
The Modular Inversion Hidden Number Problem

Dan Boneh1, Shai Halevi2, and Nick Howgrave-Graham2

1 Department of Computer Science, Stanford University, CA, USA
dabo@cs.stanford.edu

2 IBM T.J. Watson Research Center, NY, USA
{shaih,nahg}@watson.ibm.com

Abstract. We study a class of problems called Modular Inverse Hidden
Number Problems (MIHNPs). The basic problem in this class is the
following: Given many pairs

〈
xi, msbk

(
(α+ xi)−1 mod p

)〉
for random

xi ∈ Zp the problem is to find α ∈ Zp (here msbk(x) refers to the k
most significant bits of x). We describe an algorithm for this problem
when k > (log2 p)/3 and conjecture that the problem is hard whenever
k < (log2 p)/3. We show that assuming hardness of some variants of
this MIHNP problem leads to very efficient algebraic PRNGs and MACs.

Keywords: Hidden number problems, PRNG, MAC, Approximations,
Modular inversion, Lattices, Coppersmith’s attack

1 Introduction

In recent years several new complexity assumptions were used to construct effi-
cient cryptosystems. The Decision Diffie-Hellman assumption (DDH) was used
to construct chosen ciphertext secure encryption [7] and number theoretic pseudo
random functions [15]. The Strong RSA assumption was used to construct effi-
cient signature schemes [10,8]. In this paper we introduce a new class of alge-
braic complexity assumptions which we call the Modular Inverse Hidden Number
Problem (MIHNP). Using MIHNP we construct an efficient number theoretic
Pseudo Random Number Generator (PRNG) and an efficient MAC. The basic
step in evaluating the MAC and the PRNG is one modular inversion modulo a
moderate size prime. No expensive exponentiations are needed.

To describe the basic MIHNP we introduce the following notation that will be
used throughout the paper: For an m-bit prime p and y ∈ Zp we use msbk(y mod
p) to denote any integer Y ∈ Zp satisfying |Y − y| < p/2k. In other words, Y is
an approximation to y that (usually) matches y on the k most significant bits.
We write msbk(y) where there is no ambiguity about the modulus p. In addition,
throughout the paper we define the inverse of 0 ∈ Zp to be 0. We consistently
use Greek characters to denote hidden values.

MIHNP. An instance of the basic MIHNP problem is as follows: let p be a fixed
m-bit prime and k, n be positive integers. Let α be a random hidden element
of Zp. We are given p, k, and

〈
xi,msbk(1

α+xi
)
〉

for random values x1, . . . , xn.

C. Boyd (Ed.): ASIACRYPT 2001, LNCS 2248, pp. 36–51, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

The Modular Inversion Hidden Number Problem 37

The problem is to find α. The δ-MIHNP assumption states that there is no
polynomial time algorithm for the Basic-MIHNP problem whenever k < δm.

In other words, given many approximations to (α+ xi)−1 mod p for random
xi ∈ Zp the problem is to find α. The parameters m,n, k are security parameters
for the problem. Note that when n > 2(m/k) the hidden number α is uniquely
defined with high probability and consequently there is a unique answer to this
problem. We show a lattice-based algorithm, that solves this problem when k >
m/3. We also explain why this algorithm does not extend to solve it for k <
m/3. As our algorithm represents the current state-of-the-art in lattice reduction
techniques, we conjecture that such techniques cannot be used beyond the m/3
bound. More generally, we conjecture that the δ-MIHNP assumption holds for
any δ < 1/3. In the next section we introduce several variants of MIHNP that are
useful for cryptographic constructions. We also show that the MIHNP problem
has a simple limited random self reduction.

MIHNP is closely related to several other Hidden Number Problems (HNPs).
Hidden number problems were introduced in [4] where they were used to prove
the bit security of the Diffie-Hellman secret in Zp. The standard HNP is as fol-
lows: let α ∈ Zp be a hidden random number. Given msbk(α · xi mod p) for
random x1, . . . , xn ∈ Zp the problem is to find α. The standard, HNP can be
efficiently solved when k = O(

√|p|), and this solution forms the basis of the
bit-security result in [4] (as well as an attack on weak versions of the Digital Sig-
nature Algorithm (DSA), see [13]). This is in contrast to MIHNP which appears
to be hard even when k is a constant fraction of |p|.

2 Approximate Modular Inversion Problems

We introduce several variants of the basic MIHNP and study their properties.
The first variant of MIHNP, which we call the Computational-MIHNP, is useful
for constructing a MAC.
Computational-MIHNP: An instance of the C-MIHNP problem is as follows:
let p be a fixed m-bit prime and k, n be positive integers. Let α be a random
hidden element of Zp. We are given p, k, and

〈
xi,msbk(1

α+xi
)
〉

for random values

x1, . . . , xn. The problem is to construct another pair
〈
x,msbk(1

α+x)
〉

for some
x �= xi. The δ-CMIHNP assumption states that there is no polynomial time
algorithm for this problem whenever k < δm.

