Component Based Problem Solving Environment

A.J.G. Hey!, J. Papay?, A.J. Keane?, and S.J. Cox?

1 EPSRC, Polaris House, North Star Avenue, Swindon, SN2 1ET, UK
Tony.Hey@epsrc.ac.uk
http://www.epsrc.ac.uk
2 Department of Electronics and Computer Science, University of Southampton,
Southampton, SO17 1BJ, UK
{jp, sc}@ecs.soton.ac.uk
3 Computational Engineering and Design Centre, University of Southampton,
Southampton, SO17 1BJ, UK
ajk@soton.ac.uk

Abstract. The aim of the project described in this paper was to use
modern software component technologies such as CORBA, Java and
XML for the development of key modules which can be used for the
rapid prototyping of application specific Problem Solving Environments
(PSE). The software components developed in this project were a user in-
terface, scheduler, monitor, various components for handling interrupts,
synchronisation, task execution and software for photonic crystal simu-
lations. The key requirements for the PSE were to provide support for
distributed computation in a heterogeneous environment, a user friendly
interface for graphical programming, intelligent resource management,
object oriented design, a high level of portability and software maintain-
ability, reuse of legacy code and application of middleware technologies
in software design.

1 Introduction

A Problem Solving Environment (PSE) is an application-specific environment
that provides the user with support for all stages of the problem solving pro-
cess - from program design and development to compilation and performance
optimization [I]. Such an environment also provides access to libraries and in-
tegrated toolsets, as well as support for visualization and collaboration. The
main reasons for the development of PSEs are to simplify the usage of existing
software modules, simplify problem specification, solution and to maximize the
utilisation of distributed computing resources.

In this project we investigated in detail the design, implementation and use
of several PSEs applied to large-scale computational problems. These PSEs were
Promenvir [2], Toolshed [3], GasTurbnLab [H], Autobench [5] and SCIRUN [6].
The reason for analyzing these projects was to draw lessons and to evaluate the
pros and cons of various design options. There were numerous lessons drawn
which were related to portability of software components, Object Oriented De-
sign, application of middleware, fault tolerance and performance modelling. Here
we summarise the main ideas influencing the software design.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 105-112]
© Springer-Verlag Berlin Heidelberg 2002

106 A.J.G. Hey et al.

All software except the FEM solvers used for photonic crystal simulations
were developed using the Java [7] programming language. This provided plat-
form independence, portability, high level reliability and security. Moreover, Java
proved to be more elegant and more suitable for rigorous object oriented design
than the more complex C++ language.

During the project considerable time was spent on the evaluation of emerg-
ing middleware technologies and products. Several alternatives for the software
architecture were evaluated by taking into account the complexity of the applica-
tion, capability of handling complex data structures, capability of handling appli-
cations written in different languages and running on different platforms. After
considering and testing various component technologies, we opted for CORBA
based middleware [§]. The use of sockets and other mechanisms was also consid-
ered, but these options were later dropped because of the increase in complexity
of design. CORBA provides a standard mechanism for defining the interfaces
between components, a compiler enabling the use of interfaces in other program-
ming languages, services such as the naming service, implementation repository,
event service etc., a communication mechanism enabling objects to interact with
each other, programming language and platform independence. CORBA also
provides a portable and reliable platform for transparent remote object access
and communication and clearly demonstrated the suitability of this technology
for the design of large scale distributed systems.

Learning from the lessons of previous projects we decided to use a database
rather than implementing complicated data structures such as linked lists, tables,
stacks, etc., for storing and manipulating monitoring and scheduling information.
The use of the database simplified the software architecture and significantly
improved the flexibility of the design and its capacity for evolution.

During the PSE development, issues of fault tolerance and error recovery
were given high priority. In this respect the PSE provides availability checking
and lifetime control of remote objects. The robustness of the system was tested
by simulating various scenarios during which individual servers were switched
off.

Performance Engineering (PE) played an important role during the scheduler
design. PE is concerned with the reliable prediction and estimation of resource
requirements and performance of applications. Several performance models were
developed, these models were used by the scheduler and performance estimator
for execution time prediction and achieving better utilisation of the available
computing resources.

