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Abstract. Good feature selection is essential for text classification to
make it tractable for machine learning, and to improve classification
performance. This study benchmarks the performance of twelve feature
selection metrics across 229 text classification problems drawn from
Reuters, OHSUMED, TREC, etc. using Support Vector Machines. The
results are analyzed for various objectives. For best accuracy, F-
measure or recall, the findings reveal an outstanding new feature
selection metric, �Bi-Normal Separation� (BNS). For precision alone,
however, Information Gain (IG) was superior. A new evaluation
methodology is offered that focuses on the needs of the data mining
practitioner who seeks to choose one or two metrics to try that are
mostly likely to have the best performance for the single dataset at hand.
This analysis determined, for example, that IG and Chi-Squared have
correlated failures for precision, and that IG paired with BNS is a better
choice.

1 Introduction

As online resources continue to grow exponentially, so too will the need to improve
the efficiency and accuracy of machine learning methods: to categorize, route, filter
and search for relevant text information. Good feature selection can (1) improve
classification accuracy�or equivalently, reduce the amount of training data needed to
obtain a desired level of performance�and (2) conserve computation, storage and
network resources needed for training and all future use of the classifier. Conversely,
poor feature selection limits performance�no degree of clever induction can make up
for a lack of predictive signal in the input features.

This paper presents the highlights of an empirical study of twelve feature selection
metrics on 229 text classification problem instances drawn from 19 datasets that
originated from Reuters, OHSUMED, TREC, etc. [3]. (For more details of the study
than space permits here, see [1].) We analyze the results from various perspectives,
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including accuracy, precision, recall and F-measure, since each is appropriate in
different situations. Further, we introduce a novel analysis that is focused on a subtly
different goal: to give guidance to the data mining practitioner about which feature
selection metric or combination is most likely to obtain the best performance for the
single given dataset they are faced with, supposing their text classification problem is
drawn from a distribution of problems similar to that studied here.

Our primary focus is on obtaining the best overall classification performance
regardless of the number of features needed to obtain that performance. We also
analyze which metrics excel for small sets of features, which is important for
situations where machine resources are severely limited, low latency classification is
needed, or large scalability is demanded.

The results on these benchmark datasets showed that the well-known Information
Gain metric was not best for the goals of F-measure, Recall or Accuracy, but instead
an outstanding new feature selection metric, �Bi-Normal Separation.� For the goal of
Precision alone, however, Information Gain was superior.

In large text classification problems, there is typically a substantial skew in the
class distribution. For example, in selecting news articles that best match one�s
personalization profile, the positive class of interest contains many fewer articles than
the negative background class. For multi-class problems, the skew increases with the
number of classes. The skew of the classification problems used in this study is 1:31
on average, and ~4% exceed 1:100. High class skew presents a particular challenge to
induction algorithms, which are hard pressed to beat the high accuracy achieved by
simply classifying everything as the negative majority class. For this reason, accuracy
scores can under-represent the value of good classification. Precision and recall are
often preferable measures for these situations, or their harmonic average, F-measure.

High class skew makes it that much more important to supply the induction
algorithm with well chosen features. In this study, we consider each binary class
decision as a separate problem instance and select features for it alone. This is the
natural setting for 2-class problems, e.g. in identifying spam vs. valuable email. This is
also an important subcomponent for good multi-class feature selection [2], i.e.
determining a fixed set of features for multiple 2-class problems (aka �n-of-m,� topic
or keyword identification), or for �1-of-m� multi-class problems, e.g. determining
where to file a new item for sale in the large Ebay.com classified ad categories.

The choice of the induction algorithm is not the object of study here. Previous
studies have shown Support Vector Machines (SVM) to be a consistent top performer
[e.g. 6], and a pilot study comparing the use of the popular Naïve Bayes algorithm,
logistic regression, and C4.5 decision trees confirmed the superiority of SVM. (When
only a small number of features are selected, however, we found Naïve Bayes to be
the best second choice, compared to the others.)

Related Work: For context, we mention that a large number of studies on feature
selection have focused on non-text domains. These studies typically deal with much
lower dimensionality, and often find that wrapper methods perform best. Wrapper
methods, such as sequential forward selection or genetic search, perform a search over
the space of all possible subsets of features, repeatedly calling the induction algorithm
as a subroutine to evaluate various subsets of features. For high-dimensional
problems, however, this approach is intractable, and instead feature scoring metrics
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are used independently on each feature. This paper is only concerned with feature
scoring metrics; nevertheless, we note that advances in scoring methods should be
welcome to wrapper techniques for use as heuristics to guide their search more
effectively.

