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Abstract. Strong voter privacy, although an important property of an
election scheme, is usually compromised in election protocol design in
favor of other (desirable) properties. In this work we introduce a new
election paradigm with strong voter privacy as its primary objective. Our
paradigm is built around three useful properties of voting schemes we de-
fine: (1) Perfect Ballot Secrecy, ensures that knowledge about the partial
tally of the ballots of any set of voters is only computable by the coalition
of all the remaining voters (this property captures strong voter privacy
as understood in real world elections). (2) Self-tallying, suggests that the
post-ballot-casting phase is an open procedure that can be performed by
any interested (casual) third party. Finally, (3) Dispute-freeness, suggests
that disputes between active parties are prevented altogether, which is
an important efficient integrity component.
We investigate conditions for the properties to exist, and their implica-
tions. We present a novel voting scheme which is the first system that is
dispute-free, self-tallying and supports perfect ballot secrecy. Previously,
any scheme which supports (or can be modified to support) perfect ballot
secrecy suffers from at least one of the following two deficiencies: it in-
volves voter-to-voter interactions and/or lacks fault tolerance (one faulty
participant would fail the election). In contrast, our design paradigm ob-
viates the need for voter-to-voter interaction (due to its dispute-freeness
and publicly verifiable messages), and in addition our paradigm suggests
a novel “corrective fault tolerant” mechanism. This mechanism neutral-
izes faults occurring before and after ballot casting, while self-tallying
prevents further faults. Additionally, the mechanism is secrecy-preserving
and “adaptive” in the sense that its cost is proportional to the number of
faulty participants. As a result, our protocol is more efficient and robust
than previous schemes that operate (or can be modified to operate) in
the perfect ballot secrecy setting.

1 Introduction

One of the most challenging cryptographic protocol problems is electronic voting.
We can distinguish two major settings for this problem: The first one based on
homomorphic encryption was introduced in [CF85] (see also [BY86,Ben87]). The
second one, based on anonymous channels (usually implemented through mix-
nets, e.g. [OKST97,Jak99]), was introduced in [Cha81]; for a related approach
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based on blind signatures see [Cha88,FOO92,Sak94]. Election protocols is a very
active area of research which has progressively produced various tools for privacy
and fault tolerance (e.g., [DLM82,Mer83,Yao82,Cha88,B89,PIK94,SK94,SK95],
[BT94,CFSY96,CGS97,Abe99,Sch99]). There are, in fact, two notable sub-cases
for the basic problem: (1) small scale (boardroom) elections, where the protocol
is essentially run by the voters; (2) large scale (country wide) elections, where
tally (or mix) authorities are involved. Typically, the first case allows for better
privacy, while the second case implies the necessity of robustness where a voter
misbehavior cannot disrupt the election.

Previous small scale voting-schemes, satisfy voter privacy in a strong way
(e.g. small scale cases in [DLM82,Mer83,Yao82,Cha88,PW92]). However these
schemes are very sensitive to failures, have high time/communication complex-
ity requirements and/or require voter-to-voter private interaction (therefore are
subject to costly disputes). On the other hand, large scale schemes rely on the
assumption that (a subset of) the authorities do not try to violate the privacy
of the voter by assuming some conditions. Examples of such conditions are: “at
least one of the authorities remains honest (in mix-net based voting schemes, e.g.
[Abe99]),” or “at most t authorities collude against the voters but not more (dis-
tributed government schemes e.g. [BY86,CFSY96,CGS97]).” The dependency of
voter privacy on the authorities not colluding in such (large scale) schemes, was
noted in [Bra99]. While the above achievements are remarkable, nevertheless,
there is much more to wish for with respect to voter privacy in conjunction with
efficiency, smooth operation and availability of election results.

Our main goal in this work is to investigate a new paradigm where the strong
voter privacy of small-scale elections is possible, but to achieve it with increased
efficiency and reliability (i.e., avoiding voter-to-voter interaction and tolerating
faulty participants). The new paradigm will be able to combine strong voter
privacy with the advantages of the bulletin board paradigm by separating a pre-
processing step and an actual ballot casting step, while still implementing all
communications via the bulletin board. Our contribution can be summarized as
follows:

