
Scream: A Software-Efficient Stream Cipher

Shai Halevi, Don Coppersmith, and Charanjit Jutla

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA,
{shaih,copper,csjutla}@watson.ibm.com

Abstract. We report on the design of Scream, a new software-efficient
stream cipher, which was designed to be a “more secure SEAL”.
Following SEAL, the design of Scream resembles in many ways a
block-cipher design. The new cipher is roughly as fast as SEAL, but
we believe that it offers a significantly higher security level. In the
process of designing this cipher, we re-visit the SEAL design paradigm,
exhibiting some tradeoffs and limitations.

Keywords: Stream ciphers, Block ciphers, Round functions, SEAL.

1 Introduction

A stream cipher (or pseudorandom generator) is an algorithm that takes a short
random string, and expands it into a much longer string, that still “looks ran-
dom” to adversaries with limited resources. The short input string is called the
seed (or key) of the cipher, and the long output string is called the output stream
(or key-stream). Stream ciphers can be used for shared-key encryption, by using
the output stream as a one-time-pad. In this work we aim to design a secure
stream cipher that has very fast implementations in software.

1.1 A More Secure SEAL

The starting point of our work was the SEAL cipher. SEAL was designed in
1992 by Rogaway and Coppersmith [5], specifically for the purpose of obtaining
a software efficient stream cipher. Nearly ten years after it was designed, SEAL
is still the fastest steam cipher for software implementations on contemporary
PC’s, with “C” implementations running at 5 cycle/byte on common PC’s (and
3.5 cycle/byte on some RISC workstations).

The design of SEAL shares many similarities with the design of common
block ciphers. It is built around a repeating round function, which provides the
“cryptographic strength” of the cipher. Roughly speaking, the main body of
SEAL keeps a state which is made of three parts: an evolving state, some round
keys, and a mask table. The output stream is generated in steps (or rounds). In
each step, the round function is applied to the evolving state, using the round
keys. The new evolving state is then masked by some of the entries in the mask

J. Daemen and V. Rijmen (Eds.): FSE 2002, LNCS 2365, pp. 195–209, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

196 S. Halevi, D. Coppersmith, and C. Jutla

table and this value is output as a part of the stream. The mask table is fixed,
and some of the round keys are be changed every so often (but not every step).1

In terms of security, SEAL is somewhat of a mixed story. SEAL is designed
to generate up to 248 bytes of output per seed. In 1997, Handschuh and Gilbert
showed, however, that the output stream can be distinguished from random
after seeing roughly 234 bytes of output [4]. SEAL was slightly modified after
that attack, and the resulting algorithm is known as SEAL 3.0. Recently, Fluhrer
described an attack on SEAL 3.0, that can distinguish the output stream from
random after about 244 output bytes [3]. Hence, it seems prudent to avoid using
the same seed for more than about 240 bytes of output.

The goal of the current work was to come up with a “more secure SEAL”. As
part of that, we studied the advantages, drawbacks, and tradeoffs of this style
of design. More specifically, we tried to understand what makes a “good round
function” for a stream cipher, and to what extent a “good round function” for
a block cipher is also good as the basis for a stream cipher. We also studied the
interaction between the properties of the round function and other parts of the
cipher. Our design goals for the cipher were as follows:

– Higher security than SEAL: It should be possible to use the same seed for 264

bytes of output. More precisely, an attacker that sees a total of 264 bytes of
output (possibly, using several IV’s of its choice), would be forced to spend
an infeasible amount of time (or space) in order to distinguish the cipher
from a truly random function. A reasonable measure of “infeasibility” is,
say, 280 space and 296 time, so we tried to get the security of the cipher
comfortably above these values.2

– Comparable speed to SEAL, i.e., about 5 cycles per byte on common PC’s.
– We want to allow a full 128-bit input nonces (vs. 32-bit nonce in SEAL).
– Other, secondary, goals were to use smaller tables (SEAL uses 4KB of se-

cret tables), get faster initialization (SEAL needs about 200 applications of
SHA to initialize the tables), and maybe make the cipher more amenable to
implementation in other environments (e.g., hardware, smartcard, etc.) We
also tried to make the cipher fast on both 32-bit and 64-bit architectures.

1.2 The End Result(s)

In this report we describe three variants of our cipher. The first variant, which
we call Scream-0, should perhaps be viewed as a “toy cipher”. Although it may
be secure enough for some applications, it does not live up to our security goals.
In the full version of this report we describe a “low-diffusion attack” that works
in time 279 and space 250, and distinguishes Scream-0 from random after seeing
about 244 bytes of the output stream.
1 In SEAL, the evolving state is the words A, B, C, D, the round keys consists of the
table T and the ni’s, and the mask table is S.

