 0]

2

// [2 : 21]

19 cycles stall!

LD_C1_C1  r2=[r33+1]

ADD       r3=r5+r2

// [0 : 0]

// [19 : 19]

// [21 : 21]

no stall if enough parallel instructions are found

2

19

LD_C3_C1  r1=[r33]

Fig. 4. An example of the effect of cache dependence edges in the instruction scheduler.
The two load instructions access the same memory line. The first number between
square brackets indicates the schedulers idea of the first cycle in which the instruction
can be executed. The second number shows the real cycle in which the instruction
can be executed. On the left, there is no cache dependence edge and a stall of up to
19 cycles can occur, while the instruction scheduler is not aware of it. On the right
hand, the cache dependence is visible to the compiler, and the scheduler can try to
move parallel instruction between the first and the second load instruction to hide the
latency.

5.1 Implementation

The above cache hint selection scheme was implemented in the Open64 compiler[8],
which is based on SGI’s Pro64 compiler. The reuse distance distribution for the
memory instructions, and the necessary information needed to create cache de-
pendencies are obtained by instrumenting and profiling the program. The source
and target cache hints are annotated to the memory instruction, based on the
profile data. After instruction scheduling, the compiler produces the EPIC as-
sembly code with target cache hints.

All compilations were performed at optimization level -O2, the highest level
at which instrumentation and profiling is possible in the Open64 compiler. The
existing framework doesn’t allow to propagate the feedback information through
some optimizations phases at level -O3.

5.2 Measurements

The programs were executed on a HP rx4610 multiprocessor, equipped with
733MHz Itanium processors. The data cache hierarchy consists of a 16KB L1,
96KB L2 and a 2MB L3 cache. The hardware performance counters of the pro-
cessor were used to obtain detailed micro-architectural information, such as pro-
cessor stall time because of memory latency and cache miss rates.

The programs were selected from the Olden and the Spec95fp benchmarks.
The Olden benchmark contains programs which uses dynamic data structures,
such as linked lists, trees and quadtrees. The Spec95fp programs are numerical
programs with mostly regular array accesses. For the Spec95fp, the profiling
was done using the train input sets, while the speedup measurements were done
with the large input sets. For Olden, no separate input sets are available, and
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Table 1. Table with results for programs from the Olden and the SPEC95FP bench-
marks: mem. stall=percentage of time the processor stalls waiting for the memory;
mem. stall reduction=the percentage of memory stall time reduction after optimiza-
tion; source CH speedup=the speedup if only source cache specifiers are used; target CH
speedup=speedup if only target cache specifiers are used; missrate reduction=reduction
in miss rate for the three cache levels; overall speedup=speedup resulting from reuse
distance-based cache hint selection.

mem. stall source CH target CH missrate reduction overall
program mem. stall reduction speedup speedup L1 L2 L3 speedup

bh 26% 0% 0% -1% 1% -20% -3% -1%
bisort 32% 0% 0% 0% 0% 6% -5% 0%
em3d 77% 25% 6% 20% -28% -3% 35% 23%
health 80% 19% 2% 16% 0% -1% 15% 20%
mst 72% 1% 0% 0% -10% 1% 2% 1%

O
ld

en

perimeter 53% -1% -1% -1% -11% -56% -6% -2%
power 15% 0% 0% 0% -14% 2% 0% 0%
treeadd 48% 0% -2% -1% -2% 26% 17% 0%
tsp 20% 0% 0% 0% 2% 7% 7% 0%

Olden avg. 47% 5% 0% 4% -6% -6% 7% 5%
swim 78% 0% 0% 1% 32% 0% 0% 0%

tomcatv 69% 33% 7% 4% -11% -43% 6% 9%
applu 49% 10% 4% 1% -9% -1% -1% 4%
wave5 43% -9% 4% 15% -26% -7% -5% 5%

S
p
ec

95
fp

mgrid 45% 13% 36% 0% 13% -24% 25% 36%
Spec95fp avg. 57% 9% 10% 4% 0% -15% 5% 10%
overall avg. 51% 7% 4% 4% -5% -8% 6% 7%

the training input was identical to the input for measuring the speedup. The
results of the measurements can be found in table 1.