(1) On a Conceptual/Definitional Level
We introduce the concepts of Self-Tallying, Perfect Ballot Secrecy and Dispute-
Freeness: A self-tallying voting-scheme, allows any casual third party to perform
the tally computation and in general the post-ballot-casting phase (which be-
comes independent of any active participant’s behavior and of any fault). Conse-
quently, there are no authorities or voters involved in the post-election phase that
becomes an open procedure. Furthermore, the ballots’ availability implies that the
counting can be split arbitrarily into chunks amongst a group of third-party tal-
liers (without revealing any partial information about the votes) something that
results in a speed-up of the tallying process. Perfect Ballot Secrecy (PBS) ensures
that knowledge of the partial tally of the ballots of any set of voters (beyond
what is known trivially) is only accessible to the coalition of the remaining voters
(as secrecy is perceived in real world elections). Self-tallying and Perfect Ballot
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Secrecy are both highly desired properties of election systems. As we will show,
these properties are not consistent with traditional robustness of the large scale
election schemes (started in [CF85] and followed by much of the homomorphic-
encryption based work since then [BY86,Ben87,SK94,CFSY96,CGS97,Sch99],
[FPS00,DJ00,KMO01]). Thus, we need a novel notion of fault tolerance which
we suggest here: Corrective Fault Tolerance. It involves the honest users correct-
ing faults which are publicly detectable due to Dispute-Freeness: a voting-scheme
that is dispute-free has built-in prevention mechanisms that eliminate disputes
between the active participants; in essence, any third party should be able to
check whether an active participant follows the protocol. Such publicly verifiable
scheme has a “public” audit trail which contributes to the reliability of the vot-
ing protocol (whereas, a typical small scale election lacks such reliability). Note
that a dispute-free scheme cannot employ PKI or private channels between the
participants.

(2) On a Protocol Design Level
We present a boardroom voting scheme which has a number of advantages com-
pared to previous such voting schemes, both in efficiency and voter privacy. It
is rooted in our new design paradigm which attempts to preserve as much relia-
bility as possible, while employing homomorphic-encryption in the PBS setting.
A key step in our design (that distinguishes it from past work) is that the voter
does not select the randomness to be used in its ballot but rather it is gener-
ated distributively in a preprocessing stage ahead of ballot-casting. Our scheme is
dispute-free, self-tallying and supports perfect ballot secrecy in the most efficient
way: if all voters participate, the complexity of the post-ballot-casting phase is
essentially optimal, requiring a total of at most 3n operations, where n is the
number of ballots. Note that perfect ballot secrecy is achieved without voter-to-
voter interaction. Our scheme can be viewed as optimizing the “all-honest” case
(this design is known as the optimistic approach in the distributed computing
literature). The protocol employs corrective fault tolerance, in the case of faulty
disruption by participants. In such a fault tolerant scheme, the usual robustness
properties of large scale schemes are replaced, since the latter are incompatible
with perfect ballot secrecy. After ballot casting, no further faults are possible
due to the employment of the notion of self-tallying. If PBS is not a prime ob-
jective our scheme can be readily transformed to a dispute-free, self-tallying,
multi-authority based scheme that is more suitable for large scale elections.

Our voting paradigm allows batching many elections run among the same set
of voters (boardroom setting) in such a way so that the online cost for the voter
is essentially optimal (merely that of ballot-casting: constant in the number of
participants). Additionally our paradigm allows the post-ballot-casting phase to
be parallelized arbitrarily, breaking the tallying task into smaller tasks which can
be assigned to casual third-party talliers that can work on problem instances
independently. The combination of partial counts by talliers can be done in
a straightforward manner without the voters and without loss of security. In
contrast, if we adopt a typical homomorphic-encryption based scheme to the
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case where “all voters are talliers” [BY86,Ben87,SK94,CFSY96,CGS97,Sch99],
then, these schemes imply a post-ballot-casting involvement of the voters who
must act as talliers, before the result can be announced. This is true also for the
recent Paillier-based [Pai99] election schemes in [FPS00,DJ00].

2 Requirements for Voting Schemes

A voting-scheme needs to fulfill a variety of requirements to become useful. A
brief presentation of requirements follows:

Privacy. Ensures the secrecy of the contents of ballots. Usually, in large scale
elections, privacy is achieved by trusting some servers/ authorities. In small scale
elections, privacy is achieved typically by intensive voter-to-voter communica-
tions.

Universal-Verifiability. Ensures that any party, including a casual observer, can
be convinced that all valid votes have been included in the final tally.

Robustness. Ensures that the system can tolerate a certain number of faulty
participants. Strong robustness implies that each voter is dealt with indepen-
dently (which is the most suitable notion for large scale voting). This is shown
to be impossible when all voters are also talliers (i.e., in a small scale election).
As a result, in this work we consider a more relaxed form of robustness, a notion
which we call corrective fault tolerance. Under this concept, fault tolerance
is achieved through actions of the honest participants.

We note that the combination of universal-verifiability and robustness (which
is seemingly contradicting) is a contribution of the fundamental work of Benaloh
et al. [CF85,Ben87], to which the notion of enhanced privacy (via distributed
talliers) was added in [BY86].

Receipt-Freeness. The voter cannot provide a receipt that reveals in which way
he/she voted [BT94]. This was further developed in [SK95,Oka97,HS00] and it
is a typical requirement in a country-wide elections to political offices.

Fairness. No partial-tally is revealed to anyone before the end of the election
procedure [FOO92].

