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Abstract. This paper provides a M + 1-st price auction scheme using
homomorphic encryption and the mix and match technique; it offers se-
crecy of bidding price and public verifiability. Our scheme has low round
communication complexity: 1 round from each bidder to auctioneer in
bidding and log p rounds from auctioneer to trusted authority in opening
when prices are selected from p prefixed choices.

1 Introduction

The M + 1-st price auction is a type of sealed-bid auction for selling M units
of a single kind of goods, and is famous as the Vickrey auction in the case of
M = 1. In this auction, the M + 1-st (highest) price is the winning price, M
bidders who bid higher prices than the winning price are winning bidders, and
each winning bidder buys one unit of the goods at the M + 1-st winning price.
The M +1-st price auction is celebrated in economics or game theory for having
incentive compatibility, that is, the dominant strategy (optimal strategy) for each
bidder is to bid honestly his own true value [Vic61]. Because the true value is
assumed to be issued, keeping the bidding prices secret is more significant than
is true in the usual highest price auction, where most bidding prices are not the
bidder’s honest price.
This paper proposes anM+1-st price auction that enjoys auction secrecy and

public verifiability; it uses a homomorphic encryption and the mix and match
technique from [JJ00]. Our scheme has low round communication complexity: 1
round from each bidder to one auctioneer in bidding and log p rounds from the
auctioneer to trusted authority in opening, where p is the number of prices. The
usualM -th highest price auction scheme can be created with slight modification.
In contrast to the many papers on first price sealed-bid auctions, as shown in

Section 1.1, there are few papers onM+1-st price auctions. Harkavy, Tygar and
Kikuchi proposed a Vickrey auction, where the bidding price is represented by
polynomials that are shared by auctioneers [HTK98]. In their scheme, each bid-
der must communicate with plural auctioneers to bid. Naor, Pinkas and Sumner
realized sealed-bid auctions by combining Yao’s secure computation with obliv-
ious transfer [NPS99]. Their scheme can compute any circuit, and so can realize
various types of auctions, e.g., M + 1-st price auction. Though their scheme is
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versatile and efficient, the cut-and-choose technique is needed to achieve verifia-
bility, so the atomic protocol must be executed k times, where k is the security
parameter of cut-and-choose, and each bidder must communicate with not only
the auctioneer but also the auction issuer to bid. Kikuchi proposed an M +1-st
price auction, where the bidding price is represented by the degree of a polyno-
mial shared by auctioneers [Kik01]. In his scheme, a large number of auctioneers
is required (the number of auctioneers must be more than the number p of
prices), and each bidder must communicate with these auctioneers not only to
bid but also to determine the winning price and bidders.
In comparison to these schemes, our scheme has only one auctioneer and

much simpler communication: each bidder sends his bid to just the auctioneer
to bid and the auctioneer communicates with the trusted authority using log p
rounds to open the bids. Thus our scheme is easy to implement.
Section 2 explains the M +1-st price auction and requirements. In section 3,

we introduce our M + 1-st price auction and discuss its security and efficiency.
Section 4 concludes the paper.

1.1 Related Work

There are many papers on first price sealed-bid auctions, but few on M + 1-st
price auctions. Kikuchi, Harkavy and Tygar presented an anonymous sealed-bid
auction that uses an encrypted vector to represent bidding price [KHT98]. Kudo
used a time server to realize sealed-bid auctions [Kud98]. Cachin proposed a
sealed-bid auction using homomorphic encryption and an oblivious third party
[Cac99]; its complexity is a polynomial of the logarithm of the number of pos-
sible prices. Sakurai and Miyazaki proposed a sealed-bid auction in which a bid
is represented by the bidder’s undeniable signature of his bidding price [SM99].
Sako proposed a sealed-bid auction in which a bid is represented by an en-
crypted message with a public key that corresponds to his bidding price [Sak00].
Stubblebine and Syverson proposed an open-bid auction scheme that uses a
hash chain technique[SS99]. Kobayashi, Morita and Suzuki proposed a sealed-
bid auction that uses only hash chains [SKM00,KMSH01]. Omote and Miyaji
proposed a sealed-bid auction with log p efficiency, however, it leaks some in-
formation [OM00]. Baudron and Stern proposed a sealed-bid auction based on
circuit evaluation using homomorphic encryption [BS01]. Chida, Kobayashi and
Morita proposed a sealed-bid auction with log p round complexity [CKM01].

