
A Combined Timing and Power Attack

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185-189, 53175 Bonn, Germany

Werner.Schindler@bsi.bund.de

Abstract. In [9]Walter and Thompson introduced a new side-channel
attack on the secret exponents of modular exponentiations which uses
techniques from timing attacks to exploit specific information gained by
a power attack. Walter and Thompson assumed that the attacked device
uses a particular table method combined with Montgomery’s algorithm.
In the present paper their attack is optimized and generalized. For 2-
bit tables this leads to a reduction of the necessary sample size to 20
per cent. The original attack cannot be applied if 4-bit tables are used, a
case of particular practical interest, whereas the optimized attack gets by
with 500 measurements. The optimized version can straightforwardly be
adapted to other table methods, other multiplication algorithms and in-
exact timings. Moreover, it is shown that the countermeasures proposed
in [9] do not prevent the optimized attack if unsuitable parameters are
chosen.

Keywords: Timing attack, power attack, Montgomery’s algorithm.

1 Introduction

In the past half-decade side-channel attacks have attracted enourmous attention
as they have turned out to constitute serious threats for cryptosystems, espe-
cially if the cryptographic operations run on smart cards. Various types of timing
attacks were introduced and optimized ([2], [1], [7], [8]), and a large number of
papers were devoted to power attacks ([4] etc.). However, these timing attacks
do not work if appropriate blinding techniques are used and various countermea-
sures against power attacks have been proposed. In [9] a new type of side-channel
attack was introduced which uses techniques typical for timing attacks to exploit
specific timing information stemming from a power attack (or, which made no
difference in this context, from a radiation attack (cf. [3], for example)). In par-
ticular, this combined attack may be successful even if the attacked device could
resist both, a “pure” timing attack (because blinding techniques are used) and a
“pure” power attack (because appropriate countermeasures are employed). We
optimize and, moreover, generalize this combined attack considerably.

As in [9], we attack the secret exponents of modular exponentiation (e.g.,
secret RSA exponents). We also assume that b-bit-tables (cf. [5], Alg. 14.82) and
Montgomery’s algorithm are used to carry out the modular exponentiations. (A
b-bit table stores the powers of the basis up to the exponent 2b− 1.) We assume

D. Naccache and P. Paillier (Eds.): PKC 2002, LNCS 2274, pp. 263–279, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

264 Werner Schindler

that the analysis of the power consumption enables the attacker to determine
the times needed by the particular Montgomery multiplications (e.g., due to
small peaks at the beginning of the modular multiplications), i.e. whether an
extra reduction is necessary. As in [9] the focus of this paper is not the power
measurement part but the guessing of the secret exponent.

The attacker uses a sample of modular exponentiations to guess the type of
the particular Montgomery multiplications (squaring or a multiplication with a
particular table entry) which in turn yields the secret exponent. In [9] for the
most favourable parameter values a sample size of “less than 1000” turned out
to be sufficient to recover a secret 384-bit exponent if a 2-bit table was used. For
these parameters our optimized attack gets by with 200 samples. The original
attack cannot be applied if 4-bit tables are used which is of particular practical
interest. In contrast, even for non-optimal parameters our attack gets by with
500 samples to recover a 512-bit exponent, or a 1024-bit RSA exponent if the
Chinese Remainder Theorem (CRT) is used, resp. Our approach can directly be
adapted to other table methods and other modular multiplication algorithms.
Even the times needed for the particular modular multiplications need not be
determined exactly. Finally, we show that the countermeasures proposed in [9]
do not prevent our attack if unsuitable parameters are used.

The paper is organized as follows: In Sect. 2 we recall the definition and
basic facts concerning Montgomery’s algorithm and table methods, and general
assumptions are formulated. In Sect. 3 we explain the central ideas of our at-
tack. The optimal decision strategy is derived in Sect. 7. The preliminary steps
are discussed in Sects. 4-6. Experimental results are presented and discussed in
Sect. 8. In Sect. 9 we compare the optimized attack with the original one. Sect.
10 considers generalizations of our attack under weaker assumptions. Then we
propose effective countermeasures and conclude with final remarks.

2 General Assumptions

We assume that the attacked cryptographic device uses a b-bit table to compute
yd(modM). Modular multiplications are calculated with Montgomery’s algo-
rithm (cf. [6]). We begin with some basic definitions.

Definition 1. As usually, for an integer b the term b(mod M) denotes the small-
est nonnegative integer which is congruent to b modulo M . Further, ZM :=
{0, 1, . . . ,M − 1}, and for x ∈ IR the term �x� denotes the smallest integer ≥ x.

The most elementary variant of Montgomery’s algorithm transfers the mod-
ular multiplications to a modulus R > M with gcd(R,M) = 1. Usually, R is a
power of 2 whose exponent perfectly fits to the device’s hardware architecture
(cf. Remark 1(i)). Further, R−1 ∈ ZM denotes the multiplicative inverse of R
in ZM , i.e. RR−1 ≡ 1 (mod M). The integer M∗ ∈ ZR satisfies the integer
equation RR−1−MM∗ = 1. For input a′, b′ ∈ ZM Montgomery’s multiplication
algorithm returns MM(a′, b′) := a′b′R−1(modM).

A Combined Timing and Power Attack 265

Montgomery’s algorithm
z:=a’b’
r:=(z(mod R)M∗) (mod R)
s:=(z+rM)/R
if s≥M then s:=s-M
return s

In particular, MM(aR(modM), bR(modM)) = abR(modM). The subtrac-
tion in line 4 is called extra reduction. For fixed values M and R the time for
a Montgomery multiplication can only attain two different values, namely c0 if
no extra reduction has to be carried out and c0 + cER else. Let (dw−1, . . . , d0)2
denote the binary representation of the secret exponent d where, as usually,
dw−1 denotes its most significant bit. Therefrom we derive �w/b� b-bit integers
D�w/b�−1, . . . , D0 with Dj :=

∑b−1
k=0 dbj+k2

k. Combining a b-bit table with Mont-
gomery’s algorithm gives Algorithm 1. First, the table entries u1, . . . , u2b−1 are
computed.

Algorithm 1
u_1:= MM(y, Rˆ2(mod M)) (= yR (modM))
for j:=2 to 2ˆ(b-1) do u_j:=MM(u_{j-1},u_1)
temp:=u_{D_{�w/b�-1}}
for i:=�w/b�-2 downto 0 do {
for j:=1 to b do temp:=MM(temp,temp)
if (D_i>0) temp:=MM(temp,u_{D_i})

return MM(temp,1) (=yd(modM))
The attacker analyzes the power consumption needed for the modular expo-

nentiations y(1)d(modM), . . . , y(N)
d(modM) for a given sample y(1), . . . , y(N).