Although we cannot prove the equivalence of this problem to the basic MI-
HNP, we do not know of an algorithm for solving it without first discovering the
secret α from the given input. The second variant, which we call the Decisional-
MIHNP is useful for constructing PRNGs.
Decisional-MIHNP: An instance of the D-MIHNP problem is as follows: let p
be a fixed m-bit prime and k, n be positive integers. Let α be a random hidden
element of Zp. We are given p and k. The problem is to distinguish the following
two ensembles:

38 D. Boneh, S. Halevi, and N. Howgrave-Graham

{
x1,msbk(1

x1+α
), . . . , xn,msbk(1

xn+α
)
}

and

{
x1,msbk(r1), . . . , xn,msbk(rn)

}

where α, x1, . . . , xn, r1, . . . , rn are chosen uniformly at random in Zp. The δ-
DMIHNP assumption states that no polynomial time algorithm can distinguish
these two ensembles with non-negligible advantage whenever k < δm.

As before, we cannot reduce this problem to either of the previous problems,
but we know of no algorithms for D-MIHNP, other than first finding the hidden
element α. In a sense, it seems that the tools that we have for designing algo-
rithms for these problems are too crude to distinguish between these variants.

This situation is somewhat analogous to the situation with the various
discrete-logarithm assumptions. The basic MIHNP can be viewed as an ana-
log of the Discrete-Log Problem (DLP): given gα mod p find the hidden number
α. Just as DLP is often insufficient for cryptographic constructions, we need
stronger assumptions that the basic MIHNP for the constructions in this paper.
The C-MIHNP can be viewed as an analog of the Computational Diffie-Hellman
assumption (CDH), and D-MIHNP is the analog of the Decision Diffie-Hellman
assumption (DDH). As is the case with the various MIHNP problems, we also
do not have reductions between the various discrete-log problems, yet the only
algorithms that we know for solving any of them involve solving discrete-log.

2.1 Random Self Reduction for MIHNP

The MIHNP problem has a simple limited random self reduction among instances
modulo the same prime p. The reduction shows that for a prime p if finding
α ∈ Zp is hard for a worst case α then it is also hard for a random α ∈ Zp.

Suppose there is an algorithm A that solves the Basic-MIHNP problem with
probability ε, where the probability is taken over the choice of the xi’s and
also over the choice of α. We show that this implies an algorithm B for solving
Basic-MIHNP that works for any fixed α with probability ε, where this time the
probability is over the choice of the xi’s only.

Given an instance of Basic-MIHNP, 〈xi, yi〉 , i = 1, . . . , n, algorithm B picks
a random r ∈ Zp, and runs algorithm A on the Basic-MIHNP problem defined
by the tuples 〈xi + r, yi〉 , i = 1, . . . , n.

Note that if the original MIHNP instance corresponds to the hidden number
α, then the new instance will correspond to the hidden number α′ = α−r, which
is random and independent of the xi’s. It follows that with probability ε, the
algorithm A indeed returns α′, and then B can add back r to recover α.

We call this a limited random self reduction, since we only randomize the
solution α, and not the elements x1, . . . , xn. The computational MIHNP and
decisional MIHNP have similar limited random self reductions.

The Modular Inversion Hidden Number Problem 39

3 Security Analysis of the MIHNP

In this section we analyze the security of MIHNP. We show how to apply the
currently known technology in algebraic cryptanalysis to MIHNP, and demon-
strate the limitations of that technology when applied to this problem. We know
of no better way to distinguish the pairs

〈
xi,msbk((α + xi)−1)

〉
from random,

other than to actually recover the secret α (and use the knowledge of this to
verify the bits), and so this is the problem we address. That is, we assume that
we have a system of equations

(α + xi)(bi + εi) = 1 (mod p) i = 0, . . . , n, (1)

where α ∈ Zp is the (large, secret) variable we aim to discover, the xi’s are known,
but randomly chosen elements of Zp, the bi’s are the known most significant
bits, and the εi are variables that correspond to the unknown low order bits,
so we have |εi| ≤ 2m−k for all i. Observe that once we find any of the εi’s we
can discover the secret α immediately, from the fact that α = 1/(bi + εi) − xi
(mod p). However, as we shall see, typically we find all the εi simultaneously, or
none at all.

We attempt to solve MIHNP using lattice techniques. We set up a lattice
that incorporates the relations from Eq. (1), so that the bound on the size of
the εi’s will correspond to some small vector in the lattice. If we can make the
argument that this vector is by far smaller than any other vector in this lattice,
then we could use the LLL lattice reduction algorithm [14] to find it, thereby
recovering the εi’s. This framework was used in [4] to solve the original HNP.

Looking at Eq. (1), however, we find that these relations cannot be used
directly to set up a lattice. The reason is that each of these relations has a
term of the form α · εi, where α is unbounded (i.e., it can be as large as p),
and the εi’s change from one relation to the next. To use in a lattice, one must
first “linearize” these relations, and doing so would introduce a new unbounded
variable for each of the products αεi. (We stress that current technology has no
problem handling either changing small unknowns such as the εi, or fixed large
unknowns such as α. It is the product of the two that makes this problem hard.)

We are therefore forced to eliminate the unknown α from the relations of
Eq. (1), before we can use them to set up a lattice. Given the n + 1 relations
from Eq. (1), we eliminate the unknown α, and produce n relations of the form:

(xi − x0)(b0 + ε0)(bi + εi)− (b0 + ε0) + (bi + εi) = 0 (mod p) (2)

These relations are already in a form that is amenable for use in a lattice,
and we can apply to them (an extension of) the techniques from [6,12], as we
now explain. We start by re-writing the left hand side of Eq. (2) as a polynomial
in the unknowns ε0 and εi, namely:

fi(ε0, εi)
def= (xi−x0)ε0εi + (b0(xi−x0)+1)εi + (bi(xi−x0)−1)ε0 + (b0bi(x1−x0))

Notice that the coefficients of this polynomial are known to us (since we know
all the bi’s and xi’s), and therefore we can set up a lattice based on their values.
To simplify notation, we denote below fi(ε0, εi) = Aiε0εi + Biεi + Ciε0 + Di.