2 M + 1-st Price Auction

2.1 Auction Rules

The sealed-bid auction is a type of auction in which bids are kept secret during
the bidding phase. In the bidding phase, each bidder sends his sealed bidding
price. In the opening phase, the auctioneer opens the sealed bids and determines
the winning price and winning bidders according to a predetermined rule. In the
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case of an M + 1-st price auction, the M + 1-st (highest) price is the winning
price and bidders who bid higher than the winning price are winning bidders.
The M +1-st price auction is used for selling M units of a single kind of goods.
If M = 1, it is equivalent to the well-known Vickrey auction.

– Bidding : The auctioneer showsM units of a single kind of goods for auction,
e.g., M Swiss watches, and calls the bidders to bid their price for the item.
Each bidder then decides his price, seals his price, e.g., by envelope, and puts
his sealed price into the auctioneer’s ballot box.

– Opening : After all bidders have cast their sealed prices, the auctioneer opens
his ballot box. He reveals each sealed price, determines winning price, the
M + 1-st (highest) price, and finds the wining bidders who bid higher than
the winning price. Each winning bidder buys one unit of the goods at the
M + 1-st winning price. (If more than M bidders bid at the same highest
price, the auction fails.)

The M + 1-st price auction is celebrated in economics or game theory for
having incentive compatibility, that is, the dominant strategy (optimal strategy)
for each bidder is to bid honestly his own true value [Vic61]. The reason is that
for each bidder his bidding price does not affect the winning price (in contrast
with the usual highest price auction where higher bidding price yields higher
winning price). Accordingly, the bidder finds that it is optimal to bid as high as
he is willing to go.

2.2 Requirements

To achieve a fair auction, the M + 1-st price auction must satisfy two require-
ments: secrecy and public verifiability.
First, only the winning price and bidders should be revealed. If the auctioneer

can know the M -th bidding price (that is the lowest price of bidding prices
of M winning bidders) before opening, he can tell a collusive bidder to bid
at slightly cheaper price than the M -th bidding price, and can maximize the
winning price to gain more money. Even if a bidder (or an auctioneer) can know
the bidding prices of other bidders after opening, he can collect information
about the bidding strategy or finances of the other bidders, and can utilize it to
cheat at the next auction. Because of incentive compatibility, the bidding price
is the bidder’s honest price for the goods. It follows that information on bidding
prices has more significance than is true in the usual highest price auction, where
bidding price is not the bidder’s honest price.

– Secrecy : The information revealed is the M + 1-st winning price and the
wining bidders. All other bidding prices must be kept secret, even from the
auctioneer.

Due to the secrecy requirement, only the results of the auction can be known.
Accordingly, it is necessary to convince all bidders that anyone can verify the
correctness of the results of the auction.
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– Public verifiability : Anyone must be able to verify the correctness of the
auction.

3 Proposed M + 1-st Price Auction

3.1 Underlying Idea

We can construct our M + 1-st price auction by using probabilistic public key
encryption E(m) that provides indistinguishability, homomorphic property, and
randomizability. The homomorphic property means that E(a)E(b) = E(ab),
and the randomizability means that one can compute a randomized ciphertext
E′(m) only from the original ciphertext E(m), i.e. without knowing either the
decryption key or the plaintext. For instance, ElGamal encryption or Paillier
encryption [Pai99] have the properties desired, so our auction scheme can be
built based on these encryption schemes.
One important technical issue is how to represent and encrypt the bidding

prices so that the succeeding tasks are done easily. In this work, we assume that
the possible bidding prices consist of p prices labelled 1, . . . , p. The correspon-
dence between the label and real price is determined beforehand. A sealed bid,
say b, which represents price j (1 ≤ j ≤ p) is a vector of ciphertexts