The target of the attack is the secret exponent d. Next, we formulate the general
assumptions. Note that our attack does also work under considerably weaker
assumptions (cf. Sects. 10, 11). In particular, assumption e) may completely be
dropped.

General Assumptions
a) The attacked device uses Algorithm 1 to compute yd(modM).
b) By observing the power consumption the attacker is able to determine the
times needed by the particular Montgomery multiplications within Algorithm 1,
i.e. he can decide whether an extra reduction is carried out.
c) The attacker has no knowledge about the base y(k) nor about the table entries
u1(k), . . . , u2b−1(k) (1 ≤ k ≤ N).
d) Algorithm 1 uses the same secret exponent d for all modular exponentiations
y(1)

d(modM), . . . , y(N)
d(modM)

e) The attacker knows the ratios M/R and (R2(modM))/M .

Remark 1. (i) Many implementations use a more efficient multiprecision variant
of Montgomery’s algorithm than listed above (cf. [5], Algorithm 14.36). Whether
an extra reduction is necessary, however, merely depends on the parameters
a′, b′,M and R but not on the chosen variant of Montgomery’s algorithm or any

266 Werner Schindler

hardware characteristics ([8], Remark 1). (The latter aspects, of course, influence
the absolute values of the time constants c0 and cER.)
(ii) Re: GA a): Our attack can easily be adapted to other table methods (cf.
Sect. 10).
(iii) Re: GA c): This could be the consequence of a standard blinding technique
which prevents “ordinary” timing attacks, namely the pre-multiplication of the
base y with a register value va and a post-multiplication of (yva)d(mod M) with
vb = v−da (modM). Before the next exponentiation both register values are up-
dated via va := v2a(modM) and vb := v2b (modM) (cf. [2], Sect. 10). Note that
if the attacker knew the bases y(1), y(2), . . . a very small sample size would be
sufficient to recover the secret key. In fact, the attacker could successively guess
the b-bit blocks D�w/b�−1, D�w/b�−2, . . ., compare the corresponding extra reduc-
tion / not extra reduction patterns with the observed ones and exclude wrong
assumptions (cf. [9], Subsect. 3.3).
(iv) Re GA d): cf. Sect. 11.
(v) Re GA e): If the ratios M/R and (R2(modM))/M are unknown they can
be guessed efficiently (cf. Sect. 10).

3 The Central Ideas of Our Attack

In this section we sketch the fundamental ideas of our attack. Technical details
will be treated in the following sections.

After the table entries u1, . . . , u2b−1 have been computed (“initialization
phase”) the “computation phase” begins. The “type“ T (i) of the ith Mont-
gomery multiplication within the computation phase is determined by the secret
exponent d. We distinguish between squarings (i.e., T (i) = ‘S‘) and multipli-
cations of the temp value with table entry uj (i.e. T (i) = ‘Mj ‘). The attacker
guesses the sequence T (1), T (2), If all guessings are correct this in turn yields
d besides its most significant block. The most significant block can be guessed
in a similar manner or determined by exhaustive search.

The probability that a squaring requires an extra reduction equals M/3R
while it is linear in the ratio uj/M if T (i) = ‘Mj ‘ (cf. Sect. 4). If T (i) = ‘S‘
and if the sample size N is sufficiently large the ratio “# extra reductions in the
ith Montgomery multiplication (counted over the whole sample) / N” should
approximately equal M/3R. If T (i) = ‘Mj ‘ the probability for an extra reduc-
tion depends on the particular base y(k), or more precisely, on the (unknown!)
table entry uj(k). Our attack exploits the differences between these probabilities.
The “source” of our attack is the initialization phase as the attacker knows the
types of the 2b − 1 Montgomery multiplications. The observed extra reductions
within the initialization phase are indicators for the magnitude of the ratios
u1(k)/M, . . . , u2b−1(k)/M . To simplify further notation we introduce er-values
qj(k) and set q′(k) := (q′1(k), . . . , q

′
2b−1(k)) where q′j(k) := 1 if the computation of

the jth table entry, uj(k), requires an extra reduction for base y(k) and q′j(k) := 0
else. Conditional to the observed er-vector q′(k) the attacker first computes the
joint conditional probability density for the vector (u1(k)/M, . . . , u2b−1(k)/M) ∈

A Combined Timing and Power Attack 267

[0, 1)2
b−1, denoted by g(u1(k)/M, . . . , u2b−1(k)/M | q′(k)). Different er-vectors

q′(k) �= q′′(k) yield different conditional densities g(· | q′(k)) �= g(· | q′′(k)).
To illustrate the essential ideas we consider the most elementary variant

where the attacker estimates the types T (1), T (2), . . . separately and indepen-
dent from the others. (Since the extra reductions of subsequent Montgomery
multiplications are not independent it yet may be reasonable to estimate the
types of f consecutive Montgomery multiplications simultaneously, cf. Sects.
4,7,8.) Based on the observed er-values the attacker decides for that alterna-
tive θ ∈ Θ := {‘S‘, ‘M1‘, . . . , ‘M2b−1‘} which appears to be the most likely one
(to be precised later). In a first step the attacker uses the conditional densities
g(· | q′(k)) from above to compute the conditional probabilities pθ′(qi(k) | q′(k))
for all k ≤ N and each θ′ ∈ Θ. (The index θ′ means that the conditional proba-
bility holds under the hypothesis T (i) = θ′.) Analogously as above, qi(k) := 1 iff
the ith Montgomery multiplication in the computation phase requires an extra
reduction for base y(k).

The straight-forward approach, of course, was to decide for θ ∈ Θ if the prod-
uct

∏
k≤N pθ′(qi(k) | q′(k)) (= joint conditional probability for

(
qi(k) | q′(k)

)
k≤N

under the hypothesis T (i) = θ′) is maximal for θ′ = θ (maximum likelihood
estimator). Although already efficient the maximum likelihood decision strategy
can still be improved by considering two further criteria. First, not all admissible
hypotheses occur with the same probability. In fact, it is much more likely that a
randomly chosen Montgomery multiplication within the computation phase is a
squaring than a multiplication with any particular table entry. Loosely speaking,
compared with

∏
k≤N p(‘Mj ‘)(qi(k) | q′(k)) the term

∏
k≤N p(‘S‘)(qi(k) | q′(k)) gets

some “bonus”.
Unlike for the timing attacks in [2], [1], [7] and [8] a false estimator θ̃ does

not imply that the subsequent estimators are worthless. Indeed, the correction
of false estimators is possible after the types of all Montgomery multiplications
have been guessed. In fact, squarings occur in subsequences whose lengths are
multiples of b and each subsequence is followed by exactly one Montgomery
multiplication with a table entry. An (isolated) erroneous estimator ‘Mj ‘ in-
stead of ‘S‘ (or vice versa) can thus easily be detected and localized (“local
errors”) whereas the detection, localization and correction of an erroneous esti-
mator ‘Mj ‘ instead of ‘Mt‘ requires much greater efforts (“global errors”). The
optimal decision strategy takes the different kinds of possible estimation errors
into account. Loosely speaking, it “prefers” local errors instead of global errors.