40 D. Boneh, S. Halevi, and N. Howgrave-Graham

3.1 First Attempt: A Linear Approach

As a first attempt at a solution, we set up a lattice of dimension 3n+2 as follows.
The lattice is spanned by the rows of a real matrix M that has the following
general structure:

M =
(
E R
0 P

)

where E and P are diagonal matrices of dimensions (2n + 2) × (2n + 2) and
n × n, respectively, and R is a (2n + 2) × n matrix. Each of the first 2n + 2
rows of M is associated with one of the terms in relations from Eq. (2) (i.e., the
constant term, the terms εi, and the terms ε0εi), and each of the last n columns
is associated with one of the n relations.

The matrix R incorporates the relations themselves. The (i, j) entry in this
matrix is just the coefficient in the j’th relation of the term corresponding to
row i. The diagonal entries of the matrix P are all equal to p, and the diagonal
entries of the matrix E correspond to the bounds on the terms associated with
each row. Specifically, if the term which is associated with row i is bounded
by B, then entry (i, i) in E is equal to 1/B. That is, the row corresponding to
the constant term has diagonal entry 1, rows corresponding to εi have diagonal
entries 1/2m−k, and rows corresponding to ε0εj have diagonal entries 1/22(m−k).
An example for the matrix M for n = 2 is given in Figure 1.

row corresponds to

M =

1 0 0 0 0 0 D1 D2

0 2k−m 0 0 0 0 C1 C2

0 0 2k−m 0 0 0 B1 0
0 0 0 2k−m 0 0 0 B2

0 0 0 0 22(k−m) 0 A1 0
0 0 0 0 0 22(k−m) 0 A2

0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 p

. 1

. ε0

. ε1

. ε2

. ε0ε1

. ε0ε2

Fig. 1. The matrix M for the case n = 2.

We can now view each one of the relations of Eq. (2) as holding over the
integers, by explicitly introducing the appropriate multiple of p. Namely, we
have:

Aiε0εi + Biεi + Ciε0 + Di + p · κi = 0 (3)

From the way we constructed this system of n polynomial relations, we know
that it has an integer solution εi = ei, κi = ki in which all the ei’s are bounded

The Modular Inversion Hidden Number Problem 41

below 2m−k. Let v be a (3n + 2) integer vector containing the values of all the
terms in our system of equations, according to this solution. Namely, we set

v
def= 〈1, e0, . . . , en, e0e1, . . . , e0en, k1, . . . , kn〉

It follows that for this integer vector v we get:

v ·M =
〈

1,
e0

2m−k
, . . . ,

en
2m−k

,
e0e1

22(m−k)
, . . . ,

e0en
22(m−k)

, 0, . . . , 0
〉

Thus, the lattice point v ·M has only 2n+ 2 non-zero entries, and each of these
is less than 1, so its Euclidean norm is less than

√
2n + 2.

On the other hand, it is easy to see that the determinant of the lattice
L(M) equals pn/2(m−k)(3n+1), so making use of the Gaussian heuristic1 for short
lattices vectors, we expect that our vector is the shortest point in L(M) as long
as √

2n + 2 √
3n + 2

(
2(k−m)(3n+1) · pn

)1/(3n+2)
. (4)

Whenever this condition is met we will assume that an adversary can recover the
vector v using lattice reduction methods such as LLL (although we note that in
practice, the adversary may not find this that easy unless v ·M is the shortest
vector by a substantial margin).

Substituting p ≈ 2m into Eq. (4) and ignoring low-order terms, this condition
is simplified to 2k � 22m/3. Therefore, this method can only be used when the
number of bits of 1/(α+xi) that we see is more than 2m/3 (alternatively, when
the number of bits that we are missing is less than m/3). This gives an algorithm
for Basic-MIHNP when δ ≥ 2/3.

The dimension of the lattice. We remark that the same bounds (but no better)
could also be achieved from a lattice of smaller dimension that utilizes the fact
that v ·M has n trailing zeros. However in this analysis we are only interested
in showing that there exist bounds on m even for lattices of arbitrary dimension
(i.e. we effectively allow the adversary the power to reduce lattices of arbitrary
dimension). This means we can ignore efficiency issues regarding the dimension
of the lattice, and opt for the easier way to describe and extend the lattices
(as above). This assumption is particularly important to note in the subsequent
section where the dimension grows exponentially in n.

3.2 Making Use of Multiples

To improve upon the bound of m/3, we apply a technique due to Coppersmith
[6] to make better use of the relations in Eq. (2). Namely, instead of using only
these relations in our lattice, we can use also relations that are derived by taking
1 In fact, it is possible to prove rigorously, that when the xi’s are chosen at random,
the vector v ·M is (with high probability) the shortest vector in L(M). This proof
will appear in the full version of this paper.

42 D. Boneh, S. Halevi, and N. Howgrave-Graham

products of them. For example, since we have f1(ε0, ε1) = 0 and f2(ε0, ε2) = 0, we
also know that ε2f1(ε0, ε1) = 0, and also f1(ε0, ε1)·f2(ε0, ε2) = 0. Moreover, since
the original relations hold modulo p, then the last relation holds also modulo p2.