2 This security level is arguably lower than, say, AES. This seems to be the price that
one has to pay for the increased speed. We note that the “obvious solution” of using
Rijndael with less rounds, fails to achieve the desired security/speed tradeoff.

Scream: A Software-Efficient Stream Cipher 197

We then describe Scream, which is the same as Scream-0, except that it
replaces the fixed S-boxes of Scream-0 by key-dependent S-boxes. Scream has
very fast software implementations, but to get this speed one has to use secret
tables roughly as large as those of SEAL (mainly, in order to store the S-boxes).
On our Pentium-III machine, an optimized “C” implementation of Scream runs
at 4.9 cycle/byte, slightly faster than SEAL. On a 32-bit PowerPC, the same
implementation runs at 3.4 cycle/byte, again slightly faster than SEAL. This
optimized implementation of Scream uses about 2.5 KB of secret tables. Scream
also offers some space/time tradeoffs. (In principle, one could implement Scream
with less than 400 bytes of memory, but using so little space would imply a
slowdown of at least two orders of magnitude, compared to the speed-optimized
implementation.) In terms of security, if the attacker is limited to only 264 bytes
of text, we do not know of any attack that is faster than exhaustively searching
for the 128-bit key. On the other hand, we believe that it it possible to devise a
linear attack to distinguish Scream from random, with maybe 280 bytes of text.

At the end of this report we describe another variant, called Scream-F (for
Fixed S-box), that does not use secret S-boxes, but is slower than Scream (and
also somewhat “less elegant”). An optimized “C” implementation of Scream-F
runs at 5.6 cycle/byte on our Pentium-III, which is 12% slower than SEAL.
On our PowerPC, this implementation runs at 3.8 cycle/byte, 10% slower than
SEAL. This implementation of Scream-F uses 560 bytes of secret state. We
believe that the security of Scream-F is roughly equivalent to that of Scream.

1.3 Organization

In Section 2 below we first describe Scream-0 and then Scream. In Section 3
we discuss implementation issues and provide some performance measurements.
In Section 4 we briefly discuss the cryptanalysis of Scream-0. (A more detailed
analysis can be found in the full version.) Finally, in Section 5, we describe the
cipher Scream-F. In the appendix we give the constants that are used in Scream,
and also provide some “test vectors”.

2 The Design of Scream

We begin with the description of Scream-0. As with SEAL, this cipher too is
built around a “round function” that provides the cryptographic strength. Early
in our design, we tried to use an “off the shelf” round function as the basis for
the new cipher. Specifically, we considered using the Rijndael round function
[2], which forms the basis of the new AES. However, as we discuss in the full
paper, the “wide trail strategy” that underlies the design of the Rijndael round
function is not a very good match for this type of design. We therefore designed
our own round function.

At the heart of our round function is a scaled-down version of the Rijndael
function, that operates on 64-bit blocks. The input block is viewed as a 2 × 4
matrix of bytes. First, each byte is sent through an S-box, S[·], then the second

198 S. Halevi, D. Coppersmith, and C. Jutla

row in the matrix is shifted cyclically by one byte to the right, and finally
each column is multiplied by a fixed 2 × 2 invertible matrix M . Below we call
this function the “half round function”, and denote it by GS,M (x). A pictorial
description of GS,M can be found in Figure 1.

S[a] S[c] S[e] S[g]

row shift

S[h] S[b] S[d] S[f]

column mix

a′ c′ e′ g′

b′ d′ f ′ h′

replace each column c

by Mc, for some fixed
2 × 2 matrix M

a c e g
b d f h

S[a] S[c] S[e] S[g]
S[b] S[d] S[f] S[h]

replace each byte
x by S[x]

shift 2nd row by
one byte to right

byte substitution

Fig. 1. The “half round” function GS,M

Our round function, denoted F (x), uses two different instances of the “half-
round” function, GS1,M1 and GS2,M2 , where S1, S2 are two different S-boxes, and
M1, M2 are two different matrices. The S-boxes S1, S2 in Scream-0 are derived
from the Rijndael S-box, by setting S1[x] = S[x], and S2[x] = S[x ⊕ 00010101],
where S[·] is the Rijndael S-box. The constant 00010101 (decimal 21) was chosen
so that S2 will not have a fixed-point or an inverse fixed-point.3 The matrices
M1, M2 were chosen so that they are invertible, and so that neither of M1, M2
and M−1

2 M1 contains any zeros. Specifically, we use

M1 =
(
1 x
x 1

)
M2 =

(
1 x + 1

x + 1 1

)

where 1, x, x + 1 are elements of the field GF (28), which is represented as
Z2[x]/(x8 + x7 + x6 + x + 1).