4 Conditional Probabilities

Recall that the attacker wants to estimate the types of the Montgomery multi-
plications in the computation phase on basis of the observed er-values q′j(k) and
qi(k) within the initialization and computation phase, resp. In Sect. 4 we de-
rive explicit formulas for the conditional probabilities mentioned in the previous
section. We first introduce some further definitions.

268 Werner Schindler

Definition 2. A realization of a random variable X is a value assumed by X.
Further, T :={‘S‘, ‘M1‘, . . . , ‘M2b−1‘}. Analogously to q′(k) the term qi,...,i+f−1(k)
abbreviates (qi(k), . . . , qi+f−1(k)). For A ⊆ B the indicator function 1A:B → IR
is defined by 1A(x) := 1 if x ∈ A and := 0 else.

Lemma 1. (i) MM(a′b′)
M =

(
a′
M

b′
M

M
R + a′b′M∗ (mod R)

R

)
(mod 1).

(ii) In particular, an extra reduction is necessary iff MM(a′b′)
M < a′

M
b′
M

M
R .

(iii) Let the random variables V ′1 , . . . , V
′
2b−1 and V1, V2, . . . be independent and

equidistributed on [0, 1) while S′0, . . . , S
′
2b−1 and S0, S1, . . . are defined recur-

sively. In particular, S′0 is [0, 1)-valued and

S′i :=
{(
S′0(R

2 (modM)/M)(M/R) + V ′1
)
(mod 1) for i = 1(

S′i−1S
′
1M/R+ V ′i

)
(mod 1) for 2 ≤ i ≤ 2b − 1 (1)

Similarly, S0 := S′r where r temporarily stands for the most significant b-bit
block of d, i.e. r = D�w/b�−1. Further, for i ≥ 1

Si :=
{ (

S2i−1M/R+ Vi
)
(mod 1) if T (i) = ‘S‘(

Si−1S′jM/R+ Vi
)
(mod 1) if T (i) = ‘Mj ‘

(2)

Analogously, let the {0,1}-valued random variablesW ′1, . . . ,W
′
2b−1 andW1,W2, . . .

be defined by

W ′i :=
{
1S′1<S′0(R2 (mod M)/M)(M/R) for i = 1

1S′
i
<S′

i−1S
′
1M/R for 2 ≤ i ≤ 2b − 1 and

(3)

Wi :=

{
1Si<S2

i−1M/R if T (i) = ‘S‘
1Si<Si−1S′jM/R if T (i) = ‘Mj ‘

(4)

Then the random variables S′0, S
′
1, . . . , S

′
2b−1 as well as S0, S1, . . . are indepen-

dent. The random variables S′1, . . . , S
′
2b−1, S1, S2 . . . are independent and equidis-

tributed on [0, 1). Further, Wi and Wh are independent if |i− h| > 1.

Proof. Assertion (i) follows immediately from the definition of Montgomery’s
algorithm whereas (ii) is a consequence from (i) as the second summand of
its right-hand side lies in [0, 1). The assertions in (iii) concerning the random
variables S′i and Si follow from the fact that the random variables V ′1 , V

′
2 , . . . and

V1, V2, . . . are independent and equidistributed on [0, 1). The final assertion in
(iii) follows from the definition of the random variables Wi.

Clearly, whether MM(a′, b′) requires an extra reduction depends determinis-
tically on a′ and b′. On the other hand, even small deviations in a′ or b′ usu-
ally cause “vast” deviations in the second summand of the right-hand side in
Lemma 1(i). Recall that we neither know the base y nor the factors of any
Montgomery multiplication. Assume for the moment that a′ := R2(modM)
and y/M ∈ Ij (cf. the first line in Alg. 1) where Ij := [j2−v, (j + 1)2−v) de-
notes a small interval (e.g. v = 16) and further, that the random variable B is

A Combined Timing and Power Attack 269

equidistributed on the set (ZM/M) ∩ Ij. For realistic modulus size M the ran-
dom variable C := (a′BM∗)(modR)/R should fulfil Prob(C ∈ Ii) ≈ 2−v for all
i ≤ 2v − 1 while the sum a′B/R + C should similarly be distributed as if both
summands were independent (cf. the proof of Lemma A.3(iii) in [7]). In par-
ticular, the remainder of the sum (mod 1) then is “almost” equidistributed on
[0, 1). An extra reduction is necessary iff (a′B/R + C)(mod 1) < a′B/R. How-
ever, this is a formal analogon to the definitions of S′1 and W ′1. We can continue
this analogy and derive the following mathematical model.

Mathematical Model. We interpret the components of the er-vector q′(k) =
(q′1(k), . . . , q

′
2b−1(k)) as realizations of the random variables W ′1, . . . ,W

′
2b−1 with

S′0 = y(k)/M . Similarly, we interpret q1(k), q2(k), . . . as realizations ofW1,W2,

Consequently, we have to study the stochastic processes W ′1, . . . ,W
′
2b−1 and

W1,W2, As a first result, the probability for an extra reduction in the ith

Montgomery multiplication equals

Prob(Wi = 1) =
{ 1

3
M
R if T (i) = ‘S‘

uj
2M

M
R if T (i) = ‘Mj ‘.

(5)

Remark 2. The random variables W1,W2, . . . are not independent but Wi and
Wi+1 are negative correlated. We point out that the random variablesW1,W2, . . .
are similarly defined as in [8] (cf. Theorem 2) or [7] (cf. Lemma 6.3). However,
the requirements on the mathematical model are considerably higher than in [7]
or [8] as we there were primarily interested in the variance of W1 +W2 + · · ·
to apply a version of the central limit theorem for dependent random variables
which holds under relatively weak conditions. However, the experimental results
(cf. Sect. 8) confirm the suitability of our mathematical model retrospectively.
Lemma 2(ii) provides concrete formulas for the conditional probability densities
g(· | q′(k)) mentioned in the previous section.

Lemma 2. (i) For 1 ≤ i ≤ 2b−1 and w ∈ {0, 1} let C′(i;w) := {(s′0, . . . , s′2b−1)∈
[0, 1)2

b | w′i = w}. Then C′(i; 0) = [0, 1)2
b \ C′(i; 1). In particular, C′(1; 1) :=

{(s′0, . . . , s′2b−1) ∈ [0, 1)2
b | s′1 < s′0(R2(modM))/R} and further C′(i; 1) :=

{(s′0, . . . , s′2b−1) ∈ [0, 1)2
b | s′i < s′i−1s′1M/R} for i > 1.

