The Hierarchical Factor Algorithm
for All-to-All Communication

Peter Sanders'* and Jesper Larsson Triff?

! Max-Planck-Institut fiir Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany,
sanders@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/ sanders/
2 C&C Research Laboratories, NEC Europe Ltd.,
Rathausallee 10, 53757 Sankt Augustin, Germany,
traff@ccrl-nece.de

Abstract. We present an algorithm for regular, personalized all-to-all
communication, in which every processor has an individual message to
deliver to every other processor. Our machine model is a cluster of pro-
cessing nodes where each node, possibly consisting of several processors,
can participate in only one communication operation with another node
at a time. The nodes may have different numbers of processors. This
general model is important for the implementation of all-to-all commu-
nication in libraries such as MPI where collective communication may
take place over arbitrary subsets of processors. The algorithm is optimal
up to an additive term that is small if the total number of processors is
large compared to the maximal number of processors in a node.

1 Introduction

A successful approach to parallel programming is to write a sequential program
executing on all processors and delegate interprocessor communication and coor-
dination to a communication library such as MPI [9]. With this approach, many
parallel computations can be expressed in terms of a small number of collective
communication operations, where “collective” means that a subset of processors
is cooperating in a nontrivial way. One such frequently used collective commu-
nication operation is reqular, personalized all-to-all message exchange: Each of
p processors has to transmit a personalized message to itself and each of p — 1
other processors, i. e., for every pair of processor indices 7 and j a message m;;
has to be sent from processor 4 to processor j. In regular all-to-all exchange, all
messages are assumed to have the same length. Examples of subroutines using
all-to-all communication are matrix transposition and FFT.

This paper presents an algorithm for regular all-to-all communication on
clusters of processing nodes where each node may consist of several processors.
We assume that only a single processor from each node can be involved in inter-
node communication at a time. Prime examples of such hierarchical systems are

* Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 799-[803}
(© Springer-Verlag Berlin Heidelberg 2002

800 P. Sanders and J.L. Traff

clusters of SMP nodes, where processor groups of 2-16 processors communicate
via a shared memory, and where some medium to large number of nodes are in-
terconnected via a commodity interconnection network. For example, the Earth
Simulatorand the NEC SX-6 supercomputerhave up to 8 processors per node;
the IBM SP POWERS allows up to 16 processors per node.The difficult case is
when nodes have differing numbers of processors participating in the all-to-all
exchange. This situation must be handled efficiently in a high-quality commu-
nications library because it arises naturally if a job is assigned only part of the
machine, or if the exchange is only among a subset of the processors in a job.

We use a simple machine model that allows an efficient implementation
portable over a large spectrum of platforms. The nodes are assumed to be fully
connected. Communication is single ported in the sense that at most one pro-
cessor per node can communicate with a processor on another node at a time.
The single-ported assumption is valid for current interconnection technologies
like Myrinet, Giganet, the Scalable Coherent Interface (SCI), or for the crossbar
switch used on the NEC machines and the Earth Simulator.

Our algorithm for all-to-all communication extends a well-known algorithm
for non-hierarchical systems based on factoring the complete graph into match-
ings. The new algorithm is optimal with respect to the time a processor spends
waiting or transmitting data up to an additive term that is bounded by the time
needed for data exchange inside a node. This time is comparatively small if the
total number of processors is large compared to the maximum number of proces-
sors in a node. Our algorithm runs in phases, in each phase getting rid of nodes
with the minimum number of processors among the surviving nodes. The main
issue is to balance the communication volume of nodes with many processors
over the phases so that the number of communication steps is minimized.

All-to-all communication has been studied intensively, and we mention only
a sample of the known results. Most work focuses on non-hierarchical systems
with specific interconnection networks [7)2l10]. Trade-offs between communica-
tion volume and number of communication start-ups were studied in [1J2], which
achieve algorithms that are faster for small messages. Collective communication
on hierarchical systems has recently received some attention [8[54]. Huse [4]
reports experiments with a regular all-to-all algorithm which ensures that only
one processor per node is involved in inter-node communication at a time. Al-
gorithmic details and properties are not stated.