b(j) = (E(z), ..., E(z)︸ ︷︷ ︸
j

, E(1), ..., E(1)︸ ︷︷ ︸
p−j

)

where E(1) and E(z) denote encryption of 1 and common public element z
(�= 1), respectively. Each encryption must be done independently so that they
are indistinguishable from each other. The encryption is done using a public key
generated and maintained by the authorities in the threshold manner.
Now, bidder Bi (1 ≤ i ≤ b) posts bi(pi) = (b1,i, . . . , bp,i) as his bidding price

pi. Consider the component-wise product of all bids;∏
i

bi(pi) = (
∏
i

b1,i, . . . ,
∏
i

bp,i).

Observe that, due to the homomorphic property, the j-th component of this
vector has the form

cj =
∏
i

bj,i = E(zn(j))

where n(j) = #{i | j ≤ pi} is the number of bidders whose bidding price is
equal to or higher than j. Notice that n(j) monotonically falls as j increases.
Let us assume that the auctioneers can test whether n(j) ≤ M holds or not
without gaining any further information such as n(j) itself. By repeating this
test, they can find the winning M + 1-st bidding price, say pwin, that satisfies
n(pwin) ≥ M + 1 and n(pwin + 1) ≤ M . The auctioneers then determine the
wining bidders by opening all bids at the price pwin + 1, i.e., decrypt bpwin+1,i
(1 ≤ i ≤ b) and find winning bidders Bi with D(bpwin+1,i) = z.
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To examine whether n(j) ≤M or not without revealing any further informa-
tion, we use the mix and match technique that allows us to determine whether
the decryption D(c) of ciphertext c belongs to a specified set S of some plain-
texts. By homomorphicity and randomizability of encryption E, we can apply
mix and match to accumulated bid cj .
To provide public verifiability, each bidder must prove that his bid b(j) is

valid, i.e. it suits the form described above, in zero-knowledge manner. This
seems, however, difficult to do efficiently. To overcome this difficulty, we develop
a technique that involves taking the “differential” and “integral” of a vector of
homomorphic ciphertexts. Each bidder Bi posts the “differential” ∆b(j) of b(j)

∆b(j) = (E(1), ..., E(1)︸ ︷︷ ︸
j−1

, E(z), E(1), ..., E(1)︸ ︷︷ ︸
p−j

)

that contains p−1 E(1)’s and one E(z) as j-th component (note that the “differ-
ential” of Heaviside’s step function is Dirac’s delta function). He then proves the
correctness of his bid (this can be done efficiently by using the homomorphicity).
To recover b(j), the auctioneers take the “integral” of ∆b(j)

b(j)p = ∆b(j)p, b(j)p−1 = ∆b(j)p−1b(j)p, . . . , b(j)1 = ∆b(j)1b(j)2

where b(j)i and ∆b(j)i denote the i-th components of vectors b(j) and ∆b(j)
respectively.

3.2 Building Blocks

We summarize the cryptographic tools used in our auction. We denote a cipher-
text of ElGamal encryption with public key g, y = gx by E(m) = (G = gr,M =
myr).
We use the proof of equality of logarithms [CP92] and the proof of OR of

statements [CDS94]. By using the proofs, we have the following verifiable encryp-
tion, decryption, powering, mix [Abe99], and mix and match [JJ00] processes.

– Verifiable encryption : We can prove that ciphertext E(m) = (G = gr,M =
myr) is an encryption ofm without revealing the secret random r by proving
logg G = logyM/m.

– Verifiable decryption : We can prove that plaintext m = M/Gx is the de-
cryption of E(m) = (G,M) without revealing the secret key x by proving
logGM/m = logg y.

– Verifiable powering : We can prove that ciphertext E′(mr) = (G′ = Gr,M ′ =
Mr) is a power of E(m) = (G,M) without revealing the secret random r by
proving logGG′ = logM M ′.

