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Abstract. We propose a new statistical approach for characterizing the
class separability degree in RP. This approach is based on a nonpara-
metric statistic called “the Cut Edge Weight”. We show in this paper
the principle and the experimental applications of this statistic. First,
we build a geometrical connected graph like the Relative Neighborhood
Graph of Toussaint on all examples of the learning set. Second, we cut
all edges between two examples of a different class. Third, we calculate
the relative weight of these cut edges. If the relative weight of the cut
edges is in the expected interval of a random distribution of the labels
on all the neighborhood graph’s vertices, then no neighborhood-based
method will give a reliable prediction model. We will say then that the
classes to predict are non-separable.

1 Introduction

Learning methods are very often requested in the data mining domain. The
learning methods try to generate a prediction model ¢ from a learning sample
£2;. Due to its construction method, the model is more or less reliable. This
reliability is generally evaluated with a posteriori test sample £2;. The reliability
depends on the learning sample, on the underlying statistical hypothesis, and
on the implemented mathematical tools. Nevertheless, sometimes it does not
exist any method that produce a reliable model, which can be explained by the
following reasons:

— methods are not suitable to the problem we are trying to learn, so we have
to find another method more adapted to the situation;

— the classes are not separable in the learning space. In this case, it is impossible
to find a better learning method.

It will be very interesting to use mathematical tools that can characterize
the class separability from a given learning sample. There already exist measures
for learnability such as the VC-dimension provided by the statistical learning
theory [20]. Nevertheless, VC-dimension is difficult to calculate in many cases.
This problem has also been studied based on a statistical approach by Rao [16].
In the case of a normal distribution of the classes, Rao measures the learning
ability degree through a test based on the population homogeneity. In a similar
case, Kruskall and Wallis have defined a nonparametric test based on an equality
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hypothesis of the scale parameters [1]. Recently, Sebban [18] and Zighed [23] have
proposed a test based on the number of edges that connect examples of different
classes in a geometrical neighborhood.

At first, they build a neighborhood structure by using some particular models
like the Relative Neighborhood Graph of Toussaint [19]. After that, they calcu-
late the number of edges that must be removed from the neighborhood graph
to obtain clusters of homogeneous points in a given class. At last, they have
established the law of the edge proportion that must be removed under the null
hypothesis, denoted Hy, of a random distribution of the labels. With this law,
they can say if classes are separable or not by calculating the p-value of the test
—e.g., the probability of having a calculated value as important as the observed
value under Hy.

In a more general view, we propose in this paper a theoretical framework
and a nonparametric statistic that takes into consideration the weight of the
removed edges. We exploit the works of the spatial autocorrelation, in particular
the join-counts statistic, presented by Cliff and Ord [4] following the works of
Moran [14], Krishna Iyer [9], Geary [7] and David [5]. Such process has been
studied in the classification domain by Lebart [11] who used works based on
the spatial contiguity, like the contiguity coefficient from Geary, to compare the
local structures vs. the global structures in a k nearest neighbor graph.

To evaluate a learning method several points have to be distinguished. First,
the quality of the results produced by the method have to be described, e.g., the
determination coefficient R? in regression. Second, we have to test the hypothesis
of the non-significance of the results. According to the number of instances, it
could be known if the same value of R? is significant or not. Third, the robustness
can be studied and the outliers can be searched. We propose a process that deals
with all the previous points.

2 Class Separability, Clusters and Cut Edges

2.1 Notations

Machine learning methods intended to produce a function ¢ —like “decision rules”
in the knowledge data discovery domain— that can predict the unknown belong-
ing class Y(w) of an instance w extracted from the global population {2, by
knowing its representation X (w).

In general, this representation X (w) is provided by an expert who establishes
a priori a set of attributes denoted: X1, Xo, ..., X;,. Let these attributes take their
valuesin R, X 1w € 2 — X(w) = (X1 (w), Xo(w),...,Xp(w)) € RP.