We introduce three additional desired properties for election schemes:

Dispute-Freeness. The fact that participants follow the protocol at any phase
can be publicly verified by any casual third party. This property extends univer-
sal verifiability from the tallying phase to any part of the election protocol. A
dispute-free voting scheme does not involve bilateral zero-knowledge proofs and
dispute resolution mechanisms. In a dispute-free protocol the active detection
of misbehaving is substituted with built-in prevention mechanisms which add
integrity.
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Self-Tallying. The post-ballot-casting phase can be performed by any interested
(casual) third party. This property can be viewed as another strengthening of
universal verifiability, in a different direction though. We note that self-tallying
is a property inconsistent with the anonymous channel approach to elections,
since in the post-ballot-casting phase a mix-network or some other mechanism
between the active participants needs to be executed. Note also that a self-
tallying scheme needs to cope with fairness explicitly, since the last voter to cast
the last ballot may have access to the election results before choosing her vote.
Nevertheless this can be dealt with effortlessly, as we will show, by having the
authority that manages the deadline of the election cast a final “dummy vote”
(in a publicly verifiable manner). Until this final vote, any partial tally is just a
random value.

Perfect Ballot Secrecy. Ensures that knowledge of the partial tally of the ballots
of a set of voters (beyond what is known and computed trivially by merely having
the final tally) is only accessible to the coalition of all remaining voters. This
property strengthens the privacy property and makes it independent of servers’
behavior. Such high level of secrecy is a natural notion pertaining to elections
and has appeared before in the context of non-robust procedures involving voter-
to-voter communications in [Cha88].

2.1 Mutual Disjointness of Properties

We next point out that self-tallying and certain perfect ballot secrecy implemen-
tations are not consistent with strong robustness as the following propositions
reveal. (The propositions are stated without a formal model, but can be instanti-
ated formally as well; we avoid lengthy formalities since this subsection is merely
a motivation for our design paradigm).

Proposition 1. A self-tallying scheme cannot be robust and support privacy at
the same time.

To see this, assume that there is a scheme that is self-tallying and robust at
the same time. Suppose that n − 1 of n registered voters actually show up in
the election. By the definition of the properties if the scheme is self-tallying and
robust it should be possible for any third party (e.g., the timing authority) to
compute the partial tally of the n− 1 votes. In the case that all voters vote, this
third party may perform the computation that can be performed when only n−1
voters show up therefore revealing the vote of the excluded voter, in violation of
privacy.

Candidates for Perfect Ballot Secrecy (PBS) are voting-schemes based on
distributing the power of talliers, where it is possible for the voters to simulate
the computation of the distributed government. Alternative schemes involve us-
ing an anonymous channel that is implemented in such a way that no assumed
trusted parties are employed, i.e. voter communication implements the anony-
mous channel (schemes where specific authorities are trusted not to collude, e.g.
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[NSS91], are automatically excluded). Here we concentrate on the first approach
as it appears to be more natural for obtaining efficient constructions in the PBS
setting. Robustness in such schemes is usually based on some threshold secret-
sharing mechanism (of messages or private keys), that produces shares among a
set of authorities (this set, in fact, coincides with the set of voters in the PBS
setting). In these schemes any set of t authorities may uncover the contents of
any cast ballot. If the voters play the role of the authorities to achieve PBS,
it is clear that the threshold t should be n, otherwise the PBS property is not
satisfied. Obviously, setting the threshold to n implies lack of fault-tolerance. As
a result we can conclude:

Proposition 2. A voting-scheme with robustness based on secret sharing (of
values or keys) cannot satisfy Perfect Ballot Secrecy.

3 The Voting Scheme: Basic Steps and Mechanisms

The participants in the protocol are n voters denoted by V1, . . . , Vn and the
bulletin board authority. Each voter has a unique identification string denoted
by I(Vj). Identification strings are publicly known.

3.1 The Bulletin Board

A bulletin board is used for all necessary communication between the parties in-
teracting in the voting scheme [CF85]. The bulletin board is a public-broadcast
channel with memory. Any party (even third-parties) can read information from
the bulletin board. Writing on the bulletin board by the active parties is done
in the form of appending data in a specially designed area for each party. Eras-
ing from the bulletin board is not possible, and appending is verified so that
any third party can be sure of the communication transcript. In the sequel, the
phrase “party X publishes value Y” means that X appends Y to the portion of
the bulletin board that belongs to X. The bulletin board authority (server) par-
ticipates in the protocol to alleviate the computational cost of the participants
and administer the election. Server-based ciphertext processing helps in reducing
the computations of the parties, whenever trusted. All computation performed
by this authority will be publicly verifiable (e.g., by repeating the computa-
tion whenever not trusted). The bulletin board authority is also responsible
for administering the election, namely, it performs actions such as starting and
terminating the election, and maintaining a registry of the eligible voters that
should gain access to the bulletin board.

3.2 Initialization

Let Gk be a family of groups, such that finding discrete logarithms in groups
of Gk is hard (there is no probabilistic polynomial-time algorithm that finds
discrete logarithms with non-negligible probability in k). For example, if p, q are
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large primes with q | p − 1, then the unique subgroup G of Z∗p of size q, is an
element of Gk where k is the number of bits of p, q. Let Gen be a probabilistic
polynomial-time algorithm that given 1k generates the description of a group
G ∈ Gk, and three random elements from G, f, g, h (with relative discrete logs
unknown); this can be also be produced distributively, see [GJKR99]. We will
denote the order of G by q. Arithmetic in the exponents is in Zq.

