
Linear Code Implies Public-Key Traitor Tracing

Kaoru Kurosawa1 and Takuya Yoshida2

1 Department of Computer and Information Sciences,
Ibaraki University, Japan

kurosawa@cis.ibaraki.ac.jp
2 Department of Communications and Integrated Systems,

Tokyo Institute of Technology, Japan
takuya@crypt.ss.titech.ac.jp

Abstract. In this paper, we first show that three public-key (k, n)-
traceability schemes can be derived from an [n, u, d]-linear code C such
that d ≥ 2k+1. The previous schemes are obtained as special cases. This
observation gives a more freedom and a new insight to this field. For ex-
ample, we show that Boneh-Franklin scheme is equivalent to a slight
modification of the corrected Kurosawa-Desmedt scheme. This means
that BF scheme is redundant or overdesigned because the modified KD
scheme is much simpler. It is also shown that the corrected KD scheme
is the best among them.

1 Introduction

In such applications as pay TV, CD-ROM distribution and online databases,
data should only be available to authorized users. To prevent unauthorized users
from accessing data, the data supplier will encrypt data and provide only the
authorized users with personal keys to decrypt it. However, some authorized
users (traitors) may create a pirate decoder.

A (k, n)-traceability scheme is a scheme in which at least one traitor is de-
tected from a confiscated pirate decoder if there are at most k traitors among n
authorized users. Chor, Fiat and Naor [4] introduced the first (k, n)-traceability
scheme. Their scheme is, however, non-constructive. Stinson and Wei showed
some explicit constructions by using combinatorial designs [10]. In the above
two schemes, a private-key encryption scheme is used to encrypt a session key.

On the other hand, the first public-key (k, n)-traceability scheme was shown
by Kurosawa and Desmedt [6, Sec.5]. That is, anyone can broadcast encrypted
data to authorized users. Although Shamir’s (k + 1, n)-threshold secret sharing
scheme was used in their original scheme, we should use Shamir’s (2k − 1, n)-
threshold secret sharing scheme to avoid a linear attack given by [10]. We call
such a corrected scheme the corrected KD scheme.

After that, Boneh andFranklin presented another public-key (k,n)-traceability
scheme [2]. Only the above two schemes are known as public-key (k,n)-traceability
schemes currently.

In this paper, we first show that three public-key (k, n)-traceability schemes
can be derived from an [n, u, d]-linear code C such that d ≥ 2k + 1. We call

D. Naccache and P. Paillier (Eds.): PKC 2002, LNCS 2274, pp. 172–187, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Linear Code Implies Public-Key Traitor Tracing 173

them linear coded KD scheme (LC-KD scheme), linear coded BF scheme (LC-
BF scheme) and linear coded KD’ scheme (LC-KD’ scheme), respectively. The
previous schemes are obtained as special cases. This observation gives a more
freedom and a new insight to the study of this field.

For example, we show that Boneh-Franklin scheme (BF scheme) is equivalent
to a slight modification of the corrected KD scheme. (We call it modified KD
scheme. It will be given in Sec.5.3.) This means that BF scheme is redundant or
overdesigned because modified KD scheme is much simpler. Indeed, BF scheme
must use a public code matrix Γ and 2k additional secret random numbers
β1, · · · , β2k which modified KD scheme does not require. More generally, we
prove the equivalence between LC-BF scheme and LC-KD’ scheme.

We also show that LC-KD scheme is better than LC-KD’ scheme from a view
point of key generation. This implies that the corrected KD scheme is better than
modified KD scheme from a view point of key generation. Since modified KD
scheme is better than BF scheme as shown above, we see that the corrected KD
scheme is the best among them.

We finally prove the secrecy and the black box traceability of LC-KD scheme
under the decision Deffie-Hellman assumption. Those of LC-KD’ scheme and
LC-BF scheme are proved similarly. The tracing algorithm of BF scheme for
any pirate decoder is obtained as a special case. (It is not written clearly in the
original paper [2]. It is not written at all in their latest version [3].)

Generalized Scheme Original Scheme
LC-KD scheme corrected KD scheme
LC-KD’ scheme modified KD scheme
LC-BF scheme BF scheme

2 Preliminaries

2.1 Notation

An [n, u, d]-linear code is a linear code of length n, dimension u and the minimum
Hamming distance d.

Let q > n be a prime. Let Gq be a group of prime order q. Let g ∈ Gq be a
generator of Gq. For example, Gq is a subgroup of Z∗p of order q, where q | p−1.
Alternatively, we can use an elliptic curve over a finite field.
· denotes the inner product of two vectors over GF (q).

2.2 DDH Assumption

The decision Diffie-Hellman assumption (DDH) assumption says that no poly-
nomial statistical test can distinguish with non negligible advantage between the
two distributions D = (g, gr, y, yr) and R = (g, gr, y, v), where g, y, v are chosen
at random from Gq and r is chosen at random in Zq.