Of course, these additional relations introduce new terms that were not
present in the original one. (For example, the relation f1f2 = 0 from above
has a term ε0ε1ε2, which we did not have in the original system.) Nonetheless,
we hope that weighing the additional relations against the additional terms, we
would be able to get a better result. Hence, our goal here is to add as many
relations as possible, while keeping the number of additional terms as small as
possible.

Once we decide on a set of relations to use, we construct the lattice in exactly
the same way as above. Namely, if we have r relations and t terms, we construct
a (r + t)× (r + t) matrix M with the same structure as above. That is, the top
left t × t sub-matrix E is diagonal with entries that correspond to the (bounds
on the) different terms, to its right we put a t× r matrix R that corresponds to
our relations, and at the bottom left we put a diagonal matrix P that would take
care of the modular reductions. One difference is that now, if the i’th relation
holds modulo pi, then the corresponding diagonal entry of P will be pi (rather
than just p).

Constructing a lattice. The key aspect of this approach is to choose which
relations to put in the lattice, and to analyze the parameters achieved by this
lattice. Below we think of the process of adding relations to the lattice as hap-
pening in phases. In phase d, we add to the lattice relations that are obtained
by multiplying up to d of the original relations. These new relations look like
fi1 · · · fid = 0 mod pd for some 0 < i1, . . . , id ≤ n.

We note that once we have in the lattice some relations (and all their terms),
we might as well add other relations that use only terms that already appear in
the lattice. For example, if we have the relation f1f2 = 0 in the lattice, we might
as well also add the relation ε1f2 = 0, since every term that appears in ε1f2 must
already appear in f1f2 (because f1 includes the term ε1). Therefore, once we have
f1f2 and all its terms, we can add ε1f2 “for free”. The only exception is that
we have to make sure that the relations in the lattice are linearly independent.
For example, once we have in the lattice the relations f2, ε0f2, ε1f2 and f1f2,
we cannot add also the relation ε0ε1f2, as it is linearly dependent on the other
relation, by the equality f1f2 = A1ε0ε1f2 + B1ε1f2 + C1ε0f2 + D1f2.

Notations and conventions. In the analysis below we talk about the “weight” of
relations or terms. The weight of a relation is the number of original relations
that are multiplied. For example, the relation ε1f2 = 0 has weight 1, and f1f2 = 0
has weight 2. We note that if a relation has weight i, then this relation holds
modulo pi (but not necessarily modulo pi+1). The weight of a term is just its
degree. For example, the weight of ε20ε1 is 3. With this notation, the determinant
of the lattice is proportional to the total weight of all the relations, and inversely
proportional to the total weight of all the terms that are used in these relations.

The Modular Inversion Hidden Number Problem 43

More precisely, when p is an m-bit prime, and the bound on the εi’s is 2m−k,
(i.e., the number of bits of 1/(α + x) that we see is k), the determinant of the
lattice is roughly 2m·weight(relations)−(m−k)·weight(terms).

Recall that our goal is to maximize the determinant (since this would im-
ply that the lattice is unlikely to have short vectors, other than the one cor-
responding to our solution). Below we show, however, that we always have
weight(relations) ≤ 2weight(terms)/3. Therefore, to get det(L) > 1, we must
have m− k < 2m/3.

The relations. In this analysis we assume that the number n of the original
relations can be made as large as we want. Since we aim to show that the
approach is bound to fail beyond 2m/3, we can make this assumption without
loss of generality (as adding relations can only help the algorithm). When we
analyze phase d, we assume that n� d, so that we get a good approximation of
the sum

∑d
i=1

(
n
i

)
by taking just the last term,

(
n
d

)
.

The relations that we add in phase d are all the
(
n
d

)
relations of weight d,

that are obtained by multiplying d distinct relations (from the original n), and
then adding all the relations that are now “for free”. We again note that since
n� d, then a vast majority of the relations in phase d are of this form.

Analysis. We start by analyzing the weight of the terms. Since each fi has all
the possible terms for a multi-linear function in ε0, εi, it follows that a product
of d distinct fi’s have all the possible terms with degree at most d in ε0, and at
most 1 in all the other εi’s.

We group the terms according to the number of εi’s other than ε0 in them.
Clearly, we have exactly (d+ 1)

(
n
j

)
terms with exactly j εi’s other than ε0. (We

have
(
n
j

)
ways to choose the εi’s, and then ε0 can have any degree between 0 and

d.) The weight of these terms ranges from j (if the degree of ε0 is 0) to j + d (if
the degree of ε0 is d). Therefore, the total weight of all the terms is

weight(terms) =
d∑
j=0

((
n

j

)
· (j + (j + 1) + · · ·+ (j + d))

)

=
d∑
j=0

((
n

j

)
· (d + 1)(j +

d

2
)
)

Recall now that we assume that n is large enough with respect to d, so that∑d
j=0

(
n
j

)
=
(
n
d

)
(1 + o(1)). This implies that also

weight(terms) =
(
n

d

)
(d + 1)(3d/2)(1 + o(1))

By the same argument, the number of terms is (d + 1)
(
n
d

)
(1 + o(1)).

We now proceed to analyze the weight of the relations. First, observe that
we cannot have more relations than terms in the lattice, since otherwise we

44 D. Boneh, S. Halevi, and N. Howgrave-Graham

get linear dependencies. Thus, there are at most (d + 1)
(
n
d

)
(1 + o(1)) relations.