– Verifiable mix [Abe99] : The publicly verifiable mix randomizes and permutes
its input ciphertexts without revealing the randomization and the permuta-
tion to hide the correspondence between inputs and outputs; a proof of the
correctness of the mixing can be given.
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First, we construct a publicly verifiable 2-input mix that randomizes and per-
mutes two inputs in a publicly verifiable manner. We can prove that cipher-
text E′(m) = (G′ = Ggr,M ′ =Myr) is a randomization of E(m) = (G,M)
without revealing the secret random r by proving logg G′/G = logyM ′/M .
By combining this with the OR proof, we can prove that the 2-input mix ran-
domizes and swaps OR randomizes and does not swap two inputs. We then
can construct a publicly verifiable n-input mix by combining n log2 n−n+1
2-input mixes based on Waksman’s permutation network.

– Mix and match [JJ00] : By using the mix and match one can examine
whether the decryption D(c) of ciphertext c belongs to a specific set S =
{p1, p2, . . . , pn} of plaintexts.
First, we construct n ciphertexts ci = c/E(pi) (0 ≤ i ≤ n). We then take the
power crii of them using a secret random factor ri, mix them, and decrypt
the mixed n ciphertexts in a publicly verifiable manner. If there exists one
plaintext 1, we are convinced that c ∈ S. If there exists no plaintext 1, we
are convinced that c �∈ S.

3.3 Protocol

There are bidders B1, · · · , Bb, auctioneer A, and trusted authority T . Auctioneer
A plays the role of a bulletin board. Trusted authority T generates a secret key
and a public key in the preparation phase. In the opening phase, it receives
ciphertexts from auctioneer and performs mix and match and decrypts them.
If desired, the trusted authority can be built in a distributed way to make it
trustful in a threshold sense.

– Preparation : Trusted authority T generates a secret key and a public key
for ElGamal encryption E, and publishes the public key.
Auctioneer A publishes a price list P = {1, 2, · · · , p} for the auction and a
generator z of the cyclic group used for encryption.

– Bidding : In the bidding phase, each bidder Bi (1 ≤ i ≤ b) decides his bidding
price pi ∈ P and computes encrypted vector

∆bj,i =
{
E(z) if j = pi
E(1) if j �= pi

(1 ≤ j ≤ p)

and constructs the proofs of

“∆b1,i · · ·∆bp,i = E(z)” and “∆bj,i = E(1) OR ∆bj,i = E(z)”.

He then publishes the encrypted vector and the proofs.
– Opening : In the opening phase, auctioneer A publicly takes “integral”

bp,i = ∆bp,i, bp−1,i = ∆bp−1,ibp,i, . . . , b1,i = ∆b1,ib2,i (1 ≤ i ≤ b)
and “superimposition”

cj = bj,1 · · · bj,b (1 ≤ j ≤ p).
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From the homomorphic property, we have the encrypted vector

cj = E(zn(j)) (1 ≤ j ≤ p)
where n(j) = #{i | j ≤ pi}. By applying the mix and match technique
[JJ00] to cj , we can examine whether n(j) ≤M or not, i.e., we can examine
whether D(cj) ∈ {1, z, z2, . . . , zM} or not. To determine winning M + 1-st
bidding price, i.e., price pwin s.t. n(pwin) ≥M +1 and n(pwin+1) ≤M , we
perform a binary search using the examination by mix and match; auctioneer
A sends cj to trusted authority T for 
log p� rounds, and trusted authority
T performs mix and match.
To determine winning bidders, we decrypt bpwin+1,i (1 ≤ i ≤ b) and find
winning bidders Bi with D(bpwin+1,i) = z. Thus auctioneer A sends bpwin+1,i
(1 ≤ i ≤ b) to trusted authority T , and trusted authority T , who decrypts
them.
Finally, auctioneer A publishes the winning price and the winning bidders.

Notice that we can also create the usual M -th price auction with some slight
modification.