2 The Non-hierarchical Factor Algorithm

The basis for our algorithm is a well-known algorithm for the single-ported, non-
hierarchical case [2J6J10]. This algorithm exploits the existence of a 1-factorization
of the complete graph [3]. Our formulation of the all-to-all communication prob-
lem requires the inclusion of self-loops in the graph, whereas the usual construc-
tion has no self-loops. We give the construction and the proof here. It is perhaps
interesting to note that self-loops simplify the construction.

The Hierarchical Factor Algorithm for All-to-All Communication 801

Lemma 1. Let G be the complete graph with p vertices including self-loops. G
is 1-factorizable, i. e., G = (V,E) can be decomposed into p subgraphs G* =
(V,E;),i=0,...,p—1 in which each vertex has degree 1 (1-factors).

Proof. Let V = {0,...,p — 1}. The ith factor G* = (V, E;), is constructed as
follows. For v € V define v*(u) = (i — u) mod p. Define E; = {(u,v*(u))|u € V}.
Since v¢(v(u)) = (i — ((i —u) mod p)) mod p = u all vertices have degree exactly
one. Furthermore, any edge (u,v) € E will find itself in some factor, namely in
factor G(#+v) mod P Tn particular, the self-loop (u, u) will find itself in G2*™mod P,

]

The non-hierarchical factor algorithm is the basis for our hierarchical algo-
rithm explained in the next section. It requires p communication rounds for
any number of p processors. In the ith round, all processors u and v that are
neighbors in G are paired and exchange their messages M., and Mm.,,.

3 All-to-All Communication on Hierarchical Systems

We now generalize the factor algorithm to clustered, hierarchical systems. Let
N be the number of processor nodes, and let G denote the N-node complete
graph with self-loops. Let G 4 denote the subgraph of GG induced by a subset of
nodes A, and Gf4 the ith 1-factor of G4. We use U and V to denote processor
nodes of the system, and u and v for individual processors. By size(U) we denote
the number of processors in node U, and by {(u) the local index of processor u
within its node, 0 < I(u) < size(U) for u € U. To specify what messages should
be exchanged when two nodes U and V are paired we impose the node ordering

U < Vifsize(U) < size(V),or size(U) = size(V)ANU <V

where U < V relates to an arbitrary total ordering of the nodes. The algorithm
is shown in Fig. [l using this notation.

The outermost loop iterates over a number of phases, each of which considers
a l-factorization of the set of active nodes A that have not yet exchanged all
their messages. The second loop iterates over the 1-factors G of G 4. The par-
allel loop considers all node pairs (U, V) that are neighbors in the given 1-factor
GY. The node ordering U < V is used to conveniently describe the message
exchange between processors on node U and processors on nodes V' necessary
for reestablishing the invariant for the outermost loop after ‘done’ has been in-
creased to ‘current’. When U = V, the bidirectional exchange is replaced by a
unidirectional send because otherwise, intra-node messages would be transmit-
ted twice. Sending m.,, from u to w means copying m,, from source buffer to
destination buffer of w.

Theorem 1. Algorithm Hierarchical-AllToAll performs a personalized all-to-all
exchange in a number of steps equal to the mazximal number of messages that the
processors in a node have to send.

802 P. Sanders and J.L. Traff

Algorithm Hierarchical-AllToAll:

A+ {0,...,N -1} // set of active nodes
done < 0
while A # () do // phase

loop invariant: V(U,V) e G:Yu e U,v eV :
(U =2V A0 <I(u) < done) = My, and ms, have been delivered
current < min{size(U) | U € A}
for i=0,...,]A| —1do // round
for all (U,V) € GY% where U <V pardo
for each u € U,done < I(u) < current do
for each v € V do // step
if U = V then send my, from u to v
else exchange mq, and m,, between u and v

done < current
A+ A\ {U | size(U) = done}

Fig. 1. The hierarchical factor algorithm.

Proof (Outline). Regarding correctness, let 0 = Sy < S; < ... < Si be the
sequence of different node sizes. The algorithm performs k phases. In phase ¢
nodes U with size(U) > S; are active. In particular, the outer loop terminates.
Furthermore, at the end of the algorithm done = maxye(o,... N—1} size(U). The
loop invariant implies that all messages have been exchanged.

