
Parallel Distance-k Coloring Algorithms
for Numerical Optimization

Assefaw Hadish Gebremedhin1, Fredrik Manne1, and Alex Pothen2,�

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
{assefaw,fredrikm}@ii.uib.no

2 Computer Science Department, Old Dominion University, Norfolk, VA 23529 USA,
CSRI, Sandia National Labs, Albuquerque NM 87185 USA,

ICASE, NASA Langley Research Center, Hampton, VA 23681-2199 USA,
pothen@cs.odu.edu

Abstract. Matrix partitioning problems that arise in the efficient es-
timation of sparse Jacobians and Hessians can be modeled using vari-
ants of graph coloring problems. In a previous work [6], we argue that
distance-2 and distance- 3

2 graph coloring are robust and flexible formu-
lations of the respective matrix estimation problems. The problem size
in large-scale optimization contexts makes the matrix estimation phase
an expensive part of the entire computation both in terms of execu-
tion time and memory space. Hence, there is a need for both shared-
and distributed-memory parallel algorithms for the stated graph color-
ing problems. In the current work, we present the first practical shared
address space parallel algorithms for these problems. The main idea in
our algorithms is to randomly partition the vertex set equally among
the available processors, let each processor speculatively color its ver-
tices using information about already colored vertices, detect eventual
conflicts in parallel, and finally re-color conflicting vertices sequentially.
Randomization is also used in the coloring phases to further reduce con-
flicts. Our PRAM-analysis shows that the algorithms should give almost
linear speedup for sparse graphs that are large relative to the number of
processors. Experimental results from our OpenMP implementations on
a Cray Origin2000 using various large graphs show that the algorithms
indeed yield reasonable speedup for modest numbers of processors.

1 Introduction

Numerical optimization algorithms that rely on derivative information often need
to compute the Jacobian or Hessian matrix. Since this is an expensive part
of the computation, efficient methods for estimating these matrices via finite
differences (FD) or automatic differentiation (AD) are needed. It is known that
the problem of minimizing the number of function evaluations (or AD passes)
� This author’s research was supported by NSF grant DMS-9807172, DOE ASCI level-
2 subcontract B347882 from Lawrence Livermore National Lab; and by DOE SCI-
DAC grant DE-FC02-01ER25476.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 912–921.
c© Springer-Verlag Berlin Heidelberg 2002

Parallel Distance-k Coloring Algorithms for Numerical Optimization 913

required in the computation of these matrices can be formulated as variants
of graph coloring problems [1,2,3,8,11]. The particular coloring problem differs
with the optimization context: whether the Jacobian or the Hessian matrix is
to be computed; whether a direct or a substitution method is employed; and
whether only columns, or only rows, or both columns and rows are to be used to
evaluate the matrix elements. In addition, the type of coloring problem depends
on the kind of graph used to represent the underlying matrix. In [6], we provide
an integrated review of previous works in this area and identify the distance-
2 (D2) graph coloring problem as a unifying, generic, and robust formulation.
The D2-coloring problem has also noteworthy applications in other fields such
as channel assignment [10] and facility location problems [12].

Large-scale PDE-constrained optimization problems can be solved only with
the memory and time resources available on parallel computers. In these prob-
lems, the variables defined on a computational mesh are already distributed on
the processors, and hence parallel coloring algorithms are needed for computing,
for instance, the Jacobian. It turns out that the problems of efficiently comput-
ing the Jacobian and Hessian can be formulated as the D2- and D3

2 -coloring
problems, respectively. The latter coloring problem is a relaxed variant of the
former, and will be described in Section 2.2. In these formulations, the bipartite
graph associated with the rows and columns of the matrix is used for the Jaco-
bian; in the case of the Hessian matrix, the adjacency graph corresponding to
the symmetric matrix is used.

In this paper, we present several new deterministic as well as probabilistic
parallel algorithms for the D2- and D3

2 -coloring problems. Our algorithms are
practical and effective, well suited for shared address space programming, and
have been implemented in C using OpenMP primitives. We report results from
experiments conducted on a Cray Origin2000 using large graphs that arise in
finite element methods and in eigenvalue computations.

In the sequel, we introduce the graph problems in Section 2, present the algo-
rithms in Section 3, discuss our experimental results in Section 4, and conclude
the paper in Section 5.