We assume that all parties, either observe Gen and its output, or are using a
suitable cryptographic protocol for it. Therefore, all parties obtain the elements
g, f, h. Every voter Vj selects a random value αj ∈ Zq and publishes hj := hαj

(the voter’s personal generator for G).

3.3 Preprocessing: The Pre-voting Stage

Each voter Vi, selects n random values si,j ∈ Zq, j = 1, . . . , n, such that∑n
j=1 si,j = 0. As we will see, this method will randomize the actual ballots

while keeping global consistency; we note that such a technique is typical in var-
ious settings, e.g. in re-randomization of individual keys in proactive protocols
[OY91]. Vi then, publishes the pairs 〈Ri,j , R′i,j〉, s.t. Ri,j := gsi,j andR′i,j := h

si,j
j .

Vi should prove to any third party that logg Ri,j = loghj R
′
i,j . Using a proof of

knowledge introduced in [CP93], this is possible as described in figure 1. Note
that this protocol is proven to be zero-knowledge only in the case of a honest
verifier (see e.g. [CGS97]), but this is sufficient in our setting.

Prover (Vi) Verifier
publishes 〈Ri,j , R′i,j〉

w ∈R Zq
a := gw, b := hwj

a,b−→
c←− c ∈R Zq

r := w + si,jc
r−→ gr =? a(Ri,j)c

hrj =? b(R′i,j)
c

Fig. 1. Proving that logg Ri,j = loghj R
′
i,j

The well-known Fiat-Shamir heuristics [FS87] can be used to make the proof
non-interactive and ensure that the challenge c is chosen “honestly”: if H is a
cryptographically strong hash function (thought of as a random oracle), then c is
defined as H(I(Vi), Ri,j , R′i,j , a, b). Consequently Vi publishes 〈Ri,j , R′i,j , a, b, r〉;
the verifier computes c using the hash function and checks the two equalities
as in the figure. This method ensures that the challenge c is chosen at random
(under the assumption that H is a random oracle hash). When c is chosen using
a random oracle hash we will denote the sequence 〈a, b, r〉 defined as above for
the values Ri,j , R′i,j and bases g, hj by PKEQDL[x : (Ri,j = gx) ∧ (R′i,j = hxj )].
Such proofs will be used in other parts of our voting scheme to ensure that the
participants are following the protocol.
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Theorem 1. At any time, after the completion of the pre-voting stage,
(i) Any third-party can verify that logg Ri,j = loghj R

′
i,j, for any i, j.

(ii) Any third-party can verify that
∑n
j=1 si,j = 0, for any i.

(iii) If at least one voter chose the si,j values at random, then the values tj :=∑n
i=1 si,j are random elements of Zq with the property

∑n
j=1 tj = 0.

Proof. (i) is achieved using the non-interactive version of the proof of knowledge
described in figure 1. (ii) can be easily checked by multiplying Ri,j : it should hold
that

∏n
j=1Ri,j = 1 for all i = 1, . . . , n. For item (iii), just note that,

∑n
j=1 tj =∑n

j=1
∑n
i=1 si,j =

∑n
i=1
∑n
j=1 si,j =

∑n
i=1 0 = 0. Since each tj contains a value

from each voter Vi, if at least one voter chose the si,j values at random, this is
enough to randomize all tj values. 	


The bulletin board authority for each j = 1, . . . , n computes the product
R′j :=

∏n
i=1R

′
i,j and publishes it on the board. The contents of the bulletin

board after the end of the preprocessing are shown in figure 2 (note that in the
left hand table, each row when its values are multiplied together the result is
the value 1).

Ri,j :

V1 : gs1,1 . . . gs1,n = 1
V2 : gs2,1 . . . gs2,n = 1
...

... . . .
...

...
Vn : gsn,1 . . . gsn,n = 1

gt1 . . . gtn = 1

R′i,j :

V1 : h
s1,1
1 . . . h

s1,n
n

V2 : h
s2,1
1 . . . h

s2,n
n

...
... . . .

...
Vn : h

sn,1
1 . . . h

sn,n
n

R′1 = ht11 . . . R′n = htnn

Fig. 2. The contents of the Bulletin Board after the preprocessing phase

3.4 Ballot-Casting

Voter Vj reads R′j from the bulletin board and raises it to α−1j in order to
obtain hs1,j+...+sn,j = htj . For now, we will assume that votes are either 1 or −1
(yes/no). We note that this is done only for the sake of the exposition as it is
possible to modify our protocol in a direct and efficient manner to support voting
between c candidates, or support “0-voting” i.e. abstaining from the formation
of the election result (see section 3.7). Vj selects a vj ∈ {1,−1} at his choice,
and publishes the ballot Bj := htjfvj .