U A B c
u 0 1 2 3 4 5
I(u) 0 0 1 0 1 2 phase

v 012345 012345 012345 012345 012345 012345 round

i | (lssmmee] (somnes]) ((oneses] onsess) omeses))' "

e — | é
Oo”ou\j Oq‘ooooo\\ruu\j ‘\oom.\\ooom\\oo«m\ P
. VL !
81\, 17
\ooo”o\j [Ce8CCO| [Coseee | Oq‘ooooo\\?ooou\\»oooug 3
5 ‘ | g
Ooooooo\\oooﬁo\j Omfooo\\oo?ou\\oamoj24
[!
[000000] [0omOa0] | | [000000] [cooome] [cocoee] | 5
-)

O activenode @ 11, to be sent OOOOOOO‘ [ocoo00] [coocoe] 3 6
19} 1

D processor O My, received 5

Fig. 2. Example execution of algorithm Hierarchical-AllToAll for three nodes with size
1, 2, and 3 respectively. The algorithms goes through 3 phases, and 3, 2 and 1 rounds
respectively are required, for a total of 15 steps. Step 6 of phase 1 in which no inter-node
communication takes place, can easily be moved to the end of the computation.

The Hierarchical Factor Algorithm for All-to-All Communication 803

The bound on the number of steps follows since all nodes with the maximum
number of processors are participating in a communication in every step and
because no message is sent twice. [|

The reason why the algorithm is not optimal in all cases is that a node paired
with itself communicates only unidirectionally in each step. If at the same step
two other nodes with maximum number of processors are paired, they commu-
nicate bidirectionally and hence take longer to complete a round. This is not
optimal since at least in some cases there are schedules which avoid such situa-
tions. However, there are only few such inefficient steps: Consider a node U with
maximal number n = size(U) of processors. Our algorithm performs pn steps.
At most n? of these steps — a fraction of n/p — can be inefficient for node U.
Hence, the inefficient steps are few compared to the efficient steps for p > n.

Although the algorithm was formulated for single-ported communication us-
ing 1-factorizations, generalizations to multi-ported communications are possi-
ble. The same basic scheme applies if the complete graph is decomposed into
graphs with degrees at most k or into permutations (directed cycles). Decom-
position into permutations is particularly interesting since several all-to-all al-
gorithms for non-fully connected networks are known that are based on this
approach [7J210].

References

1. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEFE Trans-
actions on Parallel and Distributed Systems, 8(11):1143-1156, 1997.

2. S. E. Hambrusch, F. Hameed, and A. A. Khokar. Communication operations on
coarse-grained mesh architectures. Parallel Computing, 21:731-751, 1995.

3. F. Harary. Graph Theory. Addison-Wesley, 1967.

4. L. P. Huse. MPI optimization for SMP based clusters interconnected with SCI. In
7th European PVM/MPI User’s Group Meeting, volume 1908 of Lecture Notes in
Computer Science, pages 56—63, 2000.

5. N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan.
Exploiting hierarchy in parallel computer networks to optimize collective operation
performance. In Proceedings of International Parallel and Distributed Processing
Symposium (IPDPS’2000), pages 377-384, 2000.

6. P. Sanders and R. Solis-Oba. How helpers hasten h-relations. Journal of Algo-
rithms, 41:86-98, 2001.

7. D. S. Scott. Efficient all-to-all communication patterns in hypercube and mesh
topologies. In Sizth Distributed Memory Computing Conference Proceedings, pages
398-403, 1991.

8. S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI col-
lectives on clusters of large-scale SMPs. In Supercomputing, 1999.
http://www.supercomp.org/sc99/proceedings/techpap.htm\#mpi,

9. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI — The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

10. Y. Yang and J. Wang. Optimal all-to-all personalized exchange in self-routable
multistage networks. IEEFE Transactions on Parallel and Distributed Systems,
11(3):261-274, 2000.

http://www.supercomp.org/sc99/proceedings/techpap.htm#mpi

	1 Introduction
	2 The Non-hierarchical Factor Algorithm
	3 All-to-All Communication on Hierarchical Systems
	References