Moreover, the weight of each of these relations cannot be more than d, since in
phase d we only multiply up to d of the fi’s. Therefore, the total weight of all
the relations is bounded by

weight(relations) ≤ d · (d + 1)
(
n

d

)
(1 + o(1))

In fact, it is possible to show that this bound is tight, and the total weight of
the relations that we get is at least d2

(
n
d

)
. We conclude that in our lattice we

must have

weight(relations)
weight(terms)

≤ d · (d + 1)
(
n
d

)
(1 + o(1))(

n
d

)
(d + 1)(3d/2)(1 + o(1))

≤ 2
3

+ o(1)

(We remark that a more careful analysis can even show a bound of 2/3− o(1).)

3.3 Conclusions from the Analysis of MIHNP

We showed that the Basic-MIHNP problem can be efficiently solved whenever
we are given more than 1/3 of the bits of (α+xi)−1 mod p. The analysis does not
extend beyond 1/3. (Moreover, near 1/3 the dimension of the lattice makes it
completely infeasible to reduce.) For this reason, we conjecture that this problem
is hard when we are given less than 1/3 of the bits even if a large number of ran-
dom samples xi are given. That is, we conjecture that the δ-MIHNP assumption
holds whenever δ < 1/3.

3.4 Other Variants of MIHNP

The tools that we devised to analyze the MIHNP can be used also to analyze
similar problems. For example, in Section 4 we will be interested in a problem
where we are given pairs (xi, β/(α + xi) mod p), i = 1 . . . n, and we need to
recover both α and β. The corresponding relations that we get are

(α + xi)(bi + εi) = β (mod p) i = 0, . . . , n,

Again, we have a problem with the terms αεi, but when we eliminate α as before,
we would get terms βεi. Hence, to be able to set up a lattice we need to eliminate
both α and β. More generally we may consider relations of the form

Ri : (xi0 + yi0εi) +
r∑
j=1

(xij + yijεi)αj = 0

where the xij ’s and yij ’s are random and known, the αi’s are unknown and
unbounded, but common to all these relations, and each εi is an unknown unique
to relation i, but for which we have some bound. As before, the terms εiαj
cannot be handled by standard lattice reduction techniques, so we need to first

The Modular Inversion Hidden Number Problem 45

eliminate the αj ’s. We now show that if we need to eliminate r such “unbounded
variables”, then the lattice-reduction techniques from above can only be used
when k/m > r/(r+ 2) (i.e., the number of hidden bits is less than m · 2

r+2 . Note
that for MIHNP we have r = 1, and indeed we got the bound k/m > 1/3. For
the case above of two variables, we get k/m > 1/2. Hence, this problem is harder
than MIHNP in the sense that it can only be solved when δ = k/m > 1/2.

Assume that we are given given n+r relations. We can set a linear system in
the r unknowns α1 . . . αr and r relations Rn+1, . . . , Rn+r, solve for the unknowns,
and then substitute the solution in all the other n relations R1 . . . Rn (each time
multiplying by the common denominator, to get a polynomial relation rather
than a rational one).2

Using Cramer’s rule for the solution of a linear system, it is easy to verify
that the terms that we substitute for the αj ’s are multi-linear in εn+1 . . . εn+r.
Hence, after eliminating the “unbounded variables”, we are left with n relations
fi = 0, i = 1 . . . n, where fi is a multi-linear relation in εi, εn+1 . . . εn+r. These
relations are the ones we use to set-up a lattice.

As we did for MIHNP, we set-up a lattice not only using the fi’s themselves,
but also using products of them. As before, we use relations that we obtain by
multiplying d distinct fi’s (for some parameter d, and under the assumption that
n� d). A product of d such fi’s is a relations

p(εi1 , εi2 , ..., εid , εn+1, . . . , εn+r) = 0

where p is multi-linear in the εij ’s, and has degree d in εn+1 . . . εn+r. We want
to count the total weight of the terms and relations in this lattice. As we know,
if n � d, then it is sufficient to consider only these terms that include exactly
d distinct ei’s, other than εn+1 . . . εn+r. So there are

(
n
d

)
ways of choosing the

εij ’s, and for each choice we have (d + 1)r possible combinations of the degrees
of εn+1 . . . εn+r. Namely, for a specific choice of εi1 , εi2 , ..., εid , the terms that we
get are exactly all the terms in the expression

(εi1 · εi2 · · · εid) · ((1 + εn+1 + · · ·+ εdn+1) · · · (1 + εn+r + · · ·+ εdn+r)
)

This means that for this choice of εij ’s, we have (d + 1)r terms, and the weight
of these terms vary between d and d+ rd. The total weight of all these terms is

d∑
k1=0

d∑
k2=0

. . .

d∑
kr=0

(d + k1 + k2 + . . . kr) = (d + 1)r · (d + rd/2)

Therefore, we have
(
n
d

)
(d + 1)r terms, of total weight

(
n
d

)
(d + 1)r · d(1 + r/2).

On the other hand, we cannot have more relations than terms, and the weight
of a relation cannot be more than d, so the total weight of the relations is
2 Clearly, this is not the only way to eliminate the unbounded variables. For example,
we can solve different sets of relations for these unknowns, depending on the relation
to which we want to substitute. However, tracing through the arguments below, the
method we use here seems to give the smallest number of terms.