2 Background

2.1 Matrix Partition Problems

An essential component of the efficient estimation of a sparse Jacobian or Hessian
using FD or AD is the problem of finding a suitable partition of the columns
and/or the rows of the matrix. The particular partition chosen defines a system of
equations from which the matrix entries are determined. A method that utilizes
a diagonal system is called a direct method, and one that uses a triangular
system is called a substitution method. A direct method is more restrictive but
the computation of matrix entries is straightforward and numerically stable. A
substitution method, on the other hand, is less restrictive but it may be subject
to approximation difficulties and numerical instability. Moreover, direct methods

914 A.H. Gebremedhin, F. Manne, and A. Pothen

offer more parallelism than substitution methods. In this paper, we focus on
direct methods that use column partitioning.

A partition of the columns of an unsymmetric matrix A is said to be con-
sistent with the direct determination of A if whenever aij is a non-zero element
of A then the group containing column j has no other column with a non-zero
in row i [1]. Similarly, a partition of the columns of a symmetric matrix A is
called symmetrically consistent with the direct determination of A if whenever
aij is a non-zero element of A then either (i) the group containing column j has
no other column with a non-zero in row i, or (ii) the group containing column i
has no other column with a non-zero in row j [2]. From a given (symmetrically)
consistent partition {C1, C2, . . . , Cρ} of the columns of A, the nonzero entries
can be determined with ρ function evaluations (matrix-vector products).

Thus we have the following two problems of interest. Given the sparsity
structure of an unsymmetric m × n matrix A, find a consistent partition of
the columns of A with the fewest number of groups. We refer to this problem
as UNSYMCOLPART. Similarly, the problem that asks for a symmetrically
consistent partition of a symmetric A is referred to as SYMCOLPART.

2.2 Graph Problems

In a graph, two distinct vertices are said to be distance-k neighbors if the shortest
path connecting them consists of at most k edges. A distance-k ρ-coloring (or
(k, ρ)-coloring for short) of a graph G = (V, E) is a mapping φ : V → {1, 2, . . . , ρ}
such that φ(u) �= φ(v) whenever u and v are distance-k neighbors. We call a
mapping φ : V → {1, 2, . . . , ρ} a (32 , ρ)-coloring of a graph G = (V, E) if φ is
a (1, ρ)-coloring of G and every path containing three edges uses at least three
colors. Notice that a (32 , ρ)-coloring is a restricted (1, ρ)-coloring, and a relaxed
(2, ρ)-coloring, and hence the name. For instance, consider a path u, v, w, x in
a graph. The assignment 2, 1, 2, 3 to the respective vertices is a valid D1- and
D 3

2 -coloring, but not a valid D2-coloring. The distance-k graph coloring problem
asks for a (k, ρ)-coloring of a graph with the least possible value of ρ.

Let A be an m × n rectangular matrix with rows r1, r2, . . . , rm and columns
a1, a2, . . . , an. We define the bipartite graph of A as Gb(A) = (V1, V2, E) where
V1 = {r1, r2, . . . , rm}, V2 = {a1, a2, . . . , an}, and (ri, aj) ∈ E whenever aij �= 0,
for 1 ≤ i ≤ m, 1 ≤ j ≤ n. When A is an n × n symmetric matrix with non-
zero diagonal elements, the adjacency graph of A is defined to be Ga(A) =
(V, E) where V = {a1, a2, . . . , an} and (ai, aj) ∈ E whenever aij , i �= j, is a
non-zero element of A. Note that the non-zero diagonal elements of A are not
explicitly represented by edges in Ga(A). In our work, we rely on the bipartite
and adjacency graph representations. However, in the literature, an unsymmetric
matrix A is often represented by its column intersection graph Gc(A). In this
representation, the columns of A constitute the vertex set, and an edge (ai, aj)
exists whenever the columns ai and aj have non-zero entries at the same row
position (i.e., ai and aj are not structurally orthogonal). As argued in [6], the
bipartite graph representation is more flexible and robust than the ‘compressed’
column intersection graph.

Parallel Distance-k Coloring Algorithms for Numerical Optimization 915

Coleman and Moré [1] showed that problem UNSYMCOLPART is equiva-
lent to the D1-coloring problem when the matrix is represented by its column
intersection graph. We have shown [6] that the same problem is equivalent to
a partial D2-coloring when a bipartite graph is used and discussed the relative
merits of the two approaches. The word ‘partial’ reflects the fact that only the
vertices corresponding to the columns need to be colored.