The XML technology was extensively used in the project. The main ad-
vantage of XML is that it provides platform independent data exchange and a
framework for the specification of data structures. XML was used for the design
of user interfaces and as a configuration language for describing the interconnec-
tion of tasks, their resource requirements and performance models.

The selection of an appropriate middleware product is of key importance for
the software design. Various CORBA based middleware products were tested for
their performance, reliability, user support and suitability for distributed PSE

Component Based Problem Solving Environment 107

development. These products were the Sun ORB, Orbix [9] and Orbacus [10].
Initially the Sun ORB contained in the Java Development Kit (JDK) was used,
however, at the time of evaluation it had limited functionality and its speed
and reliability were unsatisfactory. Both Orbix and Orbacus offered the required
functionality and complied with the CORBA 2.3 specification. Moreover Orba-
cus is a shareware product which can be an advantage for exploratory academic
research, considering the risks associated with a fast moving middleware market.
Orbacus includes C++ and Java implementations and provides several services:
Naming, Event, Property, Time, Trading, Notification, and Logging. During the
lifetime of the project several versions of JDK and Orbacus were released. As
a result, components already developed had to be modified in order to main-
tain compatibility and to take advantage of the improved functionality of new
releases. The final version of the PSE prototype was build by using JDK version
1.3 and Orbacus 4.0.5.

2 PSE Architecture

The PSE developed in this project is a distributed component based architecture
(see Fig.). The reasons for opting for this design were the isolation of compo-
nents, scalability of the system, flexibility of software deployment and updates,
and resistance against the side effects of software modifications.

Machine Boundary

Object Server

OO0

Application Objects

Fig. 1. Architecture of the prototype PSE

The user interface is a graphical Java front-end which provides numerous
functions such as task-graph composition, parameter setup, lifetime control of
distributed objects, monitoring the status of machines and tasks, computation
steering and visualization. The user interface was developed in cooperation with
Cardiff University [I1]. The output of the graphical composer is a task-graph
which describes the execution order, data dependencies and parallelism. This
form of problem specification corresponds with the data flow model of computa-
tion in which individual tasks consist of programs and parameters which specify

108 A.J.G. Hey et al.

their function, characterise their resource requirements and performance. The re-
source requirements are expressed in terms of memory size, communication and
I/0 traffic, and disk volume used by the application. An example of a task-graph
representing a parallel version of photonic crystal simulation is given in Fig.
The user interface also contains a separate control panel which provides life time
control of objects, computational steering, task and machine monitoring.

‘ Domain decomposition ‘

electric_1 electric_2 AR electric_n

A ‘ magnetic_n

‘ magnetic_1

Test Collection of results
Visualisation
Change parameters

Fig. 2. Task-graph of parallel photonic-crystal simulation

The data layer is represented by the database which stores information re-
lated to the status of the distributed system. The scheduler provides task-to-
machine mapping and generates a sequence of task executions represented by a
schedule. The schedule is passed to the Dispatcher which forwards the tasks to
individual Task Launcher objects and handles synchronization and sequencing.
On each machine there are Reporter, Task Launcher and application specific
objects. All these objects are instantiated by the Object Server. The Reporter
provides performance information, i.e., the current amount of available memory,
disk space and load information. The Task Launcher handles task execution,
interrupts and delivers status information to the Monitor. An important part
of the PSE architecture is the Name Server which contains a hierarchy of name
and Internet Object Reference (IOR) tuples. This service enables components to
be accessed by their name rather than address, this makes application develop-
ment easier and more transparent. The Application objects represent application
specific components described by their IDL specification.

The database is a critical part of the PSE architecture, since it stores all infor-
mation related to the PSE environment. This information is constantly updated
as the computation proceeds. For the database programming the JDBC 2.0 was
used which allows database access programmatically, i.e., from the Java code
rather than via embedding SQL commands in the code. This provides better
portability because it bridges the variations of SQL dialects typical for different
DBMS products. The key tables in the database are the Machine and Task ta-

Component Based Problem Solving Environment 109

bles. The Machine table contains the following fields: machine name, IP-address,
number of processors, clock-speed, memory size, disk size, type of operating sys-
tem, processor’s flop rate, I/O rate, communication speed and current load. The
Task table reflects the current status of tasks in the system and also contains in-
formation on their predicted resource requirements and measured resource usage
in terms of flop-count, memory and disk sizes, I/O and communication volume
and flop count.