It is imperative that Vj convinces any third party that he followed the proto-
col i.e. that the random portion of Bj has been produced by the application of
Vj ’s secret value α−1j on R′j (note that the value R

′
j is publicly accessible). This

can be done as described in figure 3. We note here that one significant difference
from previous similar proofs of ballot validity (as those in [CFSY96,CGS97]) is
that the value tj is not known to the voter, and the proof has to rely on the
voter (prover) knowing the secret “Diffie-Hellman-key-exchange”-like value αj .
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Prover (Vj) Verifier
publishes Bj := htjfvj obtains R′j
vj = 1 vj = −1
d1, r1, w ∈R Zq d2, r2, w ∈R Zq
a1 := h−d1hr1j a1 := hwj

a2 := hwj a2 := h−d2hr2j
b1 = (Bjf)−d1(R′j)

r1 b1 = (R′j)
w

b2 = (R′j)
w b2 = (Bj/f)−d2(R′j)

r2

a1,a2,b1,b2−→
c←− c ∈R Zq

d2 := c− d1 d1 := c− d2

r2 := w + α−1
j d2 r1 := w + α−1

j d1
r1,r2,d1,d2−→ c =? d1 + d2

hr1j =? a1h
d1

hr2j =? a2h
d2

(R′j)
r1 =? b1(Bjf)d1

(R′j)
r2 =? b2(Bj/f)d2

Fig. 3. Proving that (logR′
j
Bjf = loghj h) ∨ (logR′

j
Bj/f = loghj h)

More formally, the protocol of figure 3, is a proof of knowledge in the sense of
[CDS94,DDPY94] as it satisfies completeness and special soundness; additionally
it is special honest verifier zero knowledge. As before, using the Fiat-Shamir
heuristics [FS90] we can make the above protocol non-interactive using random
oracle hashing, by choosing c = H(I(Vj), Bj , R′j , a1, a2, b1, b2).
Theorem 2. The protocol of figure 3 satisfies the following:
(i) It is a proof of knowledge for the relation

(logR′
j
Bjf = loghj h) ∨ (logR′j Bj/f = loghj h)

(ii) It is Special Honest Verifier Zero Knowledge.
(iii) It ensures that the ballot Bj is formed properly.

Proof. (i) The witness for the relation is the value α−1j (the secret value of Vj).
Completeness can be shown in a straightforward manner.

Regarding special soundness: Given some R′j , Bj , suppose we have two ac-
cepting conversations with the same first move: (a1, a2, b1, b2, c, r1, r2, d1, d2) and
(a1, a2, b1, b2, c′, r′1, r

′
2, d
′
1, d
′
2), with c �= c′. For special soundness the goal is to

show that a witness can be constructed in polynomial-time. It is easy to check
that either r1−r′1

d1−d′1 or r2−r′2
d2−d′2 is a witness for the relation. At least one of these

values is defined since if both d1 = d′1 and d2 = d′2 it holds that c = c′ (assumed
false). Note that a cheating prover can convince the verifier without using a wit-
ness by guessing the challenge c sent by the verifier and computing a1, a2, b1, b2
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according to c (instead of prior to receiving c). Such a cheating prover will be
detected by the verifier with overwhelming probability 1− 1/q.

(ii) The protocol is special honest verifier zero knowledge, because given a
random c, if we choose at random r1, r2, d1, d2 s.t. c = d1 + d2 the conversa-
tion (hr1j h

−d1 , hr2j h
−d2 , (R′j)

r1(Bjf)−d1 , (R′j)
r2(Bj/f)−d2 , c, r1, r2, d1, d2) is an

accepting conversation that it is indistinguishable from the accepting conversa-
tions generated by the honest prover and the honest verifier.

(iii) From the relation (logR′
j
Bjf = loghj h) ∨ (logR′

j
Bj/f = loghj h), if

we denote by x the value loghj h then it follows that either Bj = (R′j)
xf or

Bj = (R′j)
x/f is true which is exactly how Vj is supposed to form the ballot

Bj . 	


3.5 Administrating and Terminating the Election

The bulletin board authority is responsible for the administration of the election.
When the pre-voting stage is completed the bulletin board authority signs the
bulletin board and announces the start of the election process. It is imperative
that the bulletin board authority prevents reading of the cast ballots as the
election progresses in order to ensure fairness. This is because the last voter
to cast a ballot is able to compute the election result before choosing his/her
vote and casting the final ballot. Fairness can be ensured as follows: the bulletin
board authority participates in the pre-voting stage acting as one of the voters,
say voter i0. The bulletin board authority does not cast a ballot; instead when
the deadline of the election process is reached it publishes Bi0 := (R′i0)

α−1
i0 = hti0

together with the non-interactive proof of knowledge PKEQDL[x : (h = hxi0) ∧
(Bi0 = (R′i0)

x)] (see section 3.3) that ensures that the correct value is published
— note that this amounts to a publicly verifiable 0-vote. The bulletin board
authority also signs the contents of the bulletin board, thus officially terminating
the election process and prohibiting the deposition of any other ballots.