174 Kaoru Kurosawa and Takuya Yoshida

2.3 Model of Traitor Tracing

In the model of traceability schemes, there are a data supplier T , a set of n
authorized users and a pirate user. Some authorized users are malicious and
they are called traitors. The traitors create a pirate key ep. The pirate key is
used in a pirate decoder.

Suppose that there are at most k traitors. Then a (k, n)-traceability scheme
is a scheme such that at least one traitor is detected from a confiscated pirate
decoder. A (k, n)-traceability scheme has four components.

Key Generation: The key generation algorithm K is a probabilistic polynomial
time algorithm that outputs (eT , e1, · · · , en) on input 1l, where l is the security
parameter. eT is the broadcast encryption key of the data supplier T and ei is
the personal decryption key of authorized user i.

T runs K and sends ei to authorized user i secretly.

Encryption: The encryption algorithm E is a probabilistic polynomial time
algorithm that takes an encryption key eT and a session key s to return a header
h; we write

h
R← eT (s).

The data m is encrypted by using a secure symmetric encryption function E
with the session key s as Es(m). Finally, T broadcasts (h,Es(m)).

Decryption: Then decryption algorithm D is a deterministic algorithm that
takes the personal decryption key ei and a header h to return the session key s;
we write

s← ei(h).

Each authorized user i can recover s from h by using his personal key ei and
then decrypt Es(m) to obtain the data m.

Tracing: T can detect at least one traitor from a pirate key ep by using a tracing
algorithm. We have black box traceability if the pirate decoder can only be used
as an oracle. That is, the tracing algorithm cannot examine the pirate key ep.
For black box tracing, we shall assume that the pirate decoder is resettable to
its initial state, as in [5].

In what follows, a session key s is chosen from Gq.

3 Previous Public-Key (k, n) Traceability Schemes

3.1 Corrected Kurosawa-Desmedt Scheme

Key Generation: The data supplier T chooses a uniformly random polynomial
f(x) = a0+a1x+ · · ·+a2k−1x2k−1 over GF (q). Then T gives to each authorized
user i the personal decryption key ei = f(i), where i = 1, 2, . . . , n. He next
publishes g and y0 = ga0 , y1 = ga1 , . . . , y2k−1 = ga2k−1 as the public key.

Linear Code Implies Public-Key Traitor Tracing 175

Encryption: For a session key s ∈ Gq, T computes a header as
h = (gr, syr0, y

r
1, . . . , y

r
2k−1), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows by using f(i).

s = U/(gr)f(i), where U = syr0

2k−1∏
j=1

(yrj)
ij .

3.2 Boneh-Franklin Scheme

BF scheme makes use of a public code matrix Γ defined as follows. Consider the
following (n− 2k)× n matrix G:

G =

1 1 1 · · · 1
1 2 3 · · · n
12 22 32 · · · n2

...
...

...
. . .

...
1n−2k−1 2n−2k−1 3n−2k−1 · · · nn−2k−1

(mod q)

Let w1, . . . , w2k be a basis of the linear space of vectors satisfying

Gx = 0 mod q. (1)

Viewing these 2k vectors as the columns of a matrix, we obtain an n×2k matrix
Γ :

Γ =

 | | | |
w1 w2 w3 · · · w2k
| | | |

Define the code as the set of rows of the matrix Γ . Hence, it consists of n
codewords each of length 2k.

Key Generation: For i = 1, . . . , 2k, the data supplier chooses a random ai ∈ Zq
and compute yi = gai . Then T computes z =

∏2k
i=1 y

βi
i for random β1, . . . , β2k ∈

Zq and publishes z, y1, . . . , y2k as the public key. The personal decryption key of
user i is computed as

θi = (
2k∑
j=1

ajβj)/(
2k∑
j=1

ajγj) (mod q),

where γ(i) = (γ1, . . . , γ2k) ∈ Γ is the i’th codeword of Γ .

Encryption: For a session key s ∈ Gq, T computes a header as
h = (szr, yr1, . . . , y

r
2k), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows by using θi.

s = szr/Uθi , where U =
2k∏
j=1

(yrj)
γj .

176 Kaoru Kurosawa and Takuya Yoshida

Remark 3.1. In the key generation, a1, · · · , a2k must be chosen so that∑2k
j=1 ajγj �= 0 (mod q) for i = 1, · · · , n. This was overlooked in [2].

4 Linear Code Implies Public-Key Traitor Tracing

This section shows that if there exists an [n, u, d]-linear code C such that d ≥
2k + 1, then three public-key (k, n)-traceability schemes are derived. We call
them linear coded KD scheme (LC-KD scheme), linear coded BF scheme (LC-
BF scheme) and linear coded KD’ scheme (LC-KD’ scheme), respectively. The
corrected KD scheme and the original BF scheme are obtained as special cases.

LetH be a parity check matrix of an [n, u, d]-linear code overGF (q) such that
d ≥ 2k + 1. Any 2k columns of H are linearly independent because d ≥ 2k + 1.
This property plays a central role in the proof of traceability of our schemes.