(ii) Let the random variable S′0 be equidistributed on [0, 1). The distribution of
the random vector (S′1, . . . , S

′
2b−1) conditional to (W ′1 = w′1, . . . ,W

′
2b−1 = w′2b−1)

has the joint conditional probability density g(s′1, . . . , s
′
2b−1 | w′1, . . . , w′2b−1) :=

1∫
0
1⋂2b−1

i=1
C′(i;w′

i
)
(s′0, s

′
1, . . . , s

′
2b−1) ds

′
0∫

[0,1)2b
1⋂2b−1

i=1
C′(i;w′

i
)
(s′0, s

′
1, . . . , s

′
2b−1) ds

′
0ds
′
1 · · · ds′2b−1

(6)

on [0, 1)2
b−1.

(iii) For w ∈ {0, 1} and i ≤ m ≤ i+f−1 let Cf (i,m;w, t) := {(si−1, . . . , si+f−1)

270 Werner Schindler

∈ [0, 1)f+1 | wm = w, T (m) = t}. Then Cf (i,m; 0, t) =[0, 1)f+1 \Cf (i,m; 1, t). In
particular, Cf (i,m; 1, ‘S‘) = {(si−1, . . . , si+f−1) ∈ [0, 1)f+1 | sm < s2m−1M/R}
and Cf (i,m; 1, ‘Mj ‘) = {(si−1, . . . , si+f−1) ∈ [0, 1)f+1 | sm < sm−1s′jM/R}.
(iv)

Prob(Wi = wi, . . . ,Wi+f−1 = wi+f−1 |W ′1 = w′1, . . . ,W
′
2b−1 = w′2b−1) = (7)∫

[0,1)2b+f

g(s′1, . . . , s
′
2b−1 | w′1, . . . , w′2b−1) · 1⋂i+f−1

m=i
Cf (i,m;wi,T (m))

(si−1, . . . , si+f−1) ×

× ds′1 · · · ds′2b−1dsi−1 · · · dsi+f−1.
(v) If S0 = S′r then

Prob(W1 = 1 |W ′1 = w′1, . . . ,W
′
2b−1 = w′2b−1) = (8)∫

[0,1)2b−1

g(s′1, . . . , s
′
2b−1 | w′1, . . . , w′2b−1) · s′r2

M

R
ds′1 · · · ds′2b−1.

Proof. Assertions (i) and (iii) follow immediately from the definition of the ran-
dom variables W ′i and Wi. Clearly, {(s′0, . . . , s′2b−1) ∈ [0, 1)2

b |W ′1 = w′1, . . . ,

W ′2b−1 = w′2b−1} =
⋂2b−1
i=1 C′(i, w′i). Equation (6) follows from the fact that the

random variables S′0, . . . , S
′
2b−1 are independent and equidistributed on [0, 1)

and the definitions of conditional distributions and a marginal densities. As the
random variables Si−1, . . . , Si+f−1 are independent and equidistributed on [0, 1)
assertion (iv) follows from the identity {(si−1, . . . , si+f−1) ∈ [0, 1)f+1 | Wi =
wi, . . . ,Wi+f−1 = w′i+f−1} =

⋂i+f−1
m=i Cf (i,m;wm, T (m)). The first Montgomery

multiplication in the computation phase is a squaring. Hence Prob(W1 = 1) =
Prob(S′r

2
M/R+ V1 ≥ 1) = S′r

2
M/R which proves (v).

Example 1. Let b = 2, f = 1, W ′1 =W ′3 = 1 and W ′2 = 0. Then the denominator
of g(s1, s2, s3 | 1, 0, 1) equals∫ 1

0

∫ s′0
R2(mod M)

M
M
R

0

∫ 1

s′1
2 M
R

∫ s′1s
′
2
M
R

0
1 ds′3ds

′
2ds
′
1ds
′
0 . (9)

The nominator of g(s1, s2, s3 | 1, 0, 1) is a weighted indicator function which,
however, need not be evaluated explicitely. If T (i) = ‘M2‘ inserting this nomi-
nator in (7) gives

Prob(Wi = 1 |W ′1 = 1,W ′2 = 0,W ′3 = 1) = (10)∫ 1
0

∫ s′0 R2(mod M)
M

M
R

0

∫ 1
s′1

2 M
R

∫ s′1s′2 MR
0

∫ 1
0

∫ si−1s
′
2
M
R

0 1 dsidsi−1ds′3ds
′
2ds
′
1ds
′
0∫ 1

0

∫ s′0 R2(mod M)
M

M
R

0

∫ 1
s′1

2 M
R

∫ s′1s′2 MR
0 1 ds′3ds

′
2ds
′
1ds
′
0

The calculation of (10), or more generally, of (7) is elementary as it requires no
more than the evaluation of 1-dimensional integrals of polynomials. If T (i) = ‘S‘
then Prob(Wi = 1 |W ′1 = w′1,W

′
2 = w′2,W

′
3 = w′3) =M/3R for all w′1, w

′
2, w

′
3.

A Combined Timing and Power Attack 271

Theorem 1. Let θ = (ωi, . . . , ωi+f−1) ∈ T f . If T (i) = ωi, . . . , T (i + f − 1) =

ωi+f−1 then pθ
(
qi,...,i+f−1(k)1≤k≤N | q′(k)1≤k≤N

)
denotes the conditional prob-

ability for the er-vector qi,...,i+f−1(k)1≤k≤N if q′(k)1≤k≤N was observed in the
initialization phase. In particular,

pθ

(
qi,...,i+f−1(k)1≤k≤N |q′(k)1≤k≤N

)
≈

N∏
k=1

∫
[0,1)2b+f

g(s′1, . . . , s
′
2b−1 | q′1(k), . . . , q′2b−1(k)) ×

× 1⋂i+f−1

m=i
Cf (i,m;wi,ωm)

(si−1, . . . , si+f−1) ds′1 · · · ds′2b−1dsi−1 · · · dsi+f−1. (11)

If D�w/b�−1 = r then

Prob
(
(q1(k))1≤k≤N | q′(k)1≤k≤N

)
≈ (12)

N∏
k=1

∫
[0,1)2b−1

g(s′1, . . . , s
′
2b−1 | q′1(k), . . . , q′2b−1(k))s′r2

M

R
ds′1 · · · ds′2b−1.