Given the way the voters’ ballots are formed and theorem 1(iii), it is easy to
see that:

Proposition 3. The administration of the election by the Bulletin Board Au-
thority as described above ensures fairness.

3.6 The Final Stage: Self-tallying and Corrective Fault-Tolerance

All voters participate: Self-tallying
If all voters participate in the election, then computing the final tally can be done
by any (casual) third party in optimal time: n − 1 multiplications in G and an
exhaustive search of 2n steps, worst-case. Since

∑n
j=1 tj = 0 (see theorem 1,iii)

it holds that the tally T :=
∏n
j=1Bj = f

∑n

j=1
vj (note that vi0 the “vote” cast

by the bulletin board authority is equal to 0). Because T ∈ {f−n+1, . . . , fn−1} it
can be inverted by a brute-force algorithm that will check all the possible values.
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By a baby-step giant-step method the inversion can be made in O(√n) group
operations.
Corrective fault tolerance
In order to achieve corrective fault-tolerance, when some voters stop partici-
pating at some phase of the protocol, the remaining active voters must react
to reveal the shares that were intended for them. Here we deal with two cases:
(i) when some registered voters do not participate in the pre-voting stage, and
(ii) when some voters do not cast a ballot before the deadline of the election.
We note here that corrective fault-tolerance is not intended to capture all fault
possibilities of the active participants, and there can be catastrophic cases for
which the protocol must restart (with the faulty participants deactivated) for
example when some of the voters that cast a ballot do not participate in the
corrective phase. Note though, that whenever the majority is honest there is a
way to prevent a restart of the protocol by Byzantine agreement procedures —
an issue which is beyond the scope of this paper. Nevertheless, our protocol is
intended for the small scale boardroom model, where malicious failures (where
members of the board misbehave publicly) are not typical, and also in this case,
a restart of the protocol is not prohibitive.

Nevertheless, as we will see in section 4.1, corrective fault tolerance does pro-
vide significant increased of robustness, when compared to all previous election
schemes in the Perfect Ballot Secrecy setting. Next we outline the two procedures
which constitute corrective fault tolerance.

(i) Some registered voters do not participate in preprocessing. The
method presented here is also useful when some voters that participated in the
preprocessing phase prefer not to vote. This is important in the batched version
of the self-tallying scheme (see section 4.2). Denote the set of voters whose shares
should be cancelled by S, and the set of remaining voters by S.

The corrective phase is as follows: each voter Vk, k ∈ S, publishes R′′k :=

h

∑
j∈S sk,j

k , together with the non-interactive proof of knowledge PKEQDL[x :
(hxk = R′′k) ∧ (gx =

∏
j∈S Rk,j)] (see section 3.3). The bulletin board authority

modifies the R′k values (that were computed at the end of the preprocessing
phase) as follows:

∀k ∈ S R′k := R′kR
′′
k/
∏

i∈S
R′i,k

Then, the protocol proceeds normally with ballot-casting (section 3.4). It is easy
to see that the values tk := loghk R

′
k for k ∈ S satisfy the properties of the

t-values in theorem 1(iii):
∑
k∈S tk = 0 and {tk}k∈S are random elements of Zq

provided that at least one voter Vk, k ∈ S chose the shares sk,j at random.

(ii) Some voters do not cast a ballot. Denote the set of voters that did not
cast a ballot by S′, and the set of remaining voters by S′. Each voter Vk, k ∈ S′,
publishes ek :=

∑
j∈S′ sk,j and Φk := (

∏
j∈S′ R

′
j,k)

α−1
k .
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The value ek can be universally verified by checking that gek =
∏
j∈S′ Rk,j

for all k ∈ S′. The correctness of the value Φk can be universally verified by
having the voter Vk publish the non-interactive proof of knowledge PKEQDL[x :
(h = hxk) ∧ (Φk = (

∏
j∈S′ R

′
j,k)

x)] (see section 3.3). After the completion of the
corrective round the tally computation can be performed by any third party as
follows: T :=

∏
k∈S′ Bkh

ek(Φk)−1. It is easy to see that T ∈ {f |S′|, . . . , f−|S′|};
inverting T is done in a brute-force manner as before.

We note here that these two corrective phases, are not exclusive and both
can be implemented in a single execution of a protocol.

3.7 Multi-way Elections

There are many standard ways to extend our voting scheme from yes/no voting
to 1-out-of-c voting for c candidates (for a constant c) in an efficient manner1.
We describe one such possibility following ideas from Cramer, Gennaro and
Schoenmakers [CGS97]. The resulting scheme has the same complexity in all
respects, with the exception that the proof of validity of the ballot is increased
by the factor c, and the exhaustive search at the tallying phase requires searching
in the augmented possible tally value space.

Instead of f , in the initialization stage the values f1, . . . , fc ∈ G are given for
use by all participants (where the logh f� is not known to any party). Vj casts a
vote vj ∈ {1, . . . , c} by publishing the ballot htjfvj . The proof of ballot validity
is modified as shown in figure 4.