McCormick [11] showed that the approximation of a Hessian using a direct
method is equivalent to a D2-coloring on the adjacency graph of the matrix.
One drawback of McCormick’s formulation is that it does not exploit symmetry.
Later Coleman and Moré [2] addressed this issue and showed that the resulting
problem (SYMCOLPART) is equivalent to the D3

2 -coloring problem.

3 Parallel Coloring Algorithms

The distance-k coloring problem is NP-hard for any fixed integer k ≥ 1 [11]. A
proof-sketch showing that D 3

2 -coloring is NP-hard is given in [2]. Furthermore,
Lexicographically First ∆ + 1 Coloring (LFC), the polynomial variant of D1-
coloring in which the vertices are given in a predetermined order and the question
at each step is to assign the vertex the smallest color not used by any of its
neighbors, is P-complete [7]. The practical implication of this is that designing
efficient fine-grained parallel algorithm for LFC is hard.

In practice, greedy sequential D1-coloring heuristics are found to be quite
effective [1]. In a recent work [5], we have shown effective methods of parallelizing
such greedy algorithms in a coarse-grained setting. Here, we extend this work to
develop parallel algorithms for the D2- and D3

2 -coloring problems.
Jones and Plassmann [9] describe a parallel distributed memory D1-coloring

algorithm that uses randomization to assign priorities to the vertices, and then
colors the vertices in the order determined by the priorities. There is no specu-
lative coloring in their algorithm. It was reported that the algorithm slows down
as the number of processors is increased. Finocchi et al.[4] suggest a parallel
D1-coloring algorithm organized in several rounds; in each round, currently un-
colored vertices are assigned a tentative pseudo-color without consulting their
neighbors mapped to other processors; in a conflict resolution step, a maximal
independent set of vertices in each color class is assigned these colors as final;
the remainder of the vertices are uncolored, and the algorithm moves into the
next round. However, they do not give any implementation and we believe that
this algorithm incurs too many rounds, each with its synchronization and com-
munication steps, for it to be practical on large graphs.

Our algorithm (in its generic form) may be viewed as a compromise between
these algorithms, where we permit speculative coloring, but limit the number
of synchronization steps to two in the whole algorithm. However, our current
algorithms rely on the shared address space programming model; we will adapt
our algorithms to distributed memory programming models in future work. We
are unaware of any previous work on parallel algorithms for D2- and D3

2 -coloring
problems.

916 A.H. Gebremedhin, F. Manne, and A. Pothen

3.1 Generic Greedy Parallel Coloring Algorithm (GGPCA)

The steps of our generic parallel coloring algorithm can be summarized as shown
below; refer to [5] for a detailed discussion of the D1-coloring case. Let G = (V, E)
be the input graph and p be the number of processors.

Phase 0 : Partition
Randomly partition V into p equal blocks V1 . . . Vp. Processor Pi is
responsible for coloring the vertices in block Vi.

Phase 1 : Pseudo-color
for i = 1 to p do in parallel
for each u ∈ Vi do

assign the smallest available color to u, paying attention
to already colored vertices (both local and non-local).

Phase 2 : Detect conflicts
for i = 1 to p do in parallel
for each u ∈ Vi do

check whether the color of u is valid. If the colors of u and v
are the same for some (u, v) ∈ E, then

Li = Li ∪ min{u, v}
Phase 3 : Resolve conflicts

Color the vertices in the conflict list L = ∪Li sequentially.

In Phase 0, the vertices are randomly partitioned into p equal blocks each
of which is assigned to some processor. In Phase 1, when two adjacent vertices
are on different processors, the two processors could color both simultaneously,
possibly assign them the same value, and cause a conflict. The purpose of Phase 2
is to detect and store any such conflict vertices which are subsequently re-colored
sequentially in Phase 3.

3.2 Simple Distance-2 (SD2) Coloring Algorithm

The meaning of ‘available’ color in GGPCA depends on the required coloring.
In the case of a D2-coloring, a vertex is assigned the smallest color not used by
any of its D2-neighbors. Let ∆ denote the maximum degree in the graph. It can
easily be verified that, in a D2-coloring, a vertex can always be assigned one
of the colors from the set {1, 2, . . . , ∆2 + 1}. Moreover, since the D1-neighbors
of a vertex are D2-neighbors with each other, the D2-chromatic number (the
least number of colors required in a D2-coloring) is at least ∆ + 1. Thus, the
greedy approach is an O(∆)-approximation algorithm. We refer to the variant
of GGPCA that applies to D2-coloring as Algorithm SD2.