Proof. According to our mathematical model we interpret the observed er-vectors
q′(k) and qi,...,i+f−1(k) as realizations of random variables W ′1(k), . . . ,W

′
2b−1(k)

and Wi(k), . . . ,Wi+f−1(k), resp., which correspond T (i) = ωi, . . . , T (i+ f − 1) =
ωi+f−1 (cf. Lemma 1(iii)). Theorem 1 is an immediate consequence of Lemma
2.

Remark 3. (i) In the proof of Theorem 1 we tacitly assumed that the values
y(1)/M, . . . , y(N)/M ∈ [0, 1) behave like realizations of independent and equidis-
tributed random variables on [0, 1). This assumption surely is justified if the
blinding technique described in Remark 1(iii) is applied or for RSA encryptions
with (pseudo-)random padding (with or without blinding, resp.), for example.
(ii) Consider RSA-based signatures with fixed padding (i.e., integrity and in-
formation bytes ‖ fixed padding bytes ‖ hash value) for which no blinding is
applied. Then the ratios y(1)/M, . . . , y(N)/M are almost constant (≈ c′). Con-
sequently, the conditional probability g(· | ·) from Lemma 2(ii) does not fit
to the changed situation. To obtain the needed analogon (which has to be
inserted in (11) and (12)) the integrals

∫ 1
0 . . . ds

′
0 in (6) have to be replaced

by integrals with respect to the Dirac measure with total mass on c′ ∈ [0, 1).
Equivalently, we may completely drop the integration with respect to s′0, set
s′0 := c′ in C′(i;w) and project C′(i;w) onto the components s′1, . . . , s

′
2b−1. If

the CRT is used M = pi for a particular prime factor of the RSA modu-
lus. The (unknown) ratio M/R can be guessed as described in Sect. 10 and
c′(R2(modM)/R)(M/R) ≈ (q′1(1) + · · · q′1(N))/N . If the attacked device does
not use the CRT the attack is trivial anyway as no blinding is applied (cf. Re-
mark 1(iii)).
(iii) If the blinding technique from Remark 1(iii) is applied or if (pseudo-)random
padding is used (cf. (i)) the attacker has to derive the needed timing information

272 Werner Schindler

from the power traces of single exponentiations (SPA). In the context of (ii) also
DPA may be applied.

5 A Priori Distribution

Assume that the attacker wants to estimate T (i), . . . , T (i + f − 1) simultane-
ously (f ≥ 1). Based on the observed er-vectors he decides for that alternative
θ ∈ Θ ⊆ T f which appears to be the most likely one. For a randomly chosen
position i, however, not all θ ∈ Θ occur with equal probability. Therefore, we
derive a probability distribution η on Θ which at least approximates the exact
probabilities. For simplicity, we assume f ≤ b+ 1.

Recall that squarings occur in subsequences whose lengths are multiples of b
and are interrupted by single multiplications with table values. Hence the set of
all admissible hypotheses Θ equals

Θ = θ0 ∪ {θm,j | 1 ≤ m ≤ f ; 1 ≤ j ≤ 2b − 1} for f ≤ b+ 1 (13)

where θ0 := (‘S‘, . . . , ‘S‘) means that T (i) = ‘S‘, . . . T (i + f − 1) = ‘S‘. Anal-
ogously, θm,j := (‘S‘, . . . , ‘S‘, ‘Mj ‘, ‘S‘, . . . , ‘S‘) means T (i +m − 1) = ‘Mj ‘ but
T (v) = ‘S‘ for v �= i+m− 1).

First, let us derive an approximator ηm,j of the (exact) probability that
(T (i), . . . , T (i + f − 1)) = θm,j for randomly chosen i. Without any knowledge
about d it is reasonable to assume η1,1 = · · · = ηf,2b−1. In average, 2−b(�w/b�−1)
many multiplications with the table entry uj are carried out within the compu-
tation phase and thus (almost) as many blocks of f consecutive Montgomery
multiplications of type θm,j exist. Further, in the computation phase about
(b + (2b − 1)2−b)(�w/b� − 1) Montgomery multiplications are carried out in
average. (The exact number depends on the concrete value of d.) Altogether, we
hence set

η1,1 := · · · = ηf,2b−1 :=
2−b (�w/b� − 1)

(b+ (2b − 1)2−b) (�w/b� − 1)
=

1
b2b + (2b − 1)

and

η0 := 1−
(
2b − 1

)
f

b2b + (2b − 1)
=
b2b − (f − 1)(2b − 1)

b2b + (2b − 1)
. (14)

6 Error Detection and Correction

After the attacker has guessed the types T (1), T (2), . . . of all Montgomery mul-
tiplications he therefrom determines an estimator d̃ for d. Then he computes
yd̃ (modM) for a reference base y to check whether d̃ = d. Either yd(modM)
itself is known or the exponentiation of yd̃ (modM) with the public exponent e
(RSA) gives y if d̃ is correct. (For RSA implementations using the CRT (cf. Sect.
10) M equals a particular prime factor pi of the modulus n = p1p2, and the at-
tack yields an estimator d̃ for d(mod (pi − 1)). If d̃ is correct, gcd(yd(mod n)−

A Combined Timing and Power Attack 273

yd̃(mod n), p1p2) = pi and gcd(y − yd̃e(mod n), p1p2) = pi.) If d̃ turns out to be
wrong the attacker has to correct false estimators.

It seems to be inconsequent to consider error detection and error correction
strategies before the decision strategy itself has been derived. However, it will
turn out to be useful to classify the estimation errors first.

Example 2. Let b = 4 and let the correct type sequence be given by
. . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . . whereas a),
b) and c) are possible estimation sequences
a) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘M11‘, ‘M12‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
b) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .
c) . . . , ‘S‘, ‘M3‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M14‘, ‘S‘, ‘S‘, ‘S‘, ‘S‘, ‘M1‘, ‘S‘, . . .

The subsequences a), b) and c) contain exactly one false estimator. The er-
ror in a) (‘M11‘) can easily be located and corrected as the number of squarings
between two multiplications with a table entry must be a multiple of b = 4. Sim-
ilarly, as in b) nine squarings occur between ‘M3‘ and ‘M1‘ the fifth Montgomery
multiplication cannot be a squaring. Its correction, however, is not as obvious
as for a). For f = 1, i.e. if the attacker has guessed the types of all Montgomery
multiplications separately, he first tries that alternative which appeared to be
most likely one after ‘S‘. (For f > 1 the situation is similar.) For sequence c) it
is even not obvious that an error (‘M14‘ instead of ‘M12‘) had occurred. It has to
be searched exhaustively over all positions with type estimator �= ‘S‘ (cf. Sect.
8). Of course, it is reasonable to start at those positions where the respective
decisions have been “close”.