Previous feature selection studies for text domain problems have not considered as
many datasets, tested as many metrics, nor considered support vector machines. For
example, the valuable study by Yang and Pedersen [7] considered five feature
selection metrics on the standard Reuters dataset and OHSUMED. It did not consider
SVM, which they later found to be superior to the algorithms they had studied, LLSF
and kNN [6]. The question remains then: do their findings generalize to SVM?

Such studies typically consider the problem of selecting one set of features for
1-of-m or n-of-m multi-class problems. This fails to explore the best possible accuracy
obtainable for any single class, which is especially important for high class skew.
Also, as pointed out in [2], all feature scoring metrics can suffer a blind spot for multi-
class problems when there are many good predictive features available for one or a
few easy classes that overshadow the useful features for difficult classes.

This study also recommends feature selection strategies for varied situations, e.g.
different tradeoffs between precision and recall, and for when resources are tight.

2 Feature Selection Methods

The overall feature selection procedure is to score each potential word/feature
according to a particular feature selection metric, and then take the best k features.
Scoring a feature involves counting its occurrences in training examples for the
positive and the negative classes separately, and then computing a function of these.

In addition, there are some other filters that are commonly applied. First, rare
words may be eliminated, on the grounds that they are unlikely to be present to aid any
given classification. For example, on a dataset with thousands of words, those
occurring two or fewer times may be removed. Word frequencies typically follow a
Zipf distribution (~1/rankp). Easily half the total number of unique words may occur
only a single time, so eliminating words under a given low rate of occurrence yields
great savings. The particular choice of threshold can have an effect on accuracy, and
we consider this further in our evaluation. If we eliminate rare words based on a count
from the whole dataset before we split off a training set, we have leaked some
information about the test set to the training phase. Without expending a great deal
more resources for cross-validation studies, this research practice is unavoidable, and
is considered acceptable in that it does not use the class labels of the test set.

Additionally, overly common words, such as �a� and �of�, may also be removed on
the grounds that they occur so frequently as to not be discriminating for any particular
class. Common words can be identified either by a threshold on the number of
documents the word occurs in, e.g. if it occurs in over half of all documents, or by
supplying a stopword list. Stopwords are language-specific and often domain-specific.
Depending on the classification task, they may run the risk of removing words that are
essential predictors, e.g. the word �can� is discriminating between �aluminum� and
�glass� recycling.
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It is also to be mentioned that the common practice of stemming or lemmatizing�
merging various word forms such as plurals and verb conjugations into one distinct
term�also reduces the number of features to be considered. It is properly considered,
however, a feature engineering option.

An ancillary feature engineering choice is the representation of the feature value.
Often a Boolean indicator of whether the word occurred in the document is sufficient.
Other possibilities include the count of the number of times the word occurred in the
document, the frequency of its occurrence normalized by the length of the document,
the count normalized by the inverse document frequency of the word. In situations
where the document length varies widely, it may be important to normalize the counts.
For the datasets included in this study, most documents are short, and so normalization
is not called for. Further, in short documents words are unlikely to repeat, making
Boolean word indicators nearly as informative as counts. This yields a great savings in
training resources and in the search space of the induction algorithm. It may otherwise
try to discretize each feature optimally, searching over the number of bins and each
bin�s threshold. For this study, we selected Boolean indicators for each feature. This
choice also widens the choice of feature selection metrics that may be considered, e.g.
Odds Ratio deals with Boolean features, and was reported by Mladenic and Grobelnik
to perform well [5].

A final choice in the feature selection policy is whether to rule out all negatively
correlated features. Some argue that classifiers built from positive features only may
be more transferable to new situations where the background class varies and
retraining is not an option, but this benefit has not been validated. Additionally, some
classifiers work primarily with positive features, e.g. the Multinomial Naïve Bayes
model, which has been shown to be both better than the traditional Naïve Bayes
model, and considerably inferior to other induction methods for text classification
[e.g. 6]. Negative features are numerous, given the large class skew, and quite
valuable in practical experience. For example, when scanning a list of Web search
results for the author�s home page, a great number of hits on George Foreman the
boxer show up and can be ruled out strongly via the words �boxer� and �champion,�
of which the author is neither. The importance of negative features is empirically
confirmed in the evaluation.