The table shows that the programs run 7% faster on average, with a maxi-
mum execution time reduction of 36%. In the worst case, a slight performance
degradation of 2% is observed. On average, the Olden benchmarks do not profit
from the source cache specifiers. To take advantage of the source cache speci-
fiers, the instruction scheduler must be able to find parallel instructions to fit
in between a long latency load and its consuming instructions. In the pointer-
based Olden benchmarks, the scheduler finds little parallel instructions, and
cannot profit from its better view on the cache behavior. On the other hand, in
the floating point programs, on average a 10% speedup is found because of the
source cache hints. Here, the loop parallelism allows the compiler to find parallel
instructions, mainly because it allows it to software pipeline the loops with long
latency loads. In this way, the latency is overlapped with parallel instructions
from different loop iterations. Some of the floating point programs didn’t speedup
a lot when employing source cache specifiers. The scheduler couldn’t generate
better code since the long latency of the loads demanded too many software
pipeline stages to overlap it. Because of the large number of pipeline stages, not
enough registers were available to actually create the software pipelining code.
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The table also shows that the target cache specifiers improve both kind of
programs by the same percentage. This improvement is caused by an average
reduction in the L3 cache misses of 6%. The reduction is due to the improved
cache replacement decisions made by the hardware, based on the target cache
specifiers.

6 Related Work

Much work has been done to eliminate cache misses by loop and data transfor-
mations. In our approach, the remaining cache misses after these transformations
are further diminished in two orthogonal ways: target cache specifiers and source
cache specifiers. In the literature, ideas similar to either the target cache specifier
or the source cache specifier are proposed, but not both.

Work strongly related to target cache specifiers is found in [5], [11], [13] and
[14]. In [13], it is shown that less than 5% of the load instructions cause over 99%
of all cache misses. In order to improve the cache behavior, the authors propose
not allocating the data in the cache when the instruction has a low hit ratio.
This results in a large decrease of the memory bandwidth requirement, while the
hit ratio drops only slightly. In [5], keep and kill instructions are proposed. The
keep instruction locks data into the cache, while the kill instruction indicates it
as the first candidate to be replaced. Jain et al. also proof under which conditions
the keep and kill instructions improve the cache hit rate. In [14], it is proposed
to extend each cache line with an EM(Evict Me)-bit. The bit is set by software,
based on compiler analysis. If the bit is set, that cache line is the first candidate
to be evicted from the cache. In [11], a cache with 3 modules is presented. The
modules are optimized respectively for spatial, temporal and spatial-temporal
locality. The compiler indicates in which module the data should be cached,
based upon compiler analysis or a profiling step. These approaches all suggest
interesting modifications to the cache hardware, which allow the compiler to
improve the cache replacement policy. However, the proposed modifications are
not available in present day architectures. The advantage of our approach is
that it uses cache hints available in existing processors. The results show that
the presented cache hint selection scheme is able to increase the performance on
real hardware.

The source cache specifiers hide the latency of cache misses. Much research
has been performed on software prefetching, which also hides cache miss la-
tency. However, prefetching requires extra prefetch instructions to be inserted
in the program. In our approach, the latency is hidden without inserting extra
instructions. Latency hiding without prefetch instructions is also proposed in
[3] and [9]. In [3] the cache behavior of numerical programs is examined using
miss traffic analysis. The detected cache miss latencies are hidden by techniques
such as loop unrolling and shifting. In comparison, our technique also applies to
non-numerical programs and the latencies are compensated by scheduling low
level instructions. The same authors also introduce cache dependency, and pro-
pose to shift data accesses with cache dependencies to previous iterations. In the
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present paper, cache dependencies are treated as ordinary data dependencies. In
[9], load instructions are classified into normal, list and stride access. List and
stride accesses are maximally hidden by the compiler because they cause most
cache misses. However the classification of memory accesses in two groups is very
coarse. The reuse distance provides a more accurate way to measure the data
locality, and as such permits the compiler to generate a more balanced schedule.

Finally, all the approaches mentioned above apply only to a single cache level.
In contrast, reuse distance based cache hint selection can easily be applied to
multiple cache levels.

7 Conclusion

Cache hints emerge in new processor architectures. This opens the perspective
of new optimization schemes aimed at steering the cache behavior from the
software level. In order to generate appropriate cache hints, the data locality of
the program must be measured. In this paper, the reuse distance is proposed as
an effective locality metric. Since it is independent of cache parameters such as
cache size or associativity, the reuse distance can be used for optimizations which
target multiple cache levels. The properties of this metric allow a straightforward
generation of appropriate cache hints. The cache hint selection was implemented
in an EPIC compiler for Itanium processors. The automatic selection of source
and target cache specifiers resulted in an average speedup of 7% in a number of
integer and numerical programs, with a maximum speedup of 36%.
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