Suggestively, we denote errors as in sequences a) and b) as local errors, or
more precisely, as local-a errors and local-b errors, resp. Errors as in sequence c)
are called global errors. The detection and localization of the local errors may be
interpreted as a decoding problem. Therefore, we derive a 0−1 sequence from the
estimated type values by replacing ‘S‘ by 0 and ‘Mj ‘ by 1. The code words are the
0−1 sequences of the same length with isolated ones and subsequences of zeroes
whose lengths are multiples of b. We decide for that code word with minimal
Hamming distance. If the local errors occur “isolated” (as in Example 2) they
can be localized separately, although their positions occasionally are not obvious.
If the attacker has guessed 3b+1 consecutive squarings, for example, then either
the (b+ 1)th or the (2b+ 1)th estimator is wrong. Usually, especially for b > 2,
also “neighboured” local errors can successfully be localized. Note, however,
that this need not always be the case. For example, let b = 2 and assume that
. . . , ‘S‘, ‘S‘, ‘S‘, ‘S‘, . . . has been estimated instead of the correct subsequence
. . . , ‘M3‘, ‘S‘, ‘S‘, ‘M2‘, Then both local errors will not be detected. Especially
for b = 2 the sample size N hence should be chosen sufficiently large (if possible!)
that neighboured local errors are unlikely. The correction of local-b errors and
the localization and correction of global errors has to be done simultaneously
over all local-b error positions and all positions with estimator �= ‘S‘, resp. The
optimal decision strategy which will be derived in the next section considers the

274 Werner Schindler

different error types. Roughly speaking, it clearly tries to avoid estimation errors
but “favours” local errors instead of global errors.

7 The Optimal Decision Strategy

In the previous sections we have done the necessary preliminary work. Now
we are going to put the pieces together to derive the optimal decision strategy
to guess the types of f consecutive Montgomery multiplications simultaneously
(1 ≤ f ≤ b+ 1). Therefore, we interpret the estimation of T (i), . . . , T (i+ f − 1)
as a statistical decision problem.

Roughly speaking, in a statistical decision problem the statistician observes
a sample ω ∈ Ω which he interprets as a realization of a random variable X with
unknown distribution pθ. On basis of this observation he tries to estimate the
parameter θ ∈ Θ where Θ denotes the parameter space, i.e. the set of all admissi-
ble hypotheses (= possible parameters). Formally, a statistical decision problem
is described by a 5-tupel (Θ,Ω, s,∆,A) where A denotes the set of all possi-
ble alternatives the statistician can decide for, and Ω denotes the observation
space. In our case the observations are the er-vectors (q′(k), qi...,i+f−1(k))1≤k≤N
and thus Ω = ({0, 1}2b−1+f)N . The parameter space Θ was defined in Sect.
5, and further A := Θ. Applying a deterministic decision strategy τ :Ω → A
means that the statistician decides for τ(ω) upon observation ω. The loss func-
tion s:Θ × A → [0,∞), quantifies the “damage” of a wrong decision, i.e. if the
statistician decides for θ′ ∈ A although θ ∈ Θ was the correct parameter. For
our attack potential errors must be “punished” by the loss function with regard
to the effort which is necessary for their detection, localization and correction
(cf. Sect. 8). Clearly, s(θ, θ) = 0 for all θ ∈ Θ (correct decisions).

Optimal Decision Strategy. Let the a priori distribution η be defined as in
Sect. 5. Let τopt((q′(k), qi,...,i+f−1(k))1≤k≤N) := θ∗ if the sum

∑
θ∈Θ

s(θ, θ′)pθ
(
(qi,...,i+f−1(k) | q′(k))1≤k≤N

)
η(θ) (15)

is minimal for θ′ = θ∗. Then τopt causes the minimal expected loss of all decision
strategies. That is, τopt is optimal among all decision strategies which estimate
T (i), . . . , T (i+ f − 1) simultaneously.

Proof. After reordering the sums the expected loss for a deterministic decision
strategy τ equals

∑
ω∈{0,1}2b−1+f

∑
θ∈Θ s(θ, τ(ω))pθ(ω)η(θ). The optimal deci-

sion strategy minimizes the inner sum for each ω := (qi,...,i+f−1(k), q′(k)). Fur-

ther, pθ
(
(qi,...,i+f−1(k), q′(k))1≤k≤N

)
= pθ

(
(qi,...,i+f−1(k) | q′(k))1≤k≤N

)
·

Prob
(
(q′(k))1≤k≤n

)
. The last term is independent of θ which proves the asser-

tion.

A Combined Timing and Power Attack 275

Remark 4. (i) The optimal decision strategy may not be unique. As Θ is finite
it suffices to consider deterministic decision strategies.
(ii) The differentiation of the error types, i.e. using different s(·, ·)-values for
local-a, local-b and global errors, does not reduce the total number of errors but
reduces the number of global errors at the expense of the local ones which are
easier to detect, to localize and to correct.
(iii) The types T (1), T (2), . . . determine d besides its most significant b-bit block.
The latter can be estimated using (12) (maximum likelihood estimator!).

8 Experimental Results

The er-values q′1(k), . . . , q
′
2b−1(k) and q1(k), q2(k), . . . depend on y(k), d,M,R and b

but not on implementation details (cf. Remark 1(i)). As GA b) further assumes
that the attacker can determine the er-values exactly (cf. Sect. 10) Alg. 1 was
emulated on a computer with pseudorandom moduli and pseudorandom bases
y(1), . . . , y(N). Program output was q′1(k), . . . , q

′
2b−1(k) and q1(k), q2(k), In the

first phase of the attack type estimators T̃ (1), T̃ (2), . . . for T (1), T (2), . . . were
derived using the optimal decision strategy from Sect. 7. For (b = 2, f = 1) we
used the loss function values s(‘S‘, ‘Mj ‘) = 1 (local-a error), s(‘S‘, ‘Mj ‘) = 1.5
(local-b error) and s(‘Mj ‘, ‘Mt‘) = 4.0 for j �= t (global error). For (b = 4, f = 1)
we defined s(‘S‘, ‘Mj ‘) := 1, s(‘S‘, ‘Mj ‘) := 1.5 and s(‘Mj ‘, ‘Mt‘) := 8.0. For
f > 1 we used the loss function sf ((ω1, . . . , ωf), (ω′1, . . . , ω

′
f)) :=

∑f
j=1 s(ωj , ω

′
j).