We assume that H is publicly known. Note that H is an (n− u)× n matrix
over GF (q). Let the ith column of H be bi = (b1,i, b2,i, · · · , bn−u,i)T .

4.1 LC-KD Scheme

Assume that the first row of H is (1, · · · , 1).
Key Generation: The data supplier T chooses (a1, · · · , an−u) uniformly at
random Let (e1, · · · , en) = (a1, · · · , an−u)H. T gives ei to authorized user i as
the personal decryption key for i = 1, 2, . . . , n. He next publishes y1 = ga1 , y2 =
ga2 , . . . , yn−u = gan−u as the public key.

Encryption: For a session key s ∈ Gq, T computes a header as
h = (gr, syr1, y

r
2, . . . , y

r
n−u), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows by using ei.

s = U/(gr)ei , where U = syr1

n−u∏
j=2

(yrj)
ij . (2)

The tracing algorithm will be given in Sec.7.

4.2 LC-BF Scheme

Key Generation: The data supplier T chooses (a1, · · · , an−u) uniformly at
random in such a way that (a1, · · · , an−u) ·bi �= 0 for i = 1, · · · , n. The personal
decryption key of user i is computed as

θi = (a1, . . . , an−u) · (β1, . . . , βn−u)/(a1, . . . , an−u) · bi. (3)

Next let yi = gai . Then T computes z =
∏n−u
i=1 y

βi
i for random β1, . . . , βn−u ∈ Zq

and publishes z, y1, . . . , yn−u as the public key.

Linear Code Implies Public-Key Traitor Tracing 177

Encryption: For a session key s ∈ Gq, T computes a header as
h = (szr, yr1, . . . , y

r
n−u), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows by using θi.

s = szr/Uθi , where U =
n−u∏
j=1

(yrj)
bj,i . (4)

4.3 LC-KD’ Scheme

This is a slight modification of LC-KD scheme.

Key Generation: The data supplier T chooses (a1, · · · , an−u) uniformly at ran-
dom in such a way that (a1, · · · , an−u) ·bi �= 0 for i = 1, · · · , n. Let (e1, · · · , en) =
(a1, · · · , an−u)H. (Note that ei �= 0 for i = 1, · · · , n.) T gives ei to authorized
user i as the personal decryption key for i = 1, 2, . . . , n. He next publishes
y1 = ga1 , y2 = ga2 , . . . , yn−u = gan−u as the public key.

Encryption: For a session key s ∈ Gq, T computes a header as
h = (sgr, yr1, y

r
2, . . . , y

r
n−u), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows.

s = sgr/U1/ei , where U =
n−u∏
j=1

(yrj)
bj,i . (5)

Remark 4.1. In h, s is multiplied to gr in LC-KD’ scheme while it is multiplied
to yr1 in LC-KD scheme.

5 Relationship with the Original Schemes

5.1 Corrected KD Scheme

Let C be an [n, n − 2k, d]-Reed Solomon code over GF (q), where d = 2k + 1.
Then it is clear that the corrected KD scheme is obtained from LC-KD scheme
as a special case.

5.2 BF Scheme

In BF scheme, note that G (shown in Sec.3.2) is a generator matrix of an [n, n−
2k, d] Reed-Solomon code over GF (q). Further we see that G·Γ = O from eq.(1).
Hence ΓT is a parity check matrix of the Reed-Solomon code C. This implies
that the original BF scheme is obtained from LC-BF scheme as a special case.

178 Kaoru Kurosawa and Takuya Yoshida

5.3 Modified KD Scheme

In LC-KD’ scheme, let C be an [n, n − 2k, d]-Reed Solomon code over GF (q),
where d = 2k + 1. Then the following scheme is obtained. We call it modified
KD scheme because it is a slight modification of the corrected KD scheme.

Key Generation: The data supplier T chooses a uniformly random polynomial
f(x) = a0+a1x+· · ·+a2k−1x2k−1 over GF (q) such that f(i) �= 0 for i = 1, · · · , n.
Then T gives f(i) to authorized user i as the personal decryption key for i =
1, 2, . . . , n. He next publishes y0 = ga0 , y1 = ga1 , . . . , y2k−1 = ga2k−1 .

Encryption: For a session key s ∈ Gq, T computes a header as
h = (sgr, yr0, y

r
1, . . . , y

r
2k−1), where r is a random number. T broadcasts h.

Decryption: Each user i computes s from h as follows by using f(i).

s = sgr/U1/f(i), where U =
2k−1∏
j=0

(yrj)
ij . (6)

Remark 5.1. In h, s is multiplied to gr in modified KD scheme while it is mul-
tiplied to yr1 in the corrected KD scheme.

6 Equivalence

6.1 LC-BF Scheme = LC-KD’ Scheme

LC-BF scheme is more complicated than LC-KD’ scheme because it uses secret
random numbers β1, · · · , βn−u which LC-KD’ scheme does not use. Nevertheless,
we show that they are equivalent. This means that LC-BF scheme is redundant
or overdesigned.