2.1 Metrics Considered

Here we enumerate the feature selection metrics we evaluated. In the interest of
brevity, we omit the equations and mathematical justifications for the metrics that are
widely known (see [1,5,7]). Afterwards, we show a novel graphical analysis that
reveals the widely different decision curves they induce. Paired with an actual sample
of words, this yields intuition about their empirical behavior.

Notation: P(+) and P(-) represent the probability distribution of the positive and
negative classes; pos is the number of documents in the positive class. The variables tp
and fp represent the raw word occurrence counts in the positive and negative classes,
and tpr and fpr indicate the sample true-positive-rate, P(word|+), and false-positive-
rate, P(word|-). These summary statistics are appropriate for Boolean features. Note
that any metric that does not have symmetric values for negatively correlated features
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is made to value negative features equally well by inverting the value of the feature,
i.e. tpr� = 1 � tpr and fpr� = 1 � fpr, without reversing the classes.

Commonly Used Metrics:

Chi: Chi-Squared measures the divergence from the expected distribution assuming
the feature is actually independent of the class value.

IG: Information Gain measures the decrease in entropy when given the feature.
Yang and Pederson reported IG and Chi performed very well [7].

Odds: Odds Ratio reflects the probability ratio of the (positive) class given the
feature. In the study by Mladenic and Grobelnik [5] it yielded the best F-measure for
Multinomial Naïve Bayes, which works primarily from positive features.

DFreq: Document Frequency simply measures in how many documents the word
appears, and can be computed without class labels. It performed much better than
Mutual Information in the study by Yang and Pedersen, but was consistently
dominated by IG and Chi.

Additional Metrics:

Rand: Random ranks all features randomly and is used as a baseline for comparison.
Interestingly, it scored highest for precision in the study [5], although this was not
considered valuable because its recall was near zero, yielding the lowest F-measure
scores.

Acc: Accuracy estimates the expected accuracy of a simple classifier built from the
single feature, i.e. P( 1 for + class and 0 for � class) = P(1|+) P(+) + P(0|-)P(-) = tpr
P(+) + (1-fpr) P(-), which simplifies to the simple decision surface tp � fp. Note that it
takes the class skew into account. Since P(-) is large, fpr has a strong influence. When
the classes are highly skewed, however, better accuracy can sometimes be achieved
simply by always categorizing into the negative class.

Acc2: Accuracy2 is similar, but supposes the two classes were balanced in the
equation above, yielding the decision surface tpr � fpr. This removes the strong
preference for low fpr.

F1: F1-measure is the harmonic mean of the precision and recall: 2 recall precision /
(recall + precision), which simplifies to 2 tp / (pos + tp + fp). This metric is
motivated because in many studies the F-measure is the ultimate measure of
performance of the classifier. Note that it focuses on the positive class, and that
negative features, even if inverted, are devalued compared to positive features. This is
ultimately its downfall as a feature selection metric.

OddN: Odds Numerator is the numerator of Odds Ratio, i.e. tpr * (1-fpr).

PR: Probability Ratio is the probability of the word given the positive class divided
by the probability of the word given the negative class, i.e. tpr/fpr. It induces the same
decision surface as log(tpr/fpr), which was studied in [5]. Since it is not defined at
fpr=0, we explicitly establish a preference for features with higher tp counts along the
axis by substituting fpr�=1e-8.
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BNS: Bi-Normal Separation is a new feature selection metric
we defined as F-1(tpr) - F-1(fpr), where F-1 is the standard
Normal distribution�s inverse cumulative probability function.
For intuition, suppose the occurrence of a given
feature in each document is modeled by the event of a random Normal variable
exceeding a hypothetical threshold. The prevalence rate of the feature corresponds to
the area under the curve past the threshold. If the feature is more prevalent in the
positive class, then its threshold is further from the tail of the distribution than that of
the negative class. The BNS metric measures the separation between these thresholds.

An alternate view is motivated by ROC threshold analysis:
The metric measures the horizontal separation between two
standard Normal curves where their relative position is
uniquely prescribed by tpr and fpr, the area under the tail of
each curve (cf. a traditional hypothesis test where tpr and fpr
estimate the center of each curve). The BNS distance metric is therefore proportional
to the area under the ROC curve generated by the two overlapping Normal curves,
which is a robust method that has been used in the medical testing field for fitting
ROC curves to data in order to determine the efficacy of a treatment. Its justifications
in the medical literature are many and diverse, both theoretical and empirical [4].