Table 1. Average number of errors per 100 type estimators

local-a errors local-b errors global errors

(b = 2, M/R ≈ 0.99, f=1, N = 250) 0.8 0.6 0.02
(b = 2, M/R ≈ 0.99, f=3, N = 200) 0.4 0.3 0.05
(b = 2, M/R ≈ 0.7, f=1, N = 375) 0.6 0.6 0.05
(b = 2, M/R ≈ 0.7, f=3, N = 300) 0.4 0.4 0.06
(b = 4, M/R ≈ 0.7, f=1, N = 500) 0.3 0.7 0.07
(b = 4, M/R ≈ 0.7, f=1, N = 550) 0.2 0.5 0.05

In the second phase the local errors were localized which in particular en-
abled the immediate correction of the local-a errors. As described in Sect. 6
we interpreted the localization of the local errors as a decoding problem where
we searched for the code word(s) with minimal Hamming distance. Clearly, the
type estimation and the error correction are easiest for b = 2 as there exist the
fewest alternatives. In contrast, the detection and localization of local errors is
most difficult for b = 2 as the subsequences of consecutive squarings are shorter
than for b > 2. For b = 4 and w = 512, for example, (e.g., 1024-bit RSA using
the CRT; cf. Sect. 10) about 632 Montgomery multiplications are carried out in

276 Werner Schindler

the computation phase. For (b = 4, M/R ≈ 0.7, f = 1, N = 500) the attacker
makes about 1.9 local-a, 4.4 local-b and 0.4 global errors in average. From the
attacker’s point of view the case M/R ≈ 0.99 is the most favourable one. If
M/R ≈ 0.5 twice as many samples are needed to ensure similar success rates.
For fixed parameters b,M/R, f and N the probabilities for wrong estimators do
not depend on w = �log2(d)�. The total number of errors (especially the global
ones) hence increases linear in w. In particular, the necessary minimal sample
size increases as log2(M) increases.

Finally, the local-b errors and possible global errors have to be corrected.
Therefore, the estimators which have been identified as local-b errors are re-
placed simultaneously by alternatives which had been ranked on positions 2 to
4 (behind the false estimator) in the type estimation phase, the most probable
combinations of candidates first. If no global errors have been made this ap-
proach leads to a quick success. In fact, simulations using the parameters from
Table 1 showed that for (f = 1, b = 2) and (f = 1, b = 4) the correct estimators
usually are on rank 2, resp. nearly always on rank 2 or 3. In particular, for b = 2
the local-b errors sometimes can be corrected in the first attempt if no global
errors have been made. If this procedure does not yield the searched exponent
d the attacker presumably has made a global error. He then just repeats the
steps from above, additionally changing one ‘Mj ‘-estimator (= candidate for a
global error), beginning at the position with the “closest” decision in the esti-
mation phase. Provided that the local errors have been localized correctly this
strategy can correct one global error. (The correction of more than one global
error clearly is also possible but costly.)

Using the parameters from Table 1 for w = 384 (as in [9]) and (b = 2, f = 1)
the attack was successful in about 90 per cent of the trials for both,M/R ≈ 0.99
and M/R ≈ 0.7. (To be precise, we did not actually carry out the final phase
of the attack. To save computation time we resigned on checking the particular
combinations of candidates by exponentiating a reference base y (cf. the first
paragraph of Sect. 6). In fact, an attack was viewed as successful if our program
could localize all local errors correctly and if at most one global error had been
made (cf. the previous paragraph).) For (b = 2, f = 3) the success rate was 92
per cent. For (b = 4, f = 1) (with N = 500, resp. N = 550) and w = 512 about
93 per cent of the trials, resp. more than 95 per cent of the trials were successful.
First simulations confirm that estimating f > 1 types simultaneously will also
reduce the necessary sample size for b = 4.

9 A Brief Comparison with the Original Attack

In [9] Walter and Thompson treat exclusively the case b = 2. Based on
∑N
k=1 qi(k)

they first decide whether T (i) = ‘S‘ or T (i) �= ‘S‘. To distinguish between ‘M1‘,
‘M2‘ and ‘M3‘ they use the subset A := {y(k) | q′2(k) = 1} ⊂ {y(1), . . . , y(N)}
and, additionally, a subset A0 ⊂ A. The number of extra reductions (counted
over A or A0, resp.) needed for the ith Montgomery multiplication is plotted
for all i for which T (i) �= ‘S‘ is assumed. In the most favourable case, i.e. for

A Combined Timing and Power Attack 277

M/R ≈ 0.99, for sample size N = 1000 these numbers fall into three more or
less separated subsets corresponding to ‘M1‘, ‘M2‘ and ‘M3‘, resp. (cf. [9], Figs.
2 and 3). (Implicitely, Walter and Thompson exploit that the random variables
W ′1,W

′
2 and W ′3 are negative correlated.) Walter and Thompson assume that

about 500 time measurements should also be sufficient (cf. [9], Sect. 4). Using
the techniques from [9], however, this prognosis seems to be rather optimistic.
First of all, there are no clear-cut decision rules but decisions are made by eye.
Even for N = 1000 some global errors occur (cf. [9], Sect. 4) and for N = 500 the
situation will be considerably less comfortable. Finally, as the random variables
W ′i andW

′
j are independent if |i−j| > 1 the original attack cannot be transferred

to b > 2.

10 Weakening the Assumptions and Generalizations

The general assumptions GA a)-e) are fulfilled, for example, if an RSA imple-
mentation uses the standard blinding technique against timing attacks described
in Remark 1(iii) but not the CRT. If the CRT is used, the ratios M/R and
(R2(modM))/M are yet unknown. (Then M equals a particular prime factor
pi. As already pointed out in Sect. 6 it is sufficient to determine d(mod (p1−1))
or d(mod (p2−1)).) Let H temporarily denote the total number of Montgomery
multiplications in the computation phase. As the least significant block D0 of d
is non-zero, T (1) = · · · = T (b) = T (H − b) = · · · = T (H − 1) = ‘S‘, and further,
the second Montgomery multiplication in the initialization phase is a squaring,
too. As the probability for an extra reduction in a squaring equals M/3R the
attacker uses these (2b + 1)N squarings to estimate the ratio M/R. Similarly,
from the first Montgomery multiplication in the initialization phase an estimator
for (R2(modM))/M can be derived. Compared with the scenario from the pre-
ceding sections, i.e. that M/R and (R2(modM))/M are known, the additional
estimation steps cause a lower success rate for equal sample size N . For example,
using the parameter values from Table 1 the success rate for (b = 2, M/R ≈ 0.7,
f = 1, N = 375), resp. for (b = 4, M/R ≈ 0.7, f = 1, N = 500), reduces from
90 to 83 per cent, resp. from 93 to 87 per cent.