Public-key equivalence: In the key generation of LC-BF scheme, let

c =
n−u∑
i=1

aiβi.

For any fixed (a1, · · · , an−u), it is easy to see that Pr(c �= 0) = 1 − (1/q).
Therefore, we assume that c �= 0 in what follows.

The public key of LC-BF scheme is pk = (z, y1, . . . , yn−u). First since q is a
prime and z ∈ Gq, z is a generator of Gq. Next note that

z =
n−u∏
i=1

yβii =
n−u∏
i=1

gaiβi = zc.

Let a′i = ai/c. Then we have

yi = gai = zai/c = za
′
i .

Linear Code Implies Public-Key Traitor Tracing 179

Now it is clear that (a1, · · · , an−u) · bi �= 0 if and only if (a′1, · · · , a′n−u) · bi �= 0,
where i = 1, · · · , n. Therefore, the public key pk of LC-BF scheme is equivalent
to that of LC-KD’ scheme.

Header equivalence: Clear.

Decryption equivalence: In LC-BF scheme, from eq.(3), we obtain that

1/θi = (a1, . . . , an−u) · bi/c = (a′1, · · · , a′n−u)bi.
On the other hand, in LC-KD’ scheme,

ei = (a1, . . . , an−u) · bi.
Therefore, 1/θi of LC-BF scheme is equivalent to ei of LC-KD’ scheme.

Secrecy equivalence: The same public key and the same header are used in
both schemes. Therefore, the secrecy of LC-BF scheme against outside enemies
is equivalent to that of LC-KD’ scheme.

Traceability equivalence: Suppose that there exists a pirate decoder M0 for
LC-BF scheme which is not (black box) traceable. Then we show that there exists
a pirate decoder M1 for LC-KD’ scheme which is not (black box) traceable. Let
k traitors be i1, · · · , ik in both schemes.

Consider LC-KD’ scheme in which a public key is pk = (g, y1, · · · , yn−u) and
the private key of user i is ei. From the above equivalence, the same pk is used
and the private key of user i is θi = 1/ei in LC-BF scheme.

From our assumption, there exists an algorithm B which creates an untrace-
able pirate decoder M0 from pk and θi1 , · · · , θik for LC-BF scheme.

Now in LC-KD’ scheme, our traitors first create M0 by running B on input
pk and 1/ei1 , · · · , 1/eik . They then use M0 as their pirate decoder M1.

Finally it is easy to show that if there is a tracing algorithm which detects
some traitor from M1, then M0 is also traceable. This contradicts our assump-
tion. Hence, M1 is not traceable.

The converse part is proved similarly.

Now we have proved the following theorem.

Theorem 6.1. LC-BF scheme is equivalent to LC-KD’ scheme.

6.2 BF Scheme = Modified KD Scheme

From Theorem 6.1, we have the following equivalence.

Corollary 6.1. BF scheme is equivalent to modified KD scheme.

However, BF scheme is more complicated than the modified KD scheme
because it must use a public code matrix Γ and 2k additional secret random
numbers β1, · · · , β2k. This means that BF scheme is redundant or overdesigned.

180 Kaoru Kurosawa and Takuya Yoshida

6.3 Comparison

We compare three schemes, LC-KD scheme, LC-BF scheme and LC-KD’ scheme.
We have seen that LC-BF scheme is equivalent to LC-KD’ scheme, and hence
redundant.

Now in LC-KD’ scheme, a1, · · · , an−u must be chosen in such a way that
ei �= 0 for i = 1, · · · , n, which LC-KD scheme does not require. This check is
very inefficient if n is large. Therefore. LC-KD scheme is better than LC-KD’
scheme from a view point of key generation.

Similarly, the corrected KD scheme is better than modified KD scheme from
a view point of key generation. Further, modified KD scheme is better than
BF scheme as shown in Sec.6.2. As a conclusion, we see that the corrected KD
scheme is the best among them.

7 Secrecy and Traceability

In this section, we prove the secrecy and the traceability of LC-KD scheme,
LC-KD’ scheme and LC-BF scheme.

Note that any 2k columns of H are linearly independent because d ≥ 2k+1.

7.1 Secrecy of LC-KD Scheme

Theorem 7.1. LC-KD scheme is indistinguishably secure against chosen plain-
text attack under the DDH assumption.

Proof. Similarly to the proof of [6, Theorem 14], we can show that the secrecy
of LC-KD scheme is reduced to that of ElGamal encryption scheme. It is well
known that ElGamal encryption scheme is indistinguishably secure against cho-
sen plaintext attack under the DDH assumption. The details will be given in the
final paper.

7.2 Black Box Tracing Algorithm for LC-KD Scheme

Let BAD be the set of at most k traitors who created a confiscated pirate
decoder. Let A be a subset of at most k users. We first describe a procedure
TEST which checks whether A ∩BAD �= ∅.

Suppose that (eT , e1, · · · , en) is being used as the key. For a random en-
cryption key e′T = (a′1, · · · , a′n−m), let the corresponding private decryption
keys be (e′1, · · · , e′n) = (a′1, · · · , a′n−u)H. We say that e′T matches with A if
e′i = ei for all i ∈ A.