Within our context, all learning methods @ must have recourse to a learning
sample 2; and a test sample (2. The former will be used for generating the
prediction function ¢, the latter will test the reliability of (.

For all example w € (§2; U {2;), we suppose that its representation X (w) and
class Y(w) are known. Y : 2 — {y1,- -, yx}, with k the number of classes of Y.
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The learning ability of a method is strongly associated to its class separability
degree in X (£2). We consider that the classes will be easier to separate if they
fulfill the following conditions:

— the instances of the same class appear mostly gathered in the same subgroup
in the representation space;

— the number of groups are so small, at least it reaches the number of the
classes;

— the borders between the groups are not complex.

2.2 Neighborhood Graphs and Clusters

To express the proximity between examples in the representation space, we use
the “neighborhood graph” notion [23]. These graphs are the Relative Neighbor-
hood Graph (RNG), the Gabriel Graph, the Delaunay Triangulation and the
Minimal Spanning Tree, that all provide planar and connected graph structures.
We use here the RNG of Toussaint [19] defined below.

Definition: Let V' be a set of points in a real space RP (with p the number
of attributes). The Relative Neighborhood Graph (RNG) of V is a graph with
vertices set V', and the set of edges of the RNG of V' are exactly those pairs (a, b)
of points for which d(a,b) < Max (d(a,c),d(b,c))Ve,c # a,b, where d(u,v)
denotes the distance between two points u and v in RP.

This definition means that the lune L, ) —constituted by the intersections
of hypercircles centered on u and v with range the edge (u,v)— is empty. For
example, on Fig. 1 (a), vertices 13 and 15 are connected because there is no
vertex on the lune L3 15)-

Fig. 1. RNG and clusters with two classes: the black and the white points

According to Zighed and Sebban [23] we introduce the concept of “cluster” to
express that a set of close points have the same class. We call cluster a connected
sub-graph of the neighborhood graph where all vertices belong to the same class.
To build all clusters required for characterizing the structures of the scattered
data points, we proceed in two steps:

1. we generate the geometrical neighborhood graph on the learning set;
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2. we remove the edges connecting two vertices belonging to different classes,
obtaining connected sub-graphs where all vertices belong to the same class.

The number of generated clusters gives a partial information on the class
separability. If a number of clusters is low —at least the number of classes—,
the classes are well separable and we can find a learning method capable of
exhibit the model that underlies the particular group structure. For example on
Fig. 1 (b), after cutting the four edges connecting vertices of different colors (in
dotted line), we obtain three clusters for the two classes. But if this number
tends to increase, closely to the number of clusters that we could have in a
random situation, the classes could no longer be learned cause to the lack of a
non random geometrical structure.

Actually, this number of clusters cannot ever characterize some little sit-
uations that seems intuitively different. For the same number of clusters, the
situation can be very different depending on wether the clusters are easily iso-
lated in the neighborhood graph or not. As soon as p > 1, rather than studying
the number of clusters, we prefer to take an interest in the edges cut for building
the clusters and we will calculate the relative weight of these edges in the edge
set. In our example on Fig. 1 (b), we have cut four edges for isolating three
clusters.

3 Cut Edge Weight Statistic

In a common point between supervised classification and spatial analysis, we
consider a spatial contiguity graph which plays the role of the neighborhood
graph [4]. The vertices of this graph are colored with k distinct colors. The color
plays the role of the class Y. The matter is (1) to describe the link between the
adjacency of two vertices and the fact they have the same color, and (2) to test
the hypothesis of non significance. This would take us to test the hypothesis
of no spatial autocorrelation between the values taken by a categorical variable
over spatial units. In the case of a neighborhood graph, this would be the results
for testing the hypothesis that the class Y cannot be learned from neighborhood-
based methods.