46 D. Boneh, S. Halevi, and N. Howgrave-Graham

at most
(
n
d

)
(d + 1)r · d. (This bound is tight, since it can be shown that for

random relations, the total weight is at least
(
n
d

)
(d + 1)r · (d − r).) Recall that

the determinant of our lattice is roughly 2m·weight(relations)−(m−k)·weight(terms). To
get the determinant above 1, we therefore must have

m ·
(
n

d

)
(d + 1)rd > (m− k) ·

(
n

d

)
(d + 1)rd(1 + r/2)

which means that m > (m− k)(1 + r/2), or k/m > r/(r + 2).

4 Cryptographic Applications

The apparent intractability of MIHNP, suggests that it may be useful as the basis
for cryptographic applications. Indeed, we show below how to use the decision-
MIHNP assumption and the computational-MIHNP assumptions, respectively,
to get an efficient pseudorandom generator and a MAC.

4.1 Pseudorandom Generator

The decision-MIHNP immediately suggests a construction of a PRNG. The input
to this generator would be “the secret” a, and n random points x1..xn ∈ Zp.
The output would be the points x1..xn together with (say) 1/4 of the bits of
1/(a + xi) mod p for all i. More precisely, we have the following system:

Parameters. The parameters of the system include an m-bit prime p, and two
other parameters, n and k, where k specifies how many bits of 1/(a+ x) we
output, and n specifies how many x’es we have in the input of the generator.
These parameters are discussed in more details below.

The generator. On parameters p, n and k, the generator input is a sequence
(x1, .., xn, a) of n + 1 elements in Zp. The output is the sequence

G(a, x1, .., xn) def=
(
x1, ..., xn,msbk(

1
a + x1

), ...,msbk(
1

a + xn
)
)

The security of this generator follows immediately from the decision-MIHNP
assumption. We note that this is a pseudorandom number generator, but not
pseudorandom bit generator, since the output distribution is not the uniform
one. There are standard techniques for transforming this to a pseudorandom
bit generator. Any of a number of standard extractors could be used for this
purpose [16,11].

Proposition 1. Under the D-MIHNP assumption, G is a secure pseudorandom
generator.

One point worth mentioning is the re-keying of the generator from the previ-
ous output. It is well known, see [3], that it is secure to do this, if the underlying
generator is itself secure. In our case this means that we may fix the x1, ..., xn
once at the start of the whole procedure, and then use just the msbk(1/(a+xi))
part of the output to re-key a and form the output bits of the PRNG.

The Modular Inversion Hidden Number Problem 47

Parameters and performance. The parameters m (the size of the prime p)
and k (the number of bits to output from each 1/(a+ xi)) must be chosen such
that solving the MIHNP with k output bits modulo a prime of size |p| = m is
infeasible. More precisely, if we assume that the threshold for feasible solution is
when the adversary sees ≥ m/3 of the bits of 1/(a + xi), and we want security
level of 2r, we need to make sure that our generator outputs at most m/3 − r
of the bits. This means that we have a tradeoff between the number of the bits
that we output (which is related to the expansion of the generator) and the size
of the prime that we work with.

A reasonable setting is to set r = k (i.e., output as many bits of 1/(a + xi)
as our security parameter). With this setting, we should choose m so that k ≤
m/3−k, namely m ≥ 6k. (Another constraint is that to get security level 2r, we
must hide at least 2r bits of 1/(a + xi), to avoid birthday-type attacks. In the
current setting, however, this constraint is subsumed by the previous one.) An
invocation of the generator G stretches a random input of length (n+ 1)m bits,
into a pseudorandom output of length n(m + k) bits. Hence, each invocation
generates nk −m pseudorandom bits.

For a numerical example, assume that we want to get security level of 280.
We then set m = 6 · 80 = 480 and k = 80 (i.e., we work with a 480-bit prime,
and output 80 of the bits of 1/(a+xi)). With these parameters, each invocation
of G generates 80n − 480 pseudorandom bits (so we must choose n > 6 to get
any expansion). In our example below we use n = 10.

A naive implementation of this generator would require n modular inversions
to compute msbk(1

a+xi
), i = 1...n. Therefore, the cost of this implementation

is roughly k bits per inversion (for a sufficiently large n). Keeping with the
numerical example above, choosing, for example, n = 10, the size of the seed
(which is the amount of state we keep) is 4800 bits (= 600 bytes), and we get
nk − m = 320 pseudorandom bits at the cost of 10 inversions, or 32 bits per
modular inversion. Keeping a larger state results in more bits per inversion. For
example, setting n = 20, we have 9600 bits (= 1200 bytes) of state, and we get
1120 bits at the cost of 20 inversions, which is 56 bits per inversion.

Even this naive implementation is already quite fast. With a careful imple-
mentation, the cost of modular inversion can be as small as only a few multi-
plications [1]. Moreover, since we work in a relatively small field, the operations
can be quite fast. Finally, we note that the modular inversions are independent
of each other, so it is trivial to parallelize this computation.

Speedup via batching. One way to speed up the computation, is to trade
modular inversions for multiplications by using batching. The idea, first discov-
ered by Peter Montgomery, is as follows: To compute 1/(a + xi), i = 1...n, we
first compute the product π =

∏
i(a + xi), then invert only this product to get

π−1 mod p, and finally compute 1/(a+xj) = π−1 ·∏i �=j(a+xi). It is not hard to
see that one can compute all the values 1/(a+xi) using only 3(n−1) multiplica-
tions and one modular inversion. (For this, one needs to keep in memory up to n
intermediate values during the computation.) If inversion is more expensive than
three multiplications (as is the case for all the multi-precision software libraries

48 D. Boneh, S. Halevi, and N. Howgrave-Graham

that we know), then this implementation will be more efficient than the näıve
one.