Note that the sequential time complexity of greedy D2-coloring is O(∆2|V |).
The following results show that the number of conflicts discovered in Phase 2 of
Algorithm SD2 is often small for sparse graphs, making the algorithm scalable

when the number of processors p = O(
√

|V |2
∆|E|). The proofs, which are essentially

similar to those of the D1-coloring case given in [5], have been omitted for space
considerations. Let δ = 2|E|/|V | denote the average vertex degree in G.

Parallel Distance-k Coloring Algorithms for Numerical Optimization 917

Lemma 1. The expected number of conflicts created at the end of Phase 1 of
Algorithm SD2 is at most ≈ ∆δ(p−1)

2 .

Theorem 2. On a CREW PRAM, Algorithm SD2 distance-2 colors the input
graph consistently in expected time O(∆2(|V |

p +∆δp)) using at most ∆2+1 colors.

Corollary 3. When p = O(
√

|V |2
∆|E|), the expected runtime of Algorithm SD2 is

O(∆2|V |
p).

The number of conflicts predicted by Lemma 1 is an over estimate. The analysis
assumes that whenever two D2-adjacent vertices are colored simultaneously, they
are assigned the same color, thereby resulting in a conflict. However, a more
involved probabilistic analysis that takes the distribution of colors used into
account may provide a tighter bound. Besides, the actual number of conflicts in
an implementation could be significantly reduced by choosing a random color
from the allowable set, instead of the smallest one as given in Phase 1 of GGPCA.

3.3 Improved Distance-2 (ID2) Coloring Algorithm

The number of colors used in Algorithm SD2 can be reduced using a ‘two-
round-coloring’ strategy. The underlying idea in the D1-coloring case is due to
Culberson and was used in the parallel algorithm of [5]. Here we extend the
result to the D2-coloring case.

Lemma 4. Let φ be a distance-2 coloring of a graph G using χ colors, and π a
permutation of the vertices such that if φ(vπ(i)) = φ(vπ(l)) = c, then φ(vπ(j)) = c
for i < j < l. Applying the greedy sequential distance-2 algorithm to G where
the vertices have been ordered by π will produce a coloring φ′ using χ or fewer
colors.

The idea is that if the greedy coloring algorithm is re-applied on a graph,
with the vertices belonging to the same color class (in the original coloring)
listed consecutively, then the new coloring obtained is better or at least as good
as the original. One ordering (among many) that satisfies this condition, with
a good potential for reducing the number of colors used, is to list the vertices
consecutively for each color class in the reverse order of the introduction of the
color classes. Based on Lemma 4, we modify Algorithm SD2 and introduce an
additional parallel coloring phase between Phases 1 and 2. Algorithm ID2 below
outlines the resulting 4-phase algorithm.

Phases 0 and 1. Same as Ph. 0 and 1 of GGPCA. Let s be the number of colors.
Phase 2. for k = s downto 1 do

Partition ColorClass(k) into p equal blocks V ′
1 , . . . , V ′

p

for i = 1 to p do in parallel
for each u ∈ V ′

i do
assign the smallest available color to vertex u.

Phases 3 and 4. Same as Phases 2 and 3 of GGPCA, respectively.

918 A.H. Gebremedhin, F. Manne, and A. Pothen

In Phase 2, most of the vertices in a color class are at a distance greater than two
edges from each other, and the exceptions arise from the conflict vertices colored
incorrectly in Phase 1. Since the number of such conflict vertices from Phase 1
is low, the number of conflict vertices at the end of the re-coloring phase will
be even lower. Phases 3 and 4 are included to detect and resolve any eventual
conflicts not resolved in Phase 2.

3.4 Simple Distance-32 (SD
3
2) Coloring Algorithm

Recall that a D3
2 -coloring is a relaxed D2-coloring (see the example in Sec-

tion 2.2). One way of relaxing the requirement for D2-coloring in GGPCA so as
to obtain a valid D3

2 -coloring is to let two vertices at a distance of exactly two
edges from each other share a color as long as the vertex in between them is
already colored with a (color of) lower value. We refer to the variant of GGPCA
that employs this technique to achieve a distance-3/2 coloring as Algorithm SD3

2 .
Note that both Algorithms ID2 and SD 3

2 take asymptotically the same time
as Algorithm SD2.