3.1 Statistical Framework
Notations and Abbreviations

— Number of nodes in the graph: n

— Connection matrix: V = (v;;),i =1,2,...,n;j = 1,2, ...,n; where v;; =1if4
and j are linked by an edge

— Weight matrix: W = (wy;),7 = 1,2,...,n;5 = 1,2,...,n; where w;; is the
weight of edge (7,7). Let w;y and w4, be the sums of raw ¢ and column j.
We consider that W matrix is symmetrical. If we have to work with a non
symmetrical matrix W/, which is very interesting for neighborhood graphs,
we will go back to the symmetrical case without loss of generality calculat-
ing: wij = 3 (wj; + wf;).
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— Number of edges: a
— Proportion of vertices corresponding to the class y,: m., r =1,2,.... k

According to Cliff and Ord [1], we adopt the simplified notations below:

Notations Definition Case: W =V
Do Wij [Doic Z;L:l i2j Wi 2a
S() ZQ Wi j 2a
St |30 (wiy +wy)” 4a
Sy [ (wiy +wyi)’] 43T 02,

Definition of the Cut Edge Weight Statistic In order to take into consid-
eration a possible weighting of the edges, we deal with the symmetrized weights
matrix W which is reduced to the connection matrix V if all the weights are
equal to 1.We consider both the symmetrical weights based upon the distances
and non symmetrical weights based upon the ranks. In the case of distances, we
choose w;; = (1 —|—dij)*17 while in the case of ranks we choose w;; = %7 where r;
is the rank of the vertex j among the neighbors of the vertex i. '

Edges linking two vertices of the same class (non cut edges) have to be
distinguished from those linking two vertices of different classes (cut edges in
order to obtain clusters).

Let us denote by I,. the sum of weights relative to edges linking two vertices
of class r, and by J, , the sum of weights relative to edges linking a vertex of
class r and a vertex of class s. Statistics I and J are defined as it follows.

non cut edges cut edges

k k— k
I= Zr:l IT J = Zr:i Zs:r+1 Jr,s

In so far as I and J are connected by the relation I + J = %So, we have only
to study J statistic or its normalization H—LJ = % Both give the same result

after standardization. We may observe that I generalizes the test of runs in 2
dimensions and k groups [13,21].

Random Framework Like Jain and Dubes [8], we consider binomial sampling
in which null hypothesis is defined by:

Hy : the vertices of the graph are labelled independently of each other, accord-
ing to the same probability distribution (7,.) where 7, denotes the probability
of the class r,r = 1,2, ..., k.

We could consider hypergeometric sampling by adding into null hypothesis
the constraint to have n, vertices of the class r,r = 1,2, ...k.

Rejecting null hypothesis means either the classes are non independently
distributed or the probability distribution of the classes is not the same for the
different vertices. In order to test the null hypothesis Hy using statistic J (or I),
we had first to study the distribution of these statistics under Hy.
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3.2 Distribution of I and J under Null Hypothesis

To test Hp with the statistic J, we will use two-sided test if we are surprised
at once by abnormally small values of J (great separability of the classes) and
by abnormally great values (deterministic structuration or pattern presence).
Hypothesis H is rejected when J produce an outstanding value taking into
account its distribution under Hy. So, we have to establish the distribution of J
under Hy in order to calculate the p-value associated with the observed value
of J as well as to calculate the critical value of J at the significance level ay.
This calculation can be done either by simulation or by normal approximation.
In the last case, we have to calculate the mean and the variance of J under Hj.