TEST(A)
Step 1. T chooses e′T which matches A randomly. (We can do this because any
2k columns of H are linearly independent.) He chooses a random session key s′

and computes an illegal header h′ R← e′T (s
′).

Linear Code Implies Public-Key Traitor Tracing 181

Step 2. T gives h′ to the pirate decoder. Let the output of the pirate decoder
be sA.
Output:

TEST (A) =
{

1 if sA = s′

0 otherwise

We next describe a procedure TEST2(A,m) which runs TEST (A) m times
independently, where m is a sufficiently large positive integer.

TEST2(A,m)
Set counter := 0. For i = 1, 2, . . . ,m, do
Step 1. Run TEST (A) randomly.
Step 2. Let counter := counter + TEST (A). Reset the pirate decoder.
Output: TEST2(A,m), the final value of counter.

We say that a set of users A is marked if TEST2(A,m) = m. We now present
our tracing algorithm.

Black box tracing algorithm
Find a marked set A = {i1, i2, . . . , ik} by exhaustive search. Suppose that i1 <
i2 < · · · < ik. For j = 1, 2, . . . , k, do:
Step 1. Let B := A \ {i1, i2, . . . , ij}. Run TEST2(B,m).
Step 2. Let mj = TEST2(B,m).
Output: ij such that mj−1 −mj is the maximum. (If there are more than one
such j, choose one of them arbitrarily.) User ij is a traitor.

Remark 7.1. By testing all the permutations on {i1, i2, . . . , ik} (instead of i1 <
i2 < · · · < ik), we can detect all traitors who are active in A. All active traitors
are found by applying this process to all marked sets A.

7.3 Validity of Our Tracing Algorithm

We can show the validity of our tracing algorithm by using the following three
test conditions.

(1) If A ⊇ BAD, then Pr(TEST (A) = 1) is overwhelming.

(2) If A ∩BAD = ∅, then Pr(TEST (A) = 1) is negligible.

(3) If A ∩BAD �= ∅ and A \BAD �= ∅, then for any i ∈ A \BAD,

|Pr(TEST (A) = 1)− Pr(TEST (A \ {i}) = 1)|

is negligible.

Theorem 7.2. If the above three conditions are satisfied, then our black box
tracing algorithm succeeds with overwhelming probability. That is user ij is a
traitor.

182 Kaoru Kurosawa and Takuya Yoshida

Proof. If A ⊇ BAD, then TEST2(A,m) = m with overwhelming probability
from (1). Therefore, there exists at least one marked A. On the other hand, from
(2), if A∩BAD = ∅, then TEST2(A,m)� m. This means that if A is marked,
then A ∩BAD �= ∅.

Now suppose that A is marked. Let m0 = m. It is easy to see that mk = 0.
If mj−1 −mj is the maximum, then mj−1 −mj ≥ m/k. On the other hand, if
j ∈ A \BAD, then mj−1 −mj � m/k from (3). Therefore, if mj−1 −mj is the
maximum, then ij ∈ BAD.

We finally show that LC-KD scheme satisfies the above three test conditions
under the DDH assumption. We assume that a pirate decoder decrypts valid
headers with overwhelming probability.

Theorem 7.3 (Test Condition (1)). In LC-KD scheme, if A ⊇ BAD, then
Pr(TEST (A) = 1) is overwhelming under the DDH assumption.

Theorem 7.4 (Test Condition (2)). In LC-KD scheme, if A ∩ BAD = ∅,
then Pr(TEST (A) = 1) is negligible under the DDH assumption.

Theorem 7.5 (Test Condition (3)). In LC-KD scheme, if A∩BAD �= ∅ and
A \BAD �= ∅, then for any i ∈ A \BAD,

|Pr(TEST (A) = 1)− Pr(TEST (A \ {i}) = 1)|
is negligible under the DDH assumption.

The proofs will be given in Appendix.

7.4 Secrecy and Traceability of LC-KD’ Scheme

The secrecy and the traceability of LC-KD’ Scheme are proved similarly.

Theorem 7.6. LC-KD’ scheme is indistinguishably secure against chosen plain-
text attack under the DDH assumption.

Theorem 7.7 (Test Condition (1)). In LC-KD’ scheme, if A ⊇ BAD, then
Pr(TEST (A) = 1) is overwhelming under the DDH assumption.

Theorem 7.8 (Test Condition (2)). In LC-KD’ scheme, if A ∩ BAD = ∅,
then Pr(TEST (A) = 1) is negligible under the DDH assumption.

Theorem 7.9 (Test Condition (3)). In LC-KD’ scheme, if A ∩ BAD �= ∅
and A \BAD �= ∅, then for any i ∈ A \BAD,

|Pr(TEST (A) = 1)− Pr(TEST (A \ {i}) = 1)|
is negligible under the DDH assumption.