3.5 Randomization

The potential scalability of GGPCA depends on the number of conflicts dis-
covered in Phase 2, since these are resolved sequentially in Phase 3. For dense
graphs the number of conflicts could be large enough to destroy the scalability
of the algorithm. To overcome this problem, we use randomization as a means
for reducing the number of conflicts. In the randomized variants of Algorithms
SD2, SD3

2 , and ID2, a vertex is assigned the next available color with probability
q, where 0 < q ≤ 1. The first attempt is made with the smallest available color,
i.e., the color is chosen with probability q. An attempt is said to be successful
if the vertex is assigned a color. If an attempt is not successful, then the next
available color is tried with probability q, and so on, until the vertex gets a color.
Algorithms SD2, SD3

2 , and ID2, can be seen as the deterministic variants where
q = 1. We refer to the randomized versions of the respective algorithms as RSD2,
RSD 3

2 , and RID2.
Let u and v be two vertices with the same (infinite) set of allowable colors.

If u and v are colored concurrently, it can be shown that the probability that u
and v get the same color is q/(2− q). This shows how randomization leads to a
reduction in the number of conflicts; the lower the value of q, the lower chance
for a conflict to arise. It should however be noted that a ‘low’ value of q may
result in an increase in the number of colors used. Choosing the right value for
q thus becomes a design issue.

4 Experimental Results and Discussion

Our test bed consists of graphs that arise from finite element methods and
from eigenvalue computations [5]. Due to space limitations, we report on results

Parallel Distance-k Coloring Algorithms for Numerical Optimization 919

obtained using two representative graphs, one from each field. Table 1 provides
the test graphs’ structural information. We point out that similar tendencies
were observed in experiments using the other graphs from our test bed.

Table 1. Test graphs: the last 3 columns list the max., min., and average degree

Problem |V | |E| ∆ δ δ

fe144 144,649 1,074,393 26 4 14
ev02 19,845 3,353,890 749 78 338

Table 2 provides coloring and timing information of the different algorithms.
Since the deterministic algorithms gave acceptable results on the relatively sparse
graph fe144, the randomized variants were not run on this graph. Table 2 shows
that Algorithm SD2 uses many fewer colors than the bound ∆2 + 1 and that
Algorithm ID2 reduces the number of colors by up to 10% compared to SD2.
The advantage of exploiting symmetry in Problem SYMCOLPART can be seen
by comparing the number of colors used in SD2 and SD3

2 ; the latter can be as
much as 37% fewer than the former. In general, the number of colors used in
our deterministic algorithms increases only slightly with increasing p. For the
randomized algorithms, the number of colors in some cases even decreases as p
increases, but we think this is a random phenomenon.

Table 2. Results for fe144 (upper) and ev02 (lower) half. χ(alg x) and t(alg x) give
the number of colors and the time in sec., respectively, used by alg x

p χ(sd2) χ(id2) χ(sd 3
2) χ(rsd2) χ(rid2) χ(rsd 3

2) t(sd2) t(id2) t(sd 3
2) t(rsd2) t(rid2) t(rsd 3

2)
1 41 37 35 - - - 6.8 9.6 8.1 - - -
12 43 38 36 - - - 1.1 1.6 1 - - -

1 4260 4016 2697 5564 4024 3142 255 456 247 257 380 257
12 5168 4455 3049 5536 4104 3081 214 112 45 31 106 29

Fig. 1 shows how the different phases of the algorithms scale as more proces-
sors are employed. For graph fe144, the time used in resolving conflicts sequen-
tially is negligible compared to the overall time. Moreover, it can be seen that
Phases 1 and 2 of Algorithms SD2 and SD 3

2 scale rather well on this graph as
the number of processors is increased. However, Phase 2 of Algorithm ID2 does
not scale as well. This is due to the existence of many color classes with few
vertices which entails extra synchronization and communication overhead in the
parallel re-coloring phase.

The picture for the more dense graph ev02 is different: the time elapsed in
Phase 3 of Algorithm SD2 is significant and increases as the number of processors
is increased. The situation is somewhat better for SD3/2 and ID2. Note that ev02
is about 100 times denser than fe144 (where density = |E|

|V |2), and the results in

920 A.H. Gebremedhin, F. Manne, and A. Pothen

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1a Simple D2

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1b Improved D2

Ph. 1
Ph. 2
Ph. 3
Ph. 4

p= 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1c Simple D3/2

p=1 2 4 6 8 12 1 2 4 6 8 12 1 2 4 6 8 12
0

0.2

0.4

0.6

0.8

1
 Fig. 1d Randomized Algorithms

 RSD2 RID2 RSD3/2

Fig. 1. a-c: Relative performance of deterministic algorithms on graphs fe144 (left-half
on each sub-figure) and ev02 (right-half). Fig. 1d: Relative performance of randomized
algorithms on ev02.