Boolean Case The two classes defined by Y are noted 1 and 2. According to
Moran [14], U; = 1 if the class of the i** vertex is 1 and U; = 0 if the class is 2,
i =1,2,...,n. We denote 7 the vertex proportion of class 1 and 75 the vertex
proportion of class 2. Thus:

1 , 1
J12 =35 %:wij Ui =Uj)" =5 zz:wijzij

where U; are independently distributed according to Bernoulli distribution
of parameter 7, noted B(1, 7). It must be noticed that the variables Z;; =

(U; — Uj)2 are distributed according to the distribution B(1, 2myms), but are
not independent. Actually, the covariances Cov(Z;j, Zi;) are null only if the four
indices are different. Otherwise, when there is a common index, one can obtain:

C’O'U(Zij7 Zil) = 7T1772(]. - 47T17T2)

The table below summarizes the different results related to the statistic J o :

Variable Mean Variance
Ui 1 T2
Zij = (U7 —Uj)z 27T17T2 27T17T2 (1—27T17T2)
J1’2 Som1 T 517T%7T§+527T17T2 (i —7T17T2)
Ji2 st wij = vy | 2amymy [4ariny + mimy (L —4dmymg) Y0 vz,

The p-value of J; o is calculated from standard normal distribution after
centering and reducing its observed value. The critical values for J;» at the
significance level o are:

1
J172;a0/2 = So7T17T2 — ul_ao/z\/Slﬂ'%ﬂ'g + SQ?Tlﬂ'Q (Z — 172

1
_ 2 2
J1,211-aq,, = Som1T2 + u1a0/2\/51771772 + Sommo (Z — M2
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By simulation, the most convenient is to calculate the p-value associated
with the observed value of J; 2. To simulate a realization of J; », one only has
to simulate a realization of B(1, ) for each example, which requires n random
numbers between 0 and 1, and then to apply the formula which defines .J; 5. After
having repeated N times the operation, one calculates the p-value associated
with the observed value of J; » by calculating the proportion of simulated values
of Ji,2 which are less or equal to the observed value of J; 7.

Multiclass Case To extend these results to the multiclass case, according
to Cliff and Ord [4], we reason with I and J statistics already defined. These
statistics are:

k k—1 k
=30 L=1wyTy| T =30 5 T =25 wiiZy

where Tj; and Z;; are random boolean variables which indicate if the vertices
i and j have the same class (Tj;) or not (Z;;).
From previous results, we easily obtain the mean of I and J:

Test statistic Mean
k 1 k
I k: 127‘?1 IT’ 5]650127‘]?1 7(3
J= Z7‘/:1 Zs:r+1 J’”w? So ZT:l Zs/:rJrl TrTs

Because I and J are connected by the relation I + J = %So, these two vari-
ables have the same variance, denoted 02 = Var(I) = Var(J). The calculation
of 02 is complicated due to the necessity of taking the covariances into consid-
eration. In accordance with Cliff and Ord [4], we obtain the following results for
binomial sampling;:

0% = 5 erv;; Z};:r+1 7,5 + (251 — 5S2) Zf;f le:rlJrl Zf:s+1 TrMs Tt

k—1 k k—3 k—2 k—1 k
+4 (Sl - SQ) [Zrzl Zs:rJrl 7(%7(3 -2 Zr:l Zs:rJrl t=s+1 u=t+1 Wr?rsﬂ-tﬂ-“:l

3.3 Complexity of the Test

Differents steps are into consideration: computing the matrix distance is in
O(p x n?), with n the number of examples and p the attributes, and building
the neighborhood graph in RP is in O(n?). Because the number of attributes p
is very small compared to the number of instances n, the test is in O(n?).

We point out that all the complete database in not needed for the test.
A sample, particulary a stratified sample, can be enough to reveal a good idea
of the class separability of the database.

4 From Numerical Attributes to Categorical Attributes

We have introduced the test of weighted cut edges for Y is a categorical variable
and the attributes X1, X, ..., X,, are numerical. One notice that in order to ap-
ply such a test in a supervised learning, we only need to build the neighborhood
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graph which summarizes the information brought by the attributes. To the ex-
tent that the building of this neighborhood graph only requires the dissimilarity
matrix between examples, we may consider a double enlargement of the weighted
cut edge test.

The first enlargement corresponds to the situation of categorical attributes
Xj,j =1,2,...,p, which often exists in the real world. In such a case, it is enough
to construct a dissimilarity matrix from the data.