3.4 Security

We discuss the security of our auction. First, we consider the case where all bid-
ders are honest and all input bids are independently and privately made. Against
passively deviating auctioneers, our scheme leaks no information and achieves
auction secrecy, since the underlying encryption scheme is indistinguishable and
the building blocks, mix and mix and match, are secure. Against actively de-
viating auctioneers, all steps of our scheme except the bidding step are robust,
i.e., an adversary can not manipulate the messages without detection, since all
steps are publicly verifiable.
Now, we consider malicious bidders. In such a case, we are not sure whether

the bids are still independent or not. Indeed, in the bidding step, the malicious
bidder can bid at any price relative to the bidding price of other bidder. He can
construct a bidding vector of any price by shifting and randomizing the com-
ponents of another bidder’s bidding vector. Fortunately, we can avoid such an
attack by encrypting the whole bidding vector and its poof using non-malleable,
publicly verifiable, threshold encryption scheme, e.g., Shoup and Gennaro’s en-
cryption [SG98]. After all bidders publish their encrypted bids, the auctioneers
threshold decrypt them and check the proof, and continue the protocol. Since
each bid is encrypted in a non-malleable manner, the malicious bidder can not
create a dishonest bid by modifying the bid of another bidder.
Finally, notice that of course our protocol does not improve on the security

offered by the original M +1-st price auction. For instance, consider that M +1
malicious bidders can fault the protocol by bidding at the highest price p and
making M + 1 winning bidders. Note, however, that the original M + 1-st price
auction also fails. Accordingly, this attack is against the original concept of the
M + 1-st price auction, not our protocol. Thus preventing this kind of attack
exceeds the scope of this paper.
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3.5 Efficiency

We discuss communication and computational complexity of our auction and
compare it to the M + 1-st price auction described in [Kik01].

Table 1. The communication complexity of our scheme.

pattern round volume
Bidding (per one bidder) Bi → A 1 O(p)
Determining M + 1-st price A→ T �log p� O(M + 1)
Determining winning bidders A→ T 1 O(b)

Table 2. The computational complexity of our scheme.

computational complexity
Bidder (per one bidder) p encryptions and p+ 1 proofs
Auctioneer 2bp ciphertext multiplications
Mixing �log p� times M + 1 input mixings
Decrypting �log p�(M + 1) + b decryptions

Table 1 shows the communication pattern and the number of rounds and
volume per communication round in our scheme when there are b bidders bid
and there are p potential bidding prices. Since only 1 communication round from
a bidder to the auctioneer is required in the bidding phase, our scheme achieves
the “bid and go” concept. Only 
log p� rounds of communication are required in
the opening phase, since we can use binary searching by virtue of the mix and
match technique.
In [Kik01], the number of auctioneers must be more than the number p of

prices, and each bidder must communicate with these auctioneers not only to
bid but also to determine the winning price and bidders. In comparison with
these schemes, our scheme has only one auctioneer and the communications in
our scheme is quite simple.
Table 2 shows the computational complexity of our scheme. The complex-

ity of each bidder is proportional to p, so it might be heavy for a large price
range. The complexity of the auctioneer is proportional to bp, and this domi-
nates the cost of the whole protocol. The complexity of mixing is proportional to

log p�, and the complexity of one M + 1 input mix is proportional to M logM
[Abe99,AH01]. The complexity of decryption is proportional to b, so it might be
heavy for a large number of bidders.
In [Kik01], the number of auctioneers must exceed the number p of prices, and

the complexity of each auctioneer is O(bp). In our scheme, the factor dominating
the complexity is the complexity of the auctioneer ( O(bp) ) so our scheme is
more efficient than [Kik01].
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4 Conclusion

We have introduced an M +1-st price sealed-bid auction scheme that offers bid-
ding price secrecy and public verifiability; it uses homomorphic encryption. The
scheme has low round communication complexity: 1 round from each bidder to
auctioneer in bidding and log p rounds from auctioneer to decryptor in opening.
We can also construct an M + 1-st price auction by using Paillier encryp-

tion [Pai99] instead of ElGamal encryption. The complexity of our auction, and
almost all existing auction schemes, is proportional to the number p of prices.
Accordingly, one important goal is to make the complexity proportional to the
size log p of prices.
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