We show the proof of Theorem 7.8 in Appendix. The other theorems are
proved similarly to those of LC-KD scheme.

Linear Code Implies Public-Key Traitor Tracing 183

7.5 Secrecy and Traceability of LC-BF Scheme

The secrecy and the traceability of LC-BF Scheme are equivalent to those of
LC-KD’ scheme as shown in Sec.6.1.

References

1. M. Bellare, A. Boldyreva and S. Micali, “Public-key encryption in a multi-user
setting: Security proofs and improvements,” Proceedings of EUROCRYPT 2000,
LNCS 1807, Springer Verlag, pp.259–274, 2000.

2. D. Boneh and M. Franklin, “An efficient public key traitor tracing scheme (Extended
Abstract),” Proceedings of CRYPTO ’99, LNCS 1666, Springer Verlag, pp.338–353,
1999.

3. D. Boneh and M. Franklin, “An efficient public key traitor tracing scheme (full-
version of [2]),” http://crypto.stanford.edu/˜dabo/, 2001.

4. B. Chor, A. Fiat, and M. Naor, “Tracing traitors,” Proceedings of CRYPTO ’94,
LNCS 839, Springer Verlag, pages 257–270, 1994.

5. B. Chor, A. Fiat, and M. Naor, B. Pinkas, “Tracing traitors,” IEEE Transactions
on Information Theory, Vol.46, No.3, pp.893–910, 2000.

6. K. Kurosawa and Y. Desmedt, “Optimum traitor tracing and asymmetric schemes
with arbiter,” Proceedings of EUROCRYPT ’98, LNCS 1403, Springer Verlag,
pp.145–157, 1999.

7. M. Naor and O. Reingold, “Number theoretic constructions of efficient pseudo-
random functions,” Proceedings of 38th IEEE Symposium on Foundations of Com-
puter Science, pp.458–467, 1997.

8. M. Stadler, “Publicly verifiable secret sharing,” Proceedings of EUROCRYPT ’96,
LNCS 1070, Springer Verlag, pp.190–199, 1996.

9. D. Stinson and R. Wei, “Combinatorial properties and constructions of traceability
schemes and frameproof codes,” SIAM Journal on Discrete Mathematics, Vol.11,
No.1, pp.41–53, 1998.

10. D. Stinson and R. Wei, “Key preassigned traceability schemes for broadcast en-
cryption,” Proceedings of SAC’98, LNCS 1556, Springer Verlag, pp.144–156, 1998.

A Proof of Theorem 7.3

By extending the result of Stadler [8, in the proof of Proposition 1] and Naor
and Reingold [7, lemma 3.2], Bellare et al. proved the following proposition [1].

Proposition A.1. [1] There is a probabilistic algorithm Σ such that on input
ga, gb, gc, Σ outputs gb

′
, gc
′
, where b′ is random and

c′ =
{
ab′ mod p if c = ab mod p
random if c �= ab mod p

Σ runs in O(T exp) time, where T exp is the time needed to perform an exponen-
tiation.

184 Kaoru Kurosawa and Takuya Yoshida

Now we show that

p0 = |Pr(P decrypts valid headers correctly)− Pr(TEST (A) = 1)|
is negligible for any pirate decoder P .

Suppose that p0 ≥ ε for some nonnegligible probability ε. Then we show
that there exists a probabilistic polynomial time Turing machine M which can
distinguishD = (g, ga, y, ya) andR = (g, ga, y, v) with nonnegligible probability,
where g, y, v are chosen at random from Gq and a is chosen at random in Zq.

From our assumption, there is an algorithm B which creates a pirate decoder
such that p0 ≥ ε from a public key pk = (g, y1, · · · , y2k) and the private keys of
BAD.

Now on input d = (g, g′y, y′), M works as follows.
1. Choose ei at random for each i ∈ A and let e′i = ei for each i ∈ A.
2. Let OUT = {i1, i2, . . . , ik} be a k-subset of users such that OUT ∩A = ∅.
3. For j = 1, 2, . . . , k, M runs Σ of Proposition A.1 k times independently on

input d = (g, g′, y, y′). Let the output of Σ be geij , (g′)e
′
ij .

4. Compute ga1 , ga2 , . . . , gan−u from {gei | i ∈ OUT ∪A}, where

(e1, · · · , en) = (a1, · · · , an−u)H.
Each ai is written as a linear combination of {ei | i ∈ A∪BAD} because any
2k columns of H are linearly independent and |A ∪ BAD| ≤ 2k. Therefore,
we can do this.

5. Compute (g′)a
′
1 , (g′)a

′
2 , . . . , (g′)a

′
n−u from {(g′)e′i | i ∈ OUT ∪A}, where

(e′1, · · · , e′n) = (a′1, · · · , a′n−u)H.
6. Select a random session key s′ and compute h′ as follows.

h′ = (g′, s′(g′)a
′
1 , (g′)a

′
2 , . . . , (g′)a

′
n−u).

7. Create a pirate decoder P by running B on input a public key
(g, ga1 , ga2 , . . . , gan−u) and the private keys of BAD, {ei | i ∈ BAD}.