Theorem 3. The protocol of figure 4 satisfies the following:
(i) It is a proof of knowledge for the relation ∨c�=1(logR′j Bj/f� = loghj h).
(ii) It is Special Honest Verifier Zero Knowledge.
(iii) It ensures that the ballot Bj is formed properly.

The election protocol is otherwise exactly the same to the yes/no case. In
the final stage the product T1 . . . Tc is revealed where T� ∈ {f0� , . . . , fn−1� }. Re-
vealing the tallies, requires a total of nc−1 search steps in the worst case. By
using a baby-step giant-step method it is possible to reduce the time needed to
O(√nc−1) group operations (see also [CGS97]) . We would like to further note
that the searching task can be arbitrarily partitioned among many processors in
a distributed environment.

4 The Voting Scheme

Stage 1. All participants run the initialization as described in section 3.2. Voters
register with the bulletin board authority that checks their eligibility, and gain
access to the bulletin board.
1 To go beyond constant c one needs either to use another method than homomorphic-

based encryption, or base the scheme on sharing Paillier’s cryptosystem [Pai99] as
in [BFPPS01] which we can employ as well, at the expense of losing some of our
scheme’s properties.
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Prover (Vj) Verifier
publishes Bj := htjfvj obtains R′j
for � ∈ {1, . . . , c} − {vj}
d�, r� ∈R Zq, rvj , w ∈R Zq
a� = h−d�hr�j
avj = hwj

b� = (Bj/f�)−d�(R′j)
r�

bvj = (R′j)
w

{a�}�,{b�}�−→
c←− c ∈R Zq

dvj := c− (
∑

��=vj d�)

rvj := w + α−1
j dvj

{r�}�,{d�}�−→ c =?
∑

�
d�

for � = 1, . . . , c,
h
r�
j =? a�h

d�

(R′j)
r� =? b�(Bj/f�)d�

Fig. 4. Multi-way Elections: Proving that ∨c�=1(logR′
j
Bj/f� = loghj h)

Stage 2. The voters together with the bulletin board authority execute the pre-
processing stage of section 3.3. At the end of the preprocessing stage, if some
registered voters failed to participate the corrective step of section 3.6(i) is em-
ployed. Subsequently the bulletin board authority signs the bulletin board and
officially starts the election.

Stage 3. Voters publish their ballots as described in section 3.4 in the designated
space for them in the bulletin board. Note that this process is not anonymous
and as a result double-voting is eliminated. When the deadline for the election
is reached the bulletin board casts the “final vote” and thus opens the election
results (see section 3.5).

Stage 4. If all voters who received shares in the preprocessing phase cast a ballot,
the election tally is recoverable by any third party as described in section 3.6
(self-tallying). If not all voters participated the corrective fault tolerance round
of section 3.6(ii) is employed.

Complexity. Stage 1 requires O(1) computation and communication by all par-
ticipants. In stage 2, each voter spends O(n) for computing and communicating
the preprocessing shares. In stage 3, the voter computes the ballot and the proof
of validity that needs O(1) computation and O(1) communication. Stage 4, if all
voters that received shares at stage 2 cast a ballot, requires n−1 multiplications
and a brute-force step that takes 2n steps worst-case, which can be reduced to
O(√n). The corrective rounds of sections 3.6 have the following complexity: if
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b voters stop participating, each active voter needs to perform b− 1 operations
and to publish the resulting corrective value that requires O(1) communication.

Assuming the existence of an homomorphic encryption with an associated
discrete log problem which is secure and a random oracle hash, it holds that:

Theorem 4. The described protocol is a voting-scheme that satisfies privacy,
fairness, universal-verifiability, corrective fault-tolerance, dispute-freeness, self-
tallying and perfect ballot secrecy.

4.1 Comments on PBS Voting and Dispute-Freeness

In a voting-scheme with perfect-ballot secrecy, the actual vote of a participant
can only be revealed if all the remaining voters collude against him. In our case
Perfect Ballot Secrecy is ensured computationally. Our voting scheme can be
modified so that Perfect Ballot Secrecy is information theoretic however the
resulting scheme will not be dispute-free anymore.

Other voting schemes based on homomorphic encryption can be modified so
that they achieve Perfect Ballot Secrecy. Usually the computational/ commu-
nication cost is substantial. The general idea is to make the set of authorities
coincides with the set of voters and to set the threshold to n (for schemes that
are based on secret sharing). This choice disables the robustness property as seen
in proposition 2. Note that mix-net based schemes are not necessarily excluded
from the PBS setting (since it may be possible for the voters to simulate the
mix-net), but the homomorphic encryption setting seems to be more natural as
a base for PBS. In any case, a mix-net PBS scheme would face similar robustness
problems since all voters would need to be active in the mixing phase in order
to ensure perfect ballot secrecy.