The information collected by the Monitor is stored in a database and used
by the Scheduler for task allocation and load balancing. The interactions of the
Monitor with the other components of the system are represented in Fig.[3. On
each computer there is an Object Server deployed which instantiates all local
objects. The Reporter registers with the Name Server, which maintains a list of
remote object addresses. The Monitor queries the Reporter objects at regular
intervals and updates the Machine and Task tables in the database.

Machine Table

Name
Server

2
Reporter

1. Object instantiation

2. Register with the Name Server
3. Obtain object addresses

4. Query Reporter objects

5. Update DB tables

Task Table

Fig. 3. Monitor’s interaction with other modules

The task-to-machine mapping is performed by the scheduler which allows
components of the task-graph to run on remote machines in a transparent man-
ner. This operation is based on matching tasks resource requirements with com-
puter parameters. The resource requirements are described by performance mod-
els. These were developed by using a characterization technique which involves
statistical processing of measurements, identifying the key parameters governing
the application’s resource requirements and performance, and developing math-
ematical models. Fig. [gives an illustration of performance models of photonic
crystal simulations in terms of flop-count, memory and disk usage.

These models are machine independent in that they characterize the resource
requirements specific to the given application. The scheduling algorithm is based
on the Cartesian product of Machine and Task tables. This operation generates
all possible task-to-machine combinations and computes the predicted execution
time for each of them. The scheduling algorithm performs the following opera-
tions for each task of the task-graph: checks the available memory, disk and load
of individual machines, generates a table containing all possible task-to-machine

110 A.J.G. Hey et al.

300000 30000 1400

250000 25000 1200

1000

200000 20000

150000 15000

600

Flop Count, MFlop
Memory, KBytes

Disk Size, KBytes

100000 10000

400
50000 5000 200

om 0 0
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Number of elements, N Number of elements, N Number of elements, N

Fig. 4. Resource models for flop-count, memory and disk usage of photonic crystal
simulations

mappings,computes the estimated execution time for each combination,generates
a schedule by selecting those combinations which minimise the predicted execu-
tion time for the whole task-graph.

In the distributed PSE environment where a large number of independent
threads are present synchronization is a key issue. In the design we developed a
call-back object which is part of the Dispatcher for handling the synchronization
between different levels of parallelism and task sequencing. The critical regions
of the code in the call-back object were locked in order to prevent corruption of
shared data by a simultaneous access of parallel tasks.

3 Simulation of Photonic Crystals

The components developed in the project were used for the construction of an
application specific PSE protype. This prototype was used as a parallel computa-
tional test-bed for performing various numerical experiments and optimization
studies on the example of photonic crystal simulations. The parallel version
of the photonic crystal simulation task-graph is presented in Fig. 2] The PSE
prototype proved to be an excellent test-bed for performing parametric studies
involving changing the material properties and geometry parameters of photonic
crystals. Photonic crystals with a band-gap properties have numerous applica-
tions for optical computing and for the development of efficient narrow band
lasers [12]. These simulations allow optimization of the positioning of air rods
in the crystal to achieve band gaps at various frequencies. The measurements of
the simulations showed that the complexity of the computations (i.e. flop count)
could be approximated by a second order polynomial (see Fig.). Substantial
performance improvement was achieved by using various approximation meth-
ods which significantly increased the speed of computation while preserving the
accuracy of results. The prototype PSE was run on a cluster of 13 workstations
running the Windows and Linux operating systems. For visualization the Mat-
lab package was used. Fig. [gives an illustration of the results by presenting a
unit cell of a crystal with an air rod and the density of states for the transverse
electric and magnetic components of radiation. Gaps in the density of states
indicate frequencies of photons which cannot propagate through the medium.

Component Based Problem Solving Environment 111

square e,001,0

5000|

4500

4000

3500|

08 £ 3000

ity of States

05 3 2500

Der

04 2000|

03 1500

1000

01 02 03 04 05 06 07 08 09
wal2ne

Fig. 5. Unit cell of computation and the distribution of electric and magnetic compo-
nents of radiation in a photonic crystal

The benefits of the presented PSE can be summarized as follows: this envi-
ronment integrates all stages of the problem solving process beginning from the
task specification to the visualization of results, provides the user with a flexible
graphical programming interface which enables to construct various task-graphs,
the components developed in the project can be used for the construction of ap-
plication specific PSEs as it was demonstrated on the example of photonic crystal
simulations, the scheduler contains a performance prediction component which
provides performance estimation and enables to optimize load balancing on the
computing cluster.