We have to use a dissimilarity measure suited to the nature of attributes (cf.
Chandon and Pinson [3], Esposito et al. [0]).

In the case of boolean data, there is a set of similarity indices between ex-
amples relying on the number of matching “1” (noted by a) or “0” (d) and the
number of mismatching “1-0” (b) or “0-1”7 (¢). A general formula for similarity
(s0,0,) and dissimilarity (dg,e,) indices taking their values between 0 and 1, is:

a+ 601d
a—|—91d+92(b—|—c)

80192 - - ]- - d9192

Most known indices are mentioned in the table above.

Table 1. Main similarity indices

01]02 Name

11 Sokal and Michener, 1958

1 Rogers and Tanimoto, 1960
110.5 not named

01 Jaccard, 1900

0 Sokal and Sneath, 1963
00.5|Czekanowski, 1913; Dice, 1945

In the case of categorical data, there are two main methods:

— either to generalize the previously quoted indices when it is possible. For
example, Sokal and Michener index is the proportion of matching categorical
attributes. It is possible to weight the attributes according to their number
of categorical components.

— or to rewrite each categorical attribute as a set of boolean attributes in order
to use indices for boolean data. In this case, all the examples have the same
number of “1”, namely p. Then, according to Lerman (1970), all the indices
mentioned in Table 1 lead to the same ordering on the set of example’s
pairs. Applying Minkowski distance of parameter 1 or 2 to such a matrix is
equivalent to the generalization of Sokal and Michener index.

Lastly, when variables are of different types, one can use a linear weighted
combination of dissimilarity measures adapted to each type of variable or reduce
the data to the same type [0].
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The second enlargement deals with the situation where only a dissimilarity
matrix D is known and not the original data X. This situation arises for instance
in the case of input-output tables (e.g., Leontiev Input-output table) or when
the collected information is directly dissimilarity matrix (e.g., in marketing or
psychology trials).

5 Experiments

5.1 Cut Weighted Edge Approach for Numerical Attributes

Values of the Cut Weighted Edge Test The weighted edge test has been ex-
perimentally studied on 13 benchmarks from the UCI Machine Learning Repos-
itory [2]. These databases have been chosen for having only numerical attributes
and a symbolic class. For each base, we build a relative neighborhood graph [19]
on the n instances of the learning set. In Table 1, the results show the number of
instances n, the number of attributes p and the number of classes k. We present
also information characterizing the geometrical graph: number of obtained edges
for constructing the graph (edges) and the number of cluster obtained after cut-
ting the edges linking two vertices of different classes (clusters).

Table 2. Cut weighted edge test values on 13 benchmarks

General information without weighting weighting: distance weighting: rank

Domain name n p | k Jclust.]Jedges]errorr.jlJ /(1 +J) J° p-value|lJ / (1 +J) J° p-value||J / (I +J) J°  |p-value
Wine recognition | 178 13] 3 9] 281]0.0389 0.093| -19.32 0 0.054 -19.40 0 0.074| -19.27 0
Breast Cancer 683 9] 2 10| 7562]0.0409 0.008| -25.29 0 0.003 -24.38 0| 0.014] -25.02 0
Iris (Bezdek) 150 4] 3 6 189] 0.0533 0.090| -16.82 0| 0.077 -17.01 0| 0.078] -16.78 0
Iris plants 150 4] 8 6 196] 0.0600; 0.087| -17.22 0| 0.074 -17.41 0| 0.076| -17.14 0
Musk "Clean1" 476|166] 2 14 810] 0.0650 0.167| -17.53 0| 0.115 -7.69| 2E-14 0.143] -18.10 0
Image seg. 210 19) 7 27 268|0.1238 0.224| -29.63 0| 0.141 -29.31 0| 0.201| -29.88 0
lonosphere 351 34| 2 43 402|0.1397 0.137| -11.34 0 0.046 -11.07 0 0.136] -11.33 )
Waveform 1000( 21| 3 49| 2443|0.1860 0.255| -42.75 0| 0.248 -42.55 0| 0.248| -42.55 0
Pima Indians 768 8l 2 82| 1416]0.2877 0.310| -8.74| 2E-18 0.282 -9.86 0| 0.305| -8.93| 4E-19
Glass Ident. 214 9] 6 52 275|0.3169 0.356| -12.63 0| 0.315 -12.90 0| 0.342] -12.93 0
Haberman 306 3] 2 47 517]0.3263 0.331 -1.92|0.0544 0.321 -2.20( 0.028 0.331 -1.90( 0.058
Bupa 345 6] 2 50| 581]0.3632 0.401| -3.89(0.0001 0.385 -4.33| 1E-05 0.394| -4.08| 5E-05
Yeast 1484 8] 10| 401] 2805] 0.4549 0.524] -27.08 0| 0.512 -27.18 0| 0.509| -28.06 0