Let us discuss the notion of dispute-freeness and its importance in the PBS
homomorphic-encryption setting. The schemes of [CFSY96] and [CGS97] include
phases that are not publicly verifiable and therefore they are not dispute-free: the
first uses private channels between voters and authorities whereas the second in-
cludes a key-generation phase between authorities that is not publicly-verifiable
(note that we do not claim that lack of dispute-freeness is necessarily inherent
in these schemes). Since in PBS voting the voters play the role of the authorities
this can lead to voters accusing other voters of invalidity of actions, which is cer-
tainly not desirable. For this reason we will focus our discussion of PBS schemes
(and in general of voting without authorities) on schemes that are dispute-free
i.e. [Sch99] and our voting scheme.

The [Sch99]-scheme can be transformed to the PBS setting: choosing the
threshold t to be n and letting the voters play the role of the talliers. The
complexity of the voter then becomes O(n2) before ballot casting and all voters
have to be active in the post ballot casting stage spending O(n) computation.
Due to the fact that all voters need to be active in the tallying phase, the
scheme is not robust (as it is the case for all schemes that base fault-tolerance
on secret-sharing, in the PBS setting, see proposition 2). Note though that it is
possible to achieve some form of corrective fault-tolerance by adding additional
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rounds of communication and computation, but this amounts to implementing
our own corrective steps (which become more complex when put on top of the
[Sch99]-scheme rather than as used in our scheme).

The complexity of our voting scheme is substantially better than the PBS-
version of the [Sch99] scheme. In our case in the pre-voting stage, each voter
needs computation and communication O(n). Tallying is optimal as it takes 3n
steps, without the participation of the voters. Corrective fault tolerance costs
O(b) group operations for a participant, where b is the number of faults.

As we pointed out before, most homomorphic encryption based election
schemes can be readily modified into the PBS setting. With no exception this
will force all voters to be active in the post-ballot-casting phase and in fact
each voter will have to perform an O(n) computation at this stage. If one of
the voters fails to participate in the post-ballot-casting phase the entire election
fails. This is much too late in the process to allow such failures. In contrast, our
election scheme optimizes this setting: if all voters participate in the election
there is no need for them to participate in the post-ballot-casting phase at all.
Moreover if some voters do not participate in the voting phase the election does
not necessarily fail since we have shown a set of corrective measures that can be
executed. This delicate fault tolerance distinction is an important achievement
of our scheme. Performance-wise, what our active corrective fault tolerance re-
quires from active voters is not O(n) but O(b) work for b absent voters, namely
work proportional to the absentees and not to the whole voter population (what
the distributed computing literature calls “adaptive fault tolerance”).

4.2 Batched Boardroom PBS-Elections

Batching a series of elections is one of the ways to maximize the gain from our
voting scheme.

Phase 1. All board members execute the pre-voting stage for several elections
in the beginning of a time-period. The work of each participant for each of the
elections is linear in the total members of the board. The output of this stage
will be kept for later use.

Phase 2. If all members of the board are going to vote in a particular election,
the election is held directly as in sections 3.4 and 3.6. If not all members of the
board are “present” in the election (something that is known in advance) the
values R′j are properly modified so that the self-tallying property is preserved
as described in section 3.6(i). If some voters fail to cast a ballot the corrective
phase of section 3.6(ii) is executed.

The complexity of the batched protocol is as follows: The pre-voting stage can
be executed off-line ahead of time preparing for coming L elections. It requires
O(Ln) computation for each board member and O(Ln2) storage space in total.
Each election itself requires O(1) per participant and then any passive third
party can compute the final tally with n − 1 multiplications and a worst-case
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of 2n steps in the brute-force stage. The corrective phase requires linear (in the
number of absentees) computations from any active participant. Thus, we get:

Theorem 5. The described batched election protocol is a voting-scheme that sat-
isfies privacy, fairness, universal-verifiability, corrective fault-tolerance, dispute-
freeness, self-tallying, perfect ballot secrecy where the on-line cost is that of ballot-
casting: constant in the number of participants.

4.3 Adapting to Large Scale: The Non-PBS Version

If Perfect Ballot Secrecy is not an objective our scheme can be readily modified
to an authority-based self-tallying election scheme that is more suitable for the
large scale setting. In the modified scheme the voter needs to be active only in
the registration phase and the ballot-casting phase.

Stage 1. As in the PBS-scheme, where the set of participants includes a number
of authorities A1, . . . , Am.

Stage 2. Only the authorities are active in the preprocessing phase, with each
Ai issuing the values si,1, . . . , si,n as described in section 3.3.

Stage 3. Identical to the ballot-casting stage as described in the PBS-version.

Stage 4. If all voters who received shares in the preprocessing phase cast a
ballot, the election tally is recoverable by any third party as described in section
3.6 (self-tallying). If not all voters participate, corrective fault tolerance has the
authorities publishing the shares of the voters that did not cast a ballot.

The computation/communication for each authority is linear in n, whereas
the ballot-casting stage remains of constant time for each voter. It is easy to see
that:

Theorem 6. The described protocol is a voting-scheme that satisfies privacy
(assuming not all authorities collude), fairness, universal-verifiability, corrective
fault-tolerance, dispute-freeness, and self-tallying.
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