Pow: Pow is (1-fpr)k � (1-tpr)k, where k is a parameter. It is theoretically unmotivated,
but is considered because it prefers frequent terms [7], aggressively avoids common fp
words, and can generate a variety of decision surfaces given parameter k, with higher
values corresponding with a stronger preference for positive words. This leaves the
problem of optimizing k. We chose k=5 after a pilot study.

2.2 Graphical Analysis

In order to gain a more intuitive grasp for the selection biases of these metrics, we
present in Figure 1 the actual decision curves they induce in ROC space�true
positives vs. false positives�when selecting exactly 100 words for distinguishing
abstracts of general computer science papers vs. those on probabilistic machine
learning techniques. The horizontal axis represents far more negative documents
(1750) than the vertical axis (50), for a skew of 1:35. The triangle below the diagonal
represents negatively correlated words, and the symmetrically inverted decision curves
are shown for each metric. We see that Odds Ratio and BNS treat the origin and upper
right corner equivalently, while IG and Chi progressively cut off the top right�and
symmetrically the bottom left, eliminating many negative features.
The dots represent the specific word features available in this problem instance�note
that there are many words sharing the same tp and fp counts near the origin, but the
black and white visualization does not indicate the many collisions. Very few words
have high frequency and they also tend to be non-predictive, i.e. they stay close to the
diagonal as they approach the upper right corner. This partly supports the practice of
eliminating the most frequent words (the bold dotted line depicts a cut-off threshold
that eliminates words present in >¼ of all documents), but note that it saves only 28
words out of 12,500.
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Fig. 1. Decision boundary curves for the feature selection metrics Probability Ratio, Odds 
Ratio, Bi-Normal Separation, Chi-Squared, and Information Gain. Each curve selects the "best" 
100 words, each according to its view, for discriminating abstracts of data mining papers from 
others. Dots represent actual words, and many of the 12K words overlap near the origin 

Since word frequencies tend toward a Zipf distribution, most of the potential word 
features appear near the origin. This implies that feature selection is most sensitive to 
the shape of the decision curve in these dense regions. Figure 2 shows a zoomed-in 
view where most of the words occur. The bold diagonal line near the origin shows a 
rare word cutoff of <3 occurrences, which eliminates 7333 words for this dataset. This 
represents substantial resource savings (-60%) and the elimination of fairly uncertain 
words that are unlikely to re-occur at a rate that would be useful for classification. 

3 Experimental Method 

Performance Measures: While several studies have sought solely to maximize the 
F-measure, there are common situations where precision is to be strongly preferred 
over recall, e.g. when the cost of false positives is high, such as mis-filtering a 
legitimate email as spam. Precision should also be the focus when delivering Web 
search results, where the user is likely to look at only the first page or two of results. 
Finally, there are situations where accuracy is the most appropriate measure, even 
when there is high class skew, e.g. equal misclassification costs. For these reasons, we 
analyze the performance for each of the four performance goals. 

There are two methods for averaging the F-measure over a collection of 2-class 
classification problems. One is the macro-averaged F-measure, which is the 
traditional arithmetic mean of the F-measure computed for each problem. Another is 
the micro-averaged F-measure, which is an average weighted by the class 
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distribution. The former gives equal weight to each problem, and the latter gives equal 
weight to each document classification (which is equivalent to overall accuracy for a 
1-of-m problem). Since highly skewed, small classes tend to be more difficult, the 
macro-averaged F-measure tends to be lower. We focus on macro-averaging because 
we are interested in average performance across different problems, without regard to 
the problem size of each. (To measure performance for a given problem instance, we 
use 4-fold stratified cross-validation, and take the average of 5 runs.) 

Chi ..... 

- IG 

' I 
I I I I .------------ ---=== 

0 i; 'too rare c oty rh 20 30 40 50 60 70 

false positives 

Fig. 2. Zoomed-in version of Figure 1, detailing where most words occu~ 

A data mining practitioner has a different goal in mind-to choose a feature 
selection technique that maximizes their chances of having the best metric for their 
single dataset of interest. Supposing the classification problems in this study are 
representative of problems encountered in practice, we compute for each metric, the 
percentage of problem instances for which it was optimal, or within a given error 
tolerance of the best method observed for that instance. 