On Table 2, for each base, we present the relative cut edge weight IJ%J, the
standardized cut weighted edge test J® with its p-value in three cases: when
the test is done without weighting, when the edges are weighted by the inverse
of the distance between the vertices, and when the edges are weighted by the
inverse of the number of the rank of a vertex to the others of the graph. For
each base and weighting method, the p-values are extremely low, this shows that
the null hypothesis of a random distribution of the labels on the vertices of a
neighborhood graph is very strong.

For information, the empirical evaluation of the CPU time needed for the
test (distance matrix computation, graph construction, edges cut, test statistic
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calculation) is between a little less than 1 second for Iris (150 instances) and 200
seconds for Yeast (about 1,500 instances) on a 450 MHz PC. We present only
the results obtained with a RNG graph of Toussaint (the results with a Gabriel
Graph or a Minimal Spanning Tree are very close to them).

Weight of the Cut Edges and Error Rate in Machine Learning The 13
benchmarks have been tested on the following different machine learning meth-
ods: instance-based learning method (the nearest neighborhood: 1-NN [12]),
decision tree (C4.5 [15]), induction graph (Sipina [22]), artificial neural net-
works (Perceptron [17], Multi-Layer Perceptron with 10 neurons on one hidden
layer [12]) and the Naive Bayes [12]. On Table 3 we present the error rates ob-
tained by these methods on a 10 cross validation with the benchmarks and the
statistical values previously calculated (without weighting). The rate errors for
the different learning methods, and particulary the mean of these methods, are
well correlated with the relative cut edge weight (J/(I + J)). We can see on
Fig. 2 the linear relation between the relative cut edge weight and the mean of
the error rate for the 13 benchmarks.