4 Conclusions

In this paper the results achieved in a PSE project have been described. The
aim of the project was to develop general purpose components such as a user
interface, scheduler, monitor, and other components which can be used for rapid
prototyping of application specific Problem Solving Environments. The key re-
quirements for this PSE were to provide support for distributed computation in
a heterogeneous environment, a user friendly interface for graphical program-
ming, intelligent resource management, object oriented software design, a high
level of portability and software maintainability. We conclude the paper with
the following remarks:

Although the use of component based middleware technology promises sim-
ple distributed application development the reality is that it is not simple to
program such systems. The main reason is that the CORBA based middleware
technology is still in evolution and numerous features are not mature enough to
provide a stable platform for the development of distributed systems. It must be
said that the learning curve for CORBA is considerable and a large amount of
new knowledge has to be absorbed and utilised in practice. Although program-
ming using CORBA is not a trivial task, nevertheless, this technology is much
more suitable for the development of distributed systems than the traditional
techniques based on sockets and Remote Procedure Calls.

112 A.J.G. Hey et al.

The utilization of the performance potential offered by a distributed envi-
ronment is a challenging task. These issues are closely related to scheduling,
performance engineering, load balance, ordering of events, dealing with a pos-
sible failure of components, etc. These requirements highlight the need for per-
formance models that are relatively simple and easy to use yet are sufficiently
accurate in their predictions to be useful as input to a scheduler [3]. At present
there is no generally accepted methodology for characterising the performance
of applications. We therefore suggest that applications, in addition to specifying
interfaces need to incorporate some form of information about the governing
parameters determining performance and resource usage. Only with the avail-
ability of such performance information will the construction of truly intelligent
schedulers become possible. Although the computer science community has been
researching performance for a long time, we believe that such research needs to
become more systematic and scientific. A common approach to representing per-
formance data together with a methodology that allows independent verification
and validation of performance results would be a good start in this direction.

Acknowledgements

This work was sponsored by an EPSRC grant No. GR/M17259/01. We would
like to thank to Jacek Generowicz, Ben Hiett, David Lancaster and Tony Scurr
for the helpful discussions.

References

1. E.Gallopoulos, E.Houstis and J.R.Rice. Problem Solving Environments for Com-
putational Science, IEEE Comput. Sci. Eng., 1, pp.11-23, 1994.

2. Jacek Marczyk, Principles of Simulation-Based Computer-Aided Engineering FIM
Publications, Barcelona, 1999, p.174.

3. N. Floros, K.Meacham, J. Papay, M. Surridge. Predictive Resource Management
for Unitary Meta-Applications, Future Generation Computer Systems, 15, 1999,
pp.723-734.

4. http://www.cs.purdue.edu/research/cse/gasturbn

5. http://wwwvis.informatik.uni-stuttgart.de/eng/research/proj/autobench/

6. C.Johnson, S.Parker and D.Weinstein. Large Scale Computational Science Appli-
cations Using the SCIRun Problem Solving Environment, in Supercomputer 2000.

7. Pat Niemeyer, Jonathan Knudsen, Learning Java 3d revised edition, pp.728,
O’Reilly UK, ISBN: 1565927184.

8. CORBA specification by the Object Management Group, http://www.omg.org

9. http://www.iona.com

10. http://www.ooc.com

11. M. S. Shields, O. F. Rana, David W. Walker, Li Maozhen, David Golby. A
Java/CORBA based Visual Program Composition Environment for PSEs, Con-
currency: Practice and Experience. Volume 12, Issue 8, 2000, pp.687-704.

12. J.M.Generowicz, B.P.Hiett, D.H.Beckett, G.J.Parker, S.J.Cox. Modelling 3 Dimen-
sional Photonic Crystals using Vector Finite Elements. Photonics 2000 (EPSRC,
UMIST, Manchester, 4-5 July 2000).

	1 Introduction
	2 PSE Architecture
	3 Simulation of Photonic Crystals
	4 Conclusions
	Acknowledgements
	References