Induction Algorithm: We performed a brief pilot study using a variety of classifiers, 
including Nalve Bayes, C4.5, logistic regression and SVM with a linear kernel (each 
using the WEKA open-source implementation with default parameters). The results 
confirmed previous findings that SVM is an outstanding method [6], and so the 
remainder of our presentation uses it alone. It is an interesting target for feature 
selection because no comparative text feature selection studies have yet considered it, 
and its use of features is entirely along the decision bounda~y between the positive and 
negative classes, unlike many traditional induction methods that model the density. 
We note that the traditional Nalve Bayes model fared better than C4.5 for these text 
problems, and that it was fairly sensitive to feature selection, having its performance 
peak at a much lower number of features selected. 
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Datasets: We were fortunate to obtain a large number of text classification problems
in preprocessed form made available by Han and Karypis, the details of which are laid
out in [3] and in the full version of this study [1]. These text classification problems
are drawn from the well known Reuters, OHSUMED and TREC datasets. In addition,
we included a dataset of abstracts of computer science papers gathered from
Cora.whizbang.com that were categorized into 36 classes, each containing 50 training
examples. Taken altogether, these represent 229 two-class text classification problem
instances, with a positive class size of 149 on average, and class skews averaging 1:31
(median 1:17, 5th percentile 1:3, 95th 1:97, max 1:462).

Feature Engineering and Selection: Each feature represents the Boolean occurrence
of a forced-lowercase word. Han [3] reports having applied a stopword list and
Porter�s suffix-stripping algorithm. From an inspection of word counts in the data, it
appears they also removed rare words that occurred <3 times in most datasets.
Stemming and stopwords were not applied to the Cora dataset, and we used the same
rare word threshold. We explicitly give equal importance for negatively correlated
word features by inverting tpr and fpr before computing the feature selection metric.
We varied the number of selected features in our experiments from 10 to 2000. Yang
and Pedersen evaluated up to 16,000 words, but the F-measure had already peaked
below 2000 for Chi-Squared and IG [7]. If the features are selected well, most of the
information should be contained in the initial features selected.

4 Empirical Results

Figure 3 shows the macro-averaged F-measure for each of the feature selection
metrics as we vary the number of features to select. The absolute values are not of
interest here, but rather the overall trends and the separation of the top performing
curves. We see that to maximize the F-measure on average, BNS performed best by a
wide margin, using 500 to 1000 features. This is a significant result in that BNS has
not been used for feature selection before, and the significance level, even in the
barely visible gap between BNS and IG at 100 features, is greater than 99.9%
confidence in a paired t-test of the 229*5 runs. Like the results of Yang and Pedersen
[7], performance begins to decline around 2000 features.

If for scalability reasons one is limited to 20-50 features, a better metric to use is IG
(or Acc2, which is simpler to program. Surprisingly, Acc2, which ignores class skew,
performs much better than Acc, which accounts for skew.). IG dominates the
performance of Chi at every size of feature set.

Accuracy: The results for accuracy are much the same, and their graphs must be
omitted for space (but see [1]). BNS again performed the best by a smaller, but still
>99.9% confident, margin. At 100 features and below, however, IG performed best,
with Acc2 being statistically indistinguishable at 20 features.

Precision-Recall Tradeoffs: As discussed, one�s goal in some situations may be
solely precision or recall, rather than F-measure. Figure 4 shows this tradeoff for each
metric, macro-averaged across all sample problems and evaluated at 1000 features
selected. We see that the success of BNS with regard to its high F-measure is because
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it obtains on average much higher recall than any other method. If, on the other hand, 
precision is the sole goal, IG is the best at any number of features (and Chi is 
statistically indistinguishable over 1000 features). 

4.1 Best Chances of Obtaining Maximum Performance 

The problem of choosing a feature selection metric is somewhat different when 
viewed from the perspective of a data mining practitioner whose task is to get the best 
performance on a given set of data, rather than averaging over a large number of 
datasets. Practitioners would like guidance as to which metric is most likely to yield 
the best performance for their single dataset at hand. Supposing the problem instance 
is drawn from a distribution similar to that in this study, we offer the following 
analysis: For each feature selection metric, we determine the percentage of the 229 
problem instances for which it matched the best performance found within a small 
tolerance (taking the maximum over any number of features). We repeat this 
separately for F-measure, precision, recall and accuracy. 