Table 3. Error rates and statistical values of the 13 benchmarks

General information Statistical value Error rate
Domain name n p k clust. edges |J/(1+J) J° p-value | 1-NN C4.5 Sipina Perc. MLP N.Bayes | Mean
Breast Cancer 683 9 2 10 7562| 0.008 -25.29 0| 0.041 0.059 0.050 0.032 0.032 0.026 0.040
BUPA liver 345 6 2 50 581| 0.401 -3.89 0.0001| 0.363 0.369 0.347 0.305 0.322 0.380 0.348
Glass Ident. 214 9 6 52 275] 0.356 -12.63 0] 0.317 0.289 0.304 0.350 0.448 0.401 0.352
Haberman 306 3 2 47 517] 0.331 -1.92 0.0544| 0.326 0.310  0.294 0.241 0275 0.284 0.288
Image seg. 210 19 7 27 268 0.224 -29.63 0] 0.124 0.124 0.152 0.119 0.114 0.605 0.206
lonosphere 351 34 2 43 402 0.137 -11.34 0] 0.140 0.074 0.114 0.128 0.131 0.160 0.124
Iris (Bezdek) 150 4 3 6 189] 0.090 -16.82 0] 0.053 0.060 0.067 0.060 0.053 0.087 0.063
Iris plants 150 4 3 6 196| 0.087 -17.22 0] 0.060 0.033 0.053 0.067 0.040 0.080 0.056
Musk "Clean1” 476 166 2 14 810| 0.167 -17.53 0| 0.065 0.162 0.232 0.187 0.113 0.227 0.164
Pima Indians 768 8 2 82 1416| 0.310 -8.74 2.4E-18| 0.288 0.283 0.270 0.231 0.266 0.259 0.266
(W aveform 1000 21 3 49 2443 0.255 -42.75 0] 0.186 0.260 0.251 0.173 0.169 0.243 0.214
\Wine recognition 178 13 3 9 281| 0.093 -19.32 0] 0.039 0.062 0.073 0.011 0.017 0.186 0.065
Y east 1484 8 10 401 2805] 0.524 -27.03 0] 0.455 0.445 0.437 0.447 0.446 0.435 0.444
Mean| 0.189 0.195 0.203 0.181 0.187 0.259 0.202
Rz (J/(1+J) ; error rate)| 0.933 0.934 0.937 0.912 0.877 0.528 0.979
R2(J°; errorrate)| 0.076 0.020  0.019 0.036 0.063 0.005 0.026

5.2 Complementary Experiments

Cut Weighted Test and Categorical Attributes To show how to deal with
categorical attributes, we have applied the cut weighted edge test on the bench-
mark Flag of the UCI Repository [2] that contains such predictors (Table 4).
The categorical attributes have been rewritten as a set of boolean attributes
and the neighborhood graph is build with all standardized attributes. The test
indicates that this base is separable, related to the mean error rate of 0.36 for 6
classes to learn.
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y = 0,8663x + 0,0036
R® = 0,979
0.50

0.40 /

0/0/
0.30

0.20 /

0.10

R4

Error rate

0.00 T T
0.00 0.20 0.40 0.60

JI(1+d)

Fig. 2. Relative cut edge weight and mean of the error rates

Size Effect of the Database We point out the fact that J°, the standardized
cut weighted edge statistic, and then the p-value depend strongly of the size
of the learning set. The same observed deviation in the null hypothesis is more
significant, because of the learning set size. This fact is illustrated by the results
of experiments conducted on the benchmark waves, for different size of learning
set (n=20, 50, 100, 1000). The results of the tests are shown on Table 4. The
error rates are decreasing but we do not present their values in the different
learning methods because of the great variability due to the small size of the
learning set. The p-value is not significant for n=20, and it is more and more
significant when n increases. Concurrently, we notice that HLJ decreases as well
as the error rate.

Table 4. Error rates and statistical values of the other databases

Domain name n p__k clust. edges |J/(I1+J) J° p-value | 1-NN C4.5 Sipina Perc. MLP _N.Bayes | Mean
Flag 194 67 6 46 327 0.489 -13.91 0| 0.366 0.346 0.371 0.310 0.428 0.340| 0.360
W aves-20 20 21 3 6 25 0.400 -0.44 0.6635
Waves-50 50 21 3 11 72 0.375 -4.05 5.0E-05
Waves-100 100 21 3 12 156 0.301 -8.44 3.3E-17
W aves-1000 1000 21 3 49 2443 0.255 -42.75 0

6 Conclusion

In this paper that proceeds the research of Zighed and Sebban [23], our results
outcome a strict framework that permits to take into consideration the weight
of the edges for numerical or categorical attributes. Furthermore we can use this
framework to detect outliers and improve classification [10].

The construction of the test is based on the existence of a neighborhood
graph. To build this graph, the dissimilarity matrix is only needed. This char-
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acteristic gives to our approach a very general dimension to estimate the class
separability, however the instance representation may be known or not.

Our perspectives are to describe the procedures of implementing and identi-
fying the application fields, in order to make tests on real applications.
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