Ga a) assumes that the attacked device uses a particular table method. How-
ever, our method can be transferred to other table methods (cf. [5], Sect. 14.83
and 14.85) in an obvious manner. Our attack can also be applied if another
modular multiplication algorithm is used than Montgomery’s (e.g. a simple shift-
and-add algorithm) provided that the (random) time needed for a modular mul-
tiplication of a fixed factor with a random cofactor depends significantly on the
fixed factor. Similarly as in Sect. 4 the attacker interprets the times needed
by the multiplications in the initialization and the computation phase as real-
izations of suitably defined random variables T

′
1, . . . , T

′
2b−1, resp., T1, T2, If

these random variables are continuously distributed (e.g. normally distributed,
cf. [2]) the conditional probabilities Prob(Wi = wi, . . . ,Wi+f−1 = wi+f−1 |
W ′1 = w′1, . . . ,W

′
2b−1 = w′2b−1) from Sect. 4 correspond to conditional probabil-

ity densities f(Ti = ti, . . . , Ti+f−1 = ti+f−1 | T ′1 = t′1, . . . , T
′
2b−1 = t′2b−1) where

278 Werner Schindler

t′1, · · · , t′2b−1 and t1, t2, . . . denote the times needed for the particular modular
multiplications. (Recall that for Montgomery’s algorithm qi �→ c+ qi cER defines
a bijection between the er-values and the running times.)

Moreover, the attacker may only be able to derive inexact values t̃′j :=
tj + t′Err;j and t̃i := ti + tErr;i from the power trace instead of tj or ti, resp.,
possibly a consequence of countermeasures against power attacks. The attacker
then has to study the random variables T ′1 + T

′
Err;1, . . . , T

′
2b−1 + T

′
Err;2b−1 and

T1 + TErr;1, T2 + TErr;2, . . . instead of T ′1, . . . , T
′
2b−1 and T1, T2, The general

approach yet remains unchanged.

11 Countermeasures

A standard blinding technique which prevents pure timing attacks is described
in Remark 1(iii). However, it neither prevents the optimized nor the original
attack from [9]. Walter and Thompson hence propose to apply another blinding
technique which was also discussed in [2]. Namely, the base y shall not be expo-
nentiated with the secret exponent d itself but with d′ := d+rφ(M) where r is a
non-negative pseudorandom integer which is renewed after each exponentiation
and φ(·) denotes the well-known Euler function. In fact, this violates assumption
GA d) but does not necessarily prevent our attack.

Assume, for example, that for efficiency reasons 0 ≤ r < 24. If d′ has w′

binary digits (�w′/b� − 1)b many squarings are carried out within the compu-
tation phase. The number #(d′) of multiplications with table entries and hence
the total number of Montgomery multiplications, however, depend on d′ rather
than on w′. If two exponentiations require a different number of Montgomery
multiplications the used exponents must be different. (Recall that the attacker
knows the total number of Montgomery multiplications within the computa-
tion phase.) Consequently, the attacker divides the sample y(1), . . . , y(N) into
subsamples with respect to the number of Montgomery multiplications. Then
he attacks each subsample separately as described in the previous sections. If
there is a subsample which belongs to a unique exponent d′ this attack will be
successful.

The number #(d′) may be viewed as a realization of a normally distributed
random variable X with mean (�w′/b� − 1)(1 − 2−b) and variance (�w′/b� −
1)(1 − 2−b)2−b. If 513 ≤ w′ < 516 (e.g. for 1024-bit RSA using the CRT and
d′ > 2512) and b = 4, for example, we have Prob(X = 120) ≈ 0.145, Prob(X =
119) = Prob(X = 121) ≈ 0.135, Prob(X = 118) = Prob(X = 122) ≈ 0.114,
Prob(X = 117) = Prob(X = 123) ≈ 0.079, Prob(X = 116) = Prob(X = 124) ≈
0.051 etc. Hence it is likely that at least one subsample belongs to a unique
exponent d′. (In particular, note that for d′ = d not 512 but only 508 squarings
are necessary.) Although the efficiency of our attack is reduced by factor 16 it is
still practically feasible. To prevent the attack the range of the pseudorandom
numbers should be chosen sufficiently large, e.g. r ≤ 216. Additionally, a lower
bound for r may be chosen such that the number of squarings in the computation
phase is constant for all admissible r’s.

A Combined Timing and Power Attack 279

12 Final Remarks

Using suitable stochastical methods the efficieny of the original attack intro-
duced by Walter and Thompson ([9]) was improved by factor 5 for 2-bit tables.
Unlike the original attack the optimized attack works and is also practically
feasible for b > 2. It can be adapted to other table methods, other modular mul-
tiplication algorithms and inexact timings in a straightforward manner. Finally,
for unsuitable parameters the countermeasures proposed in [9] were shown to be
insufficient.

References

1. J.-F. Dhem, F. Koeune, P.-A. Leroux, P.-A. Mestré, J.-J. Quisquater, J.-L.
Willems: A Practical Implementation of the Timing Attack. In: J.-J. Quisquater
and B. Schneier (eds.): Smart Card – Research and Applications. Lecture Notes in
Computer Science 1820, Berlin, Springer (2000), 175–191.

2. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Advances in Cryptology – Crypto ’96, Lecture
Notes in Computer Science 1109. Springer, Heidelberg (1996), 104–113.

3. K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic Analysis: Concrete Results.
In: Ç.K. Koç, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2001, Springer, Lecture Notes in Computer Science 2162, Berlin
(2001), 251–261.

4. P. Kocher, J. Jaffe, B. Jub: Differential Power Analysis. In: M. Wiener (ed.): Ad-
vances in Cryptology – Crypto ’99. Lecture Notes in Computer Science 1666,
Berlin, Springer (1999), 388–397.

5. A.J. Menezes, P.C. van Oorschot, S.C. Vanstone: Handbook of Applied Cryptog-
raphy, Boca Raton, CRC Press (1997).

6. P.L. Montgomery: Modular Multiplication without Trial Division, Math. Comp.
44, no. 170, 519–521 (April 1985).

7. W. Schindler: Optimized Timing Attacks against Public Key Cryptosystems. To
appear in Statistics & Decisions.

8. W. Schindler: A Timing Attack against RSA with the Chinese Remainder Theo-
rem. In: Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, Springer, Lecture Notes in Computer Science 1965, Berlin
(2000), 110–125.

9. C.D. Walter, S. Thompson: Distinguishing Exponent Digits by Observing Mod-
ular Subtractions. In: D. Naccache (ed.): Topics in Cryptology – CT-RSA 2001,
Springer, Lecture Notes in Computer Science 2020, Berlin (2000), 192–207.

	A Combined Timing and Power Attack
	1 Introduction
	2 General Assumptions
	3 The Central Ideas of Our Attack
	4 Conditional Probabilities
	5 A Priori Distribution
	6 Error Detection and Correction
	7 The Optimal Decision Strategy
	8 Experimental Results
	9 A Brief Comparison with the Original Attack
	10 Weakening the Assumptions and Generalizations
	11 Countermeasures
	12 Final Remarks
	References