100 1000 

number of features selected 

Fig. 3. F-measure averaged over 229 problems for each metric & number of features 

0.50 0.55 0.60 0.65 0.70 
Recall 

Fig. 4. Precision-Recall tradeoffs at 1000 features from Fig. 3 
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Figure 5a shows these results for the goal of maximum F-measure as we vary the 
acceptable tolerance from 1% to 10%. As it increases, each metric stands a greater 
chance of obtaining close to the maximum, thus the trend. We see that BNS attained 
within 1% of best performance for 65% of the 229 problems, beating IG at just 40%. 
Figure 5b shows similar results for Accuracy, F-measure, Precision and Recall (but 
using 0.1% tolerance for accuracy, since large class skew compresses the range). Note 
that for precision, several metrics beat BNS, notably IG. This is seen more clearly in 
Figure 6a, which shows these results for varying tolerances. IG consistently dominates 
at higher tolerances, though the margin is less striking than Figure 5a. 

Residual Analysis: If one were willing to invest the extra effort to try two different 
metrics for one's dataset and select the one with better precision via cross-validation, 
the two leading metrics, IG and Chi, would seem a logical choice. However, it may be 
that wherever IG fails to attain the maximum, Chi also fails. To evaluate this, we 
repeated the procedure considering the maximum performance of pairs of feature 
selection metrics. Figure 6b shows these results for each metric paired with IG. 
Observe that, surprisingly, IG+Chi performed the worst of the pairs, validating the 
hypothesis that it has correlated failures. BNS, on the other hand, has uncorrelated 
failures and so, paired with IG, gives the best precision, and by a significant margin. 

1 2 3 4 5 6 7 8 9 1 0  

% tolerance 

Fig. 5. (a) Percentage of problems on which each metric scored within x% tolerance of the best 
F-measure of any metric. (b) Same, for F-measure, recall, and precision @I%, accuracy @0.1% 

100 1 0 0 ,  I I I I I I I I ,  

50 
1 2 3 4 5 6 7 8 9 1 0  1 2 3 4 5 6 7 8 9 1 0  

% tolerance % tolerance 

Fig. 6. (a) As Figure 5a, but for precision. (b) Same, but each metric is combined with IG 
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This paired analysis was repeated for F-measure, Recall and Accuracy, and
consistently revealed that BNS paired with IG sustained the best performance.

Due to space limitations, refer to [1] for the complete results, as well as related
experiments we performed. Below we briefly mention two of the ancillary findings:

Lesion Study on Negative Features: In the experiments above, we inverted negative
features so that they would be treated identically to positive features, creating the
symmetrical decision surfaces seen in Figure 1. In a related suite of experiments, we
suppressed negative features altogether to determine their importance. When deprived
of negative features, no feature selection metric was competitive with the previous
results for BNS, IG or Acc2. We conclude that negative features are essential to high
quality classification.

Sensitivity to the Rare Word Cutoff: In the existing datasets, words were removed
that occurred fewer than 3 times in the (training & testing) corpus. Some text
preparation practices use a much higher threshold to reduce the size of the data. We
performed a suite of experiments on the Cora dataset, varying this threshold up to 25,
which eliminates the majority of the potential features from which to select. The
macro-averaged F-measure, precision and accuracy (for BNS at 1000 features
selected) each decline steadily as the threshold increases; recall rises slightly up to a
theshold of 10, and then falls off. We conclude that to reduce space, one should set the
rare word cutoff low, and then perform aggressive feature selection using a metric.

5 Conclusion

This paper presented an extensive comparative study of feature selection metrics for
the text domain, focusing on support vector machines and 2-class problems, typically
with high class skew. It revealed an outstanding new feature selection metric, Bi-
Normal Separation, which is mathematically equivalent to the bi-normal assumption
that has been used in the medical field for fitting ROC curves [4]. Another
contribution of this paper is a novel evaluation methodology that considers the
common problem of trying to select one or two metrics that have the best chances of
obtaining the best performance for a given dataset. Somewhat surprisingly, selecting
the two best performing metrics is sub-optimal, because when the best metric fails, the
other may have correlated failures, as occurs for IG and Chi. Pairing IG with BNS is
consistently a better choice. The reader is referred to [1] for additional results.
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