8. Give h′ to the pirate decoder P . Let the output of P be sA.
9. Finally M outputs 1 if sA = s′ or 0 otherwise.

For OUT = {i1, i2, . . . , ik}, it holds that

e′ij =
{
eij mod p if d← D
random if d← R.

from Proposition A.1. Therefore, if d is chosen from D, h′ is a legal header. On
the other hand, if d is chosen from R, h′ is an illegal header used in TEST (A).
Hence, we have

|Pr(M(d) = 1 | d ∈ D)− Pr(Mk(d) = 1 | d ∈ R)|
= p0

≥ ε.
from our assumption.

This means that M can distinguish D and R with nonnegligible probability.

Linear Code Implies Public-Key Traitor Tracing 185

B Proof of Theorem 7.4

Suppose that Pr(TEST (A) = 1) ≥ ε for some nonnegligible probability ε. Then
we show that there exists a probabilistic polynomial time Turing machine M
which can distinguish D = (g, ga, y, ya) and R = (g, ga, y, v) with nonnegligible
probability, where g, y, v are chosen at random fromGq and a is chosen at random
in Zq.

From our assumption, there is an algorithm B which creates a pirate decoder
P such that Pr(TEST (A) = 1) ≥ ε from a public key pk = (g, y1, · · · , y2k) and
the private keys of BAD.

Now on input d = (g, g′, y, y′), M works as follows.
1. Choose a′2, . . . , a

′
n−u at random. Let a′1 be such that ga

′
1 = y.

2. Select a random session key s′ and compute h′ as follows.

h′ = (g′, s′y′, ya
′
2 , ya

′
3 , . . . , ya

′
n−u).

3. Compute ge
′
1 , ge

′
2 , . . . , ge

′
n from ga

′
1 , ga

′
2 , . . . , ga

′
n−u , where

(e′1, · · · , e′n) = (a′1, · · · , a′n−u)H.

4. Choose ei at random for each i ∈ BAD. Let gei = ge
′
i for each i ∈ A.

5. From {gei | i ∈ A ∪BAD}, compute ga1 , ga2 , . . . , gan−u , where

(e1, . . . , en) = (a1, · · · , an−u) ·H

Each ai is written as a linear combination of {ei | i ∈ A∪BAD} because any
2k columns of H are linearly independent and |A ∪ BAD| ≤ 2k. Therefore,
we can do this.

6. Create a pirate decoder P by running B on input a public key
(g, ga1 , ga2 , . . . , gan−u) and the private keys of BAD, {ei | i ∈ BAD}.
Give h′ to the pirate decoder P . Let the output of P be sA.

7. Finally M outputs 1 if sA = s′ or 0 otherwise.
Then we obtain that

|Pr(M(d) = 1 | d← D)− Pr(M(d) = 1 | d← R)|
= |Pr(sA = s′ | d← D)− Pr(sA = s′ | d← R)|

First we see that Pr(s′ = s | d ← R) is negligible because y′ is random. Next
it is easy to see that if d is chosen from D, then h′ is a testing header used in
TEST (A). Therefore,

Pr(sA = s′ | d← D) = Pr(TEST (A) = 1) ≥ ε

from our assumption.
This means thatM can distinguishesD andR with nonnegligible probability.

186 Kaoru Kurosawa and Takuya Yoshida

C Proof of Theorem 7.5

Suppose that

|Pr(TEST (A) = 1)− Pr(TEST (A \ {̃i}) = 1)| ≥ ε

for some nonnegligible probability ε. Then we show that there exists a probabilis-
tic polynomial time Turing machine M which can distinguish D = (g, gr, y, yr)
and R = (g, gr, y, v) with nonnegligible probability, where g, y, v are chosen at
random from Gq and r is chosen at random from Zq.

From our assumption, there is an algorithm B which creates a pirate decoder
P such that

|Pr(TEST (A) = 1)− Pr(TEST (A \ {i}) = 1)| ≥ ε

from a public key pk = (g, y1, . . . , yn−u) and the private keys of BAD.
Now on input d = (g, g′, y, y′), M works as follows.

1. Choose ei for each i ∈ BAD ∪ (A \ {̃i}). Let eĩ be such that geĩ = y.
2. Compute ga1 , ga2 , . . . , gan−u from {gei | i ∈ BAD ∪A}, where

(e1, · · · , en) = (a1, · · · , an−u)H.

3. Create a pirate decoder P by running B on input a public key
(g, ga1 , ga2 , . . . , gan−u) and the private keys of BAD, {ei | i ∈ BAD}.

4. Next let e′i = ei for each i ∈ A \ {̃i} and e′
ĩ
be such that ye

′
ĩ = y′.

5. Compute ya
′
1 , ya

′
2 , . . . , ya

′
n−u from {ye′i | i ∈ BAD ∪A}, where

(e′1, · · · , e′n) = (a′1, · · · , a′n−u)H.