Table 2 and Fig. 1 agree well with the results in Corollary 3: when the average
degree is high, we lose scalability.

Fig. 1d shows how using probabilistic algorithms solves the problem of high
number of conflicts for ev02. The improvement in scalability comes at the expense
of increased number of colors used (see Table 2). We have experimented using
different values for q and found good results when q = 1/20 for RSD2, and
q = 1/6 for RID2 and RSD3

2 .
It should be noted that the speedups observed in Fig. 1 are all relative to the

respective parallel algorithm run with p = 1. A comparison against a sequential
version (with no conflict detecting and resolving phase) would yield less speedup.
In particular, relative to a sequential version, the ideal speedup obtained by
Algorithms SD2 and ID2 is roughly 1

2p and 2
3p, respectively.

Our algorithms in general did not scale well beyond around 16 processors.
We believe this is due to, among other things, the relatively high cost associated
with non-local physical memory accesses. It would be interesting to see how this
affects the behavior of the algorithms on different parallel platforms.

Parallel Distance-k Coloring Algorithms for Numerical Optimization 921

5 Conclusion

We have presented several simple and effective parallel approximation algorithms
as well as results from OpenMP-implementations for the D2- and D 3

2 -coloring
problems. The number of colors produced by the algorithms in the case where
p = 1 is generally good as it is typically off from the lower bound ∆+1 of SD2 by
a factor much less than the approximation ratio ∆. As more processors are em-
ployed, the algorithms provide reasonable speedup while maintaining the quality
of the solution. In general, our deterministic algorithms seem to be suitable for
sparse graphs and the probabilistic variants for more dense graphs. We believe
the functionality provided by our algorithms is useful for many large-scale op-
timization codes, where parallel speedups while desirable, are not paramount,
as long as running times for coloring are low relative to the other steps in the
optimization computations. The three sources of parallelism in our algorithms
– partitioning, speculation, and randomization – can be exploited in develop-
ing distributed parallel algorithms, but the algorithms would most likely differ
significantly from the shared memory variants presented here.

References

1. T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM J. Numer. Anal., 20(1):187–209, February 1983.

2. T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph
coloring problems. Math. Program., 28:243–270, 1984.

3. T. F. Coleman and A. Verma. The efficient computation of sparse Jacobian matri-
ces using automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–1233, July
1998.

4. I. Finocchi, A. Panconesi, and R. Silvestri. Experimental analysis of simple, dis-
tributed vertex coloring algorithms. In Proceedings of the Thirteenth ACM-SIAM
Symposium on Discrete Algorithms (SODA 02), San Francisco, CA, 2002.

5. A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring algorithms.
Concurrency: Pract. Exper., 12:1131–1146, 2000.

6. A. H. Gebremedhin, F. Manne, and A. Pothen. Graph coloring in optimization re-
visited. Technical Report 226, University of Bergen, Dept. of Informatics, Norway,
January 2002. Available at: http://www.ii.uib.no/publikasjoner/texrap/.

7. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, New York, 1995.

8. A.K.M. S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows
and columns. Optimization Methods and Software, 10:33–48, 1998.

9. M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic. SIAM J.
Sci. Comput., 14(3):654–669, May 1993.

10. S. O. Krumke, M. V. Marathe, and S. S. Ravi. Approximation algorithms for
channel assignment in radio networks. In DIAL M for Mobility, Dallas, Texas,
1998.

11. S. T. McCormick. Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem. Math. Program., 26:153–171, 1983.

12. V. V. Vazirani. Approximation Algorithms. Springer, 2001. Chapter 5.

	1 Introduction
	2 Background
	2.1 Matrix Partition Problems
	2.2 Graph Problems

	3 Parallel Coloring Algorithms
	3.1 Generic Greedy Parallel Coloring Algorithm (GGPCA)
	3.2 Simple Distance-2 (SD2) Coloring Algorithm
	3.3 Improved Distance-2 (ID2) Coloring Algorithm
	3.4 Simple Distance-(3/2) (SD(3/2)) Coloring Algorithm
	3.5 Randomization

	4 Experimental Results and Discussion
	5 Conclusion
	References