Back to our numeric example, with n = 10 we get 320 bits for one inversion
and 28 multiplications, which is about 11 bits per multiplication. With n = 20
we get 1120 bits for one inversion and 58 multiplications, which is roughly 19
bits per multiplication. Hence, our generator is more efficient than other alge-
braic generators, e.g. the pseudorandom generator due to Gennaro [9] which is
based on the problem of discrete-log with small exponent. The generator of [9]
generates approximately one pseudorandom bit per multiplication. Furthermore,
Gennaro’s generator uses a much larger prime field. Other algebraic generators,
such as the Blum-Blum-Shub generator [2], generate a small number of pseudo-
random bits per multiplication modulo a much larger modulus than the one we
use. The exact comparison of our generator to BBS depends on the number of
bits per round output by the BBS generator.

Even faster variants. We can increase the speed even further by slightly
modifying the generator itself. Below we describe two such modifications.

Re-defining the output. To speed the batching implementation, we change the
output of the generator, so that it would be easier to compute this output from
the intermediate value π−1 that we get during the computation. Specifically, we
set

G′(a, x1, .., xn) def=
(
x1, ..., xn,msbk(

1
π1

), ...,msbk(
1
πn

)
)

where the πj ’s are defined by πj =
∏
i �=j(a + xi).

We stress that the security of G′ does not seem to be equivalent to our
original D-MIHNP problem. Rather, this generator defines yet another variant of
D-MIHNP. Still, the analysis from Section 3 applies in exactly the same manner
to this variant too.

Implementing G′ using the batching technique takes only 2m− 1 multiplica-
tions and one inversion (and can also be parallelized easier than with G). Hence,
in our numerical example we get 10 bits per multiplication for n = 8, or 28 bits
per multiplication for n = 20.

Using a harder MIHNP problem. Another possibility is to use harder variants
of MIHNP. For example, instead of using fα(x) = 1/(α + x) as our underlying
function, we can use fα,β(x) = β/(α + x) where both α and β are secret.

(We mention in passing that just like the original MIHNP, this variant too
has limited random self-reducibility (in α and β). This is because we can set
yi = (xi + s) · r−1 and then we have β

α+y = βr
(αr+s)+x . For any fixed α, β (with

β �= 0), if we choose r, s uniformly at random (with r �= 0) then αr + s, βr are
uniformly random and independent.)

From the analysis in Section 3.4, it follows that this problem is infeasible to
solve when the number of “missing bits” is more than m/2 (as opposed to 2m/3
for the original MIHNP). This means that we may be able to output as many

The Modular Inversion Hidden Number Problem 49

as m/2 − r bits for security level of 2r. Assuming that we still set r = k, this
argument suggests that we must set m (the size of our prime) so that k ≤ m/2−k,
or m ≥ 4k.

Each invocation of the generator now stretches m(n + 2) random bits into
n(m+ k) pseudorandom bits, so we get nk− 2m pseudorandom bits per invoca-
tion. For a numerical example, to get security level of 280, we choose m = 320,
and k = 80 (i.e., work with a 320-bit prime and output 80 bits of β/(α + xi)).
Working with n = 10, we have 3840 bits of state and 160 bits per invoca-
tion (same as for the n = 8 example from above). However, this generator
does roughly 25% more operations, but in a smaller field (|p| = 320 instead of
|p| = 480), so we expect it to be nearly twice as fast. Similarly, using n = 22 we
get 1120 bits per application with state of 7040 bits, which is the same number
of bits per invocation, and somewhat smaller state than the n = 20 example
above. Again, we do 10% more operation over a smaller field, so we expect the
overall running time to be roughly twice as fast.

4.2 Message Authentication Code

The computational-MIHNP directly implies an efficient “weak MAC”, secure
under known (random) message attacks. The parameters p and k are chosen
just as for the generator, and the secret MAC key is an element α ∈ Zp. To
authenticate a message χ, one adds the authentication tag

MACα(χ) = msbk(
1

α + x
)

Proposition 2. Suppose the δ-Computational MIHNP assumption holds. Then
when k < δ(log2 p) the above MAC is secure under known (random) message
attacks.

The proof is immediate. The cost per MAC computation is thus just one
modular inversion. Moreover, if we need to compute MAC for many messages
x1...xn, we can use the same batching trick from the previous section to speed
up this computation.

The “weak MAC” above can be converted to a MAC secure against chosen
message attack, using standard techniques. For example, one could apply the
MAC to a random string r and then use a one-time signature based on r to
sign the message x. However, these generic conversion techniques (from security
against a known message attack to security against a chosen message attack)
make the MAC much less efficient. We do not know whether the MAC from
above is by itself secure against chosen message attack. This would require a
version of the computational MIHNP assumption, where the xi’s can be chosen
by the attacker. Currently we cannot tell whether this chosen message MIHNP
problem is intractable.

50 D. Boneh, S. Halevi, and N. Howgrave-Graham

5 Conclusions and Open Problems

In this paper we proposed the MIHNP, and variants thereof, as new and poten-
tially hard mathematical problems. We presented a few efficient cryptographic
constructions based on these problems. To justify the hardness of these MIHNP
problems we used the most up-to-date lattice analysis techniques to solve MI-
HNP and even allowed the attacker the power to reduce infeasibly large lattices.
Our best algorithm works whenever the fraction of given bits is greater than one
third of the length of the modulus. However, the lattice based approach does
not extend to solve the MIHNP when less than a third of the bits is given. We
therefore conjectured the MIHNP is hard in this case. MIHNP is an interesting
and efficient building block for cryptographic systems. It clearly deserves further
study.