6. Select a random session key s′ and compute h′ as follows.

h′ = (g′, s′ya
′
1 , ya

′
2 , . . . , ya

′
n−u).

Give h′ to the pirate decoder P . Let the output of P be sA.
7. Finally M outputs 1 if sA = s′ or 0 otherwise.

It is easy to see that if d is chosen from D, then h′ is an illegal header used in
TEST (A). On the other hand, if d is chosen from R, then h′ is an illegal header
used in TEST (A \ {̃i}).

Therefore,

|Pr(M(d) = 1 | d← D)− Pr(M(d) = 1 | d← R)|
=
∣∣Pr(TEST (A) = 1)− Pr(TEST (A \ {̃i}) = 1)

∣∣
≥ ε

from our assumption.
This means that M can distinguish D and R with nonnegligible probability.

Linear Code Implies Public-Key Traitor Tracing 187

D Proof of Theorem 7.8

Suppose that Pr(TEST (A) = 1) ≥ ε for some nonnegligible probability ε. Then
we show that there exists a probabilistic polynomial time Turing machine M
which can distinguish D = (g, ga, y, ya) and R = (g, ga, y, v) with nonnegligible
probability, where g, y, v are chosen at random fromGq and a is chosen at random
in Zq.

From our assumption, there is an algorithm B which creates a pirate decoder
such that Pr(TEST (A) = 1) ≥ ε from a public key pk = (g, y1, · · · , y2k) and the
private keys of BAD.

Now on input d = (g, g′, y, y′), M works as follows.
1. Choose ei at random for each i ∈ BAD.
2. For each i ∈ A, choose ti at random and compute yti . Define ei as gei = yti .
3. From {gei | i ∈ A ∪BAD}, compute ga1 , ga2 , . . . , gan−u , where

(e1, . . . , en) = (a1, · · · , an−u) ·H.
4. Create a pirate decoder P by running B on input a public key

(g, ga1 , ga2 , . . . , gan−u) and the private keys of BAD, {ei | i ∈ BAD}.
5. For each i ∈ A, compute βi = (y′)ti . For each i ∈ BAD, choose a random

element βi.
6. Suppose that y′ = yr. Define e′i as βi = gre

′
i for each i ∈ (A ∪BAD).

7. From {βi | i ∈ A ∪ BAD}, compute gra
′
1 , gra

′
2 , . . . , gra

′
n−u , where βi = gre

′
i

and
(e′1, . . . , e

′
n) = (a′1, · · · , a′n−u) ·H.

8. Select a random session key s′ and compute h′ as follows.

h′ = (s′g′, gra
′
1 , gra

′
2 , . . . , gra

′
n−u).

Give h′ to the pirate decoder P . Let the output of P be sA.
9. Finally M outputs 1 if sA = s′ or 0 otherwise.

Then we obtain that

|Pr(M(d) = 1 | d← D)− Pr(M(d) = 1 | d← R)|
= |Pr(sA = s′ | d← D)− Pr(sA = s′ | d← R)|

First we see that Pr(s′ = s | d← R) is negligible because g′ is random.
Next we will show that if d is chosen from D, then h′ is an illegal header

used in TEST (A). In this case, y′ = yr and g′ = gr for some r. We need to show
that e′i = ei for each i ∈ A. Assume that y = gx. Then
1. ei = xti since yti = gei .
2. On the other hand,

gre
′
i = βi = (y′)ti = yrti = gxrti .

Therefore, e′i = xti.
Hence, e′i = ei. Therefore, h′ is an illegal header used in TEST (A). Consequently,

Pr(sA = s′ | d← D) = Pr(TEST (A) = 1) ≥ ε
from our assumption.

This means thatM can distinguishesD andR with nonnegligible probability.

	Linear Code Implies Public-Key Traitor Tracing
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 DDH Assumption
	2.3 Model of Traitor Tracing

	3 Previous Public-Key (k,n) Traceability Schemes
	3.1 Corrected Kurosawa-Desmedt Scheme
	3.2 Boneh-Franklin Scheme

	4 Linear Code Implies Public-Key Traitor Tracing
	4.1 LC-KD Scheme
	4.2 LC-BF Scheme
	4.3 LC-KD' Scheme

	5 Relationship with the Original Schemes
	5.1 Corrected KD Scheme
	5.2 BF Scheme
	5.3 Modified KD Scheme

	6 Equivalence
	6.1 LC-BF Scheme = LC-KD' Scheme
	6.2 BF Scheme = Modified KD Scheme
	6.3 Comparison

	7 Secrecy and Traceability
	7.1 Secrecy of LC-KD Scheme
	7.2 Black Box Tracing Algorithm for LC-KD Scheme
	7.3 Validity of Our Tracing Algorithm
	7.4 Secrecy and Traceability of LC-KD' Scheme
	7.5 Secrecy and Traceability of LC-BF Scheme

	References
	A Proof of Theorem 7.3
	B Proof of Theorem 7.4
	C Proof of Theorem 7.5
	D Proof of Theorem 7.8