One particularly interesting question to answer is how much easier the MI-
HNP problem becomes if the xi are not randomly chosen, but adversarially
chosen. If the Computational-MIHNP remains hard when the xi’s are chosen
adversarially then we obtain an efficient MAC from MIHNP. Also, it is very
interesting to see whether any non-lattice approaches shed any light on the
hardness of these MIHNP problems.

Lastly we mention that the analysis we have used for MIHNP, can be heuris-
tically applied to certain modular polynomials arising from using the Diffie–
Hellman protocol with elliptic curves (ECDH). As was recently done in [5], we
may apply our results to proving statements on the bit security of ECDH. Specif-
ically, to prove the bit security of ECDH on a specific curve E, it is sufficient to
solve the following hidden-number problem (called ECHNP): We are given

〈
(xi, yi), msbk(

(
ψ − yi
χ− xi

)2

− xi − χ)

〉

for many random points (xi, yi) ∈ E, and we need to find the hidden point
(χ, ψ) ∈ E. The (heuristic) analysis from Section 3.4 can be applied to this
problem too, and it suggests that ECHNP can be solved for δ > 3/5. This would
mean that given an algorithm that computes the top 3/5 fraction of bits in (the
x-coordinate of) the ECDH secret, one can devise an algorithm to compute all
the bits. However, since the analysis in Section 3.4 is only a heuristic, one does
not immediately get a proof of bit-security for ECDH.

We leave further details to a subsequent paper, but mention that while we
were able to convert the heuristic analysis into a formal proof in some cases, the
result that we get is very weak: We can only prove that for some small constant
ε ≈ 0.02, computing a (1−ε) fraction of the bits in the ECDH secret is as hard as
computing them all. This is related to a recent result of Boneh and Shparlinksi
[5] which shows that if ECDH is hard on some curve E then there is no single
efficient algorithm that predicts one bit of the ECDH secret for many curves
isomorphic to E. Our result applies to blocks of bits (rather than a single bit),
but is stronger than [5] in the sense that it applies to a specific curve rather

The Modular Inversion Hidden Number Problem 51

than a family of curves. We show that if ECDH is hard on a specific curve then
the top (1− ε) fraction of the bits of the ECDH secret on that curve cannot be
efficiently computed.

References

1. E. Bach, J. Shallit, “Algorithmic number theory, Volume I: efficient algorithms”,
MIT press, 1996.

2. L. Blum, M. Blum, M. Shub, “A simple unpredictable pseudo-random number
generator”, SIAM J. Comput. 15, 2 (1986) 364–383.

3. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J.Computing, 13(4):850–864, November 1984.

4. D. Boneh, Venkatesan R., “Hardness of Computing the Most Significant Bits of
Secret Keys in Diffie-Hellman and Related Schemes”, Proc. of Crypto, 1996, pp.
129–142, 1996.

5. D. Boneh, I. Shparlinksi, “On the unpredictability of bits of the elliptic curve
Diffie–Hellman scheme”, In Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pp. 201–212. Springer-Verlag, 2001.

6. D.Coppersmith, “Small solutions to polynomial equations, and low exponent RSA
vulnerabilities”, J. of Cryptology, Vol. 10, pp. 233–260, 1997.

7. R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack”, in proc. Crypto ’98, pp. 13–25, 1998.

8. R. Cramer and V. Shoup, “Signature schemes based on the Strong RSA Assump-
tion”, Proc. 6th ACM Conf. on Computer and Communications Security, 1999.

9. R. Gennaro. An improved pseudo-random generator based on discrete log. In Ad-
vances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pp. 469–481. Springer-Verlag, 2000.

10. R. Gennaro, S. Halevi, T. Rabin, “Secure hash-and-sign signature without random
oracles”, Proc. Eurocrypt ’99, pp. 123–139, 1999.

11. R. Impagliazzo, D. Zuckerman, “How to Recycle Random Bits”, FOCS, 1989.
12. N. Howgrave-Graham. Finding small roots of univariate modular equations re-

visited. In proceedings Cryptography and Coding, Lecture Notes in Computer
Science, vol. 1355, Springer-Verlag, pp. 131–142, 1997.

13. N. Howgrave-Graham, N. Smart. Lattice attacks on digital signature schemes.
manuscript.

14. A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coef-
ficients. Mathematische Annalen, vol. 261, pp. 515–534, 1982.

15. M. Naor, O. Reingold, “Number theoretic constructions of efficient pseudo random
functions”, Proc. FOCS ’97. pp. 458–467.

16. A. Ta-Shma, D. Zuckerman, and S. Safra, “Extractors from Reed-Muller Codes”,
FOCS, 2001.

	The Modular Inversion Hidden Number Problem
	Introduction
	Approximate Modular Inversion Problems
	Random Self Reduction for MIHNP

	Security Analysis of the MIHNP
	First Attempt: A Linear Approach
	Making Use of Multiples
	Conclusions from the Analysis of MIHNP
	Other Variants of MIHNP

	Cryptographic Applications
	Pseudorandom Generator
	Message Authentication Code

	Conclusions and Open Problems
	References