The function F is a mix of a Feistel ladder and an SP-network. A pseudocode
of F is provided below, and a pictorial description can be found in Figure 2.

3 An inverse fixed-point is some x such that S[x] = x̄.

Scream: A Software-Efficient Stream Cipher 199

�<

x0 x4 x8 x12
x1 x5 x9 x13

x2 x6 x10 x14
x3 x7 x11 x15

❥

❥

✘✘✘✘✘✘✘✘✘✘✘




GS1,M1 GS2,M2

GS1,M1 GS2,M2

x′
0 x′

4 x′
8 x′

12
x′
1 x′

5 x′
9 x′

13

x′
2 x′

6 x′
10 x′

14
x′
3 x′

7 x′
11 x′

15

cyclic shift by
two columns

Fig. 2. The round function, F

Function F (x):

The main loop of Scream-0. As with SEAL, the cipher Scream-0 maintains a
state that consists of the “evolving state” x, some round keys y, z, and a “mask
table” W . In Scream-0, x, y and z are 16-byte blocks, and the table W consists of
16 blocks, each of 16 bytes. In step i of Scream-0, the evolving state is modified
by setting x := F (x ⊕ y) ⊕ z, and we then output x ⊕ W [i mod 16].

In Scream-0, both the mask table and the round keys are modified, albeit
slowly, throughout the computation. Specifically, after every pass through the
mask table (i.e., every 16 steps), we modify y, z and one entry in W , by passing

200 S. Halevi, D. Coppersmith, and C. Jutla

them through the F function. The entries of W are modified in order: after
the j’th pass through the table we modify the entry W [j mod 16]. Moreover,
instead of keeping both y, z completely fixed for 16 rounds, we rotate y by a
few bytes after each use. The rotation amounts were chosen so that the rotation
would be “almost for free” on 32-bit and 64-bit machines. This simple measure
provides some protection against “low-diffusion attacks” and linear analysis. A
pseudocode of the body of Scream-0 is described in Figure 3.

Fig. 3. The main body of Scream and Scream-0

Key- and nonce-setup. The key- and nonce-setup procedures of Scream-0 are
quite straightforward: We just use the round function F to derive all the quan-
tities that we need. The key-setup routine fills the table W with some initial
values. These values are later modified during the nonce-setup routine, and they
also double as the equivalent of a “key schedule” for the nonce-setup routine. A
pseudocode for these two routines is provided in Figures 4 and 5.

2.1 The Ciphers Scream

The cipher Scream is the same as Scream-0, except that we derive the S-boxes
S1[·], S2[·] from the Rijndael S-box S[·] in a key-dependent fashion. We replace
line 0a in Figure 4 by the following

0a. set S1[x] := S[. . . S[S[x+ seed0] + seed1] . . .+ seed15] for all x

Scream: A Software-Efficient Stream Cipher 201

Fig. 4. The key-setup of Scream-0

Nonce-setup:
Input: nonce – a 16-byte block
State: W0 – a table of sixteen 16-byte blocks

a, b – temporary variables, each a 16-byte block
Output: x, y, z – three 16-byte blocks

W – a table of sixteen 16-byte blocks

1. z := F 2(nonce⊕ W0[1]) // two applications of the function F
2. y := F 2(z ⊕ W0[3])
3. a := F 2(y ⊕ W0[5])
4. x := F (a ⊕ W0[7]) // only one application of F
5. b := x
6. for i = 0 to 7 // set W as a modification of W0
7. b := F (b ⊕ W0[2i])
8. W [2i] := W0[2i]⊕ a
9. W [2i+ 1] := W0[2i+ 1]⊕ b
10. end-for

Fig. 5. The nonce-setup of Scream and Scream-0

(Notice that + denotes integer addition mod 256, rather then exclusive-or.) In
terms of speed (in software), Scream-S is just as fast as Scream-0, except for the
key-setup. However, it has a much larger secret state (a speed-optimized software
implementation of Scream-S uses additional 2Kbyte of secret tables). We note
that we still have S2[x] = S1[x ⊕ 00010101], so a space-efficient implementation
need only store S1.

3 Implementation and Performance

Software implementation of the F function. A fast software implementation of
the F function uses tricks similar to Rijndael: Namely, we can implement the
two “half round” functions GS1,M1 , GS2,M2 together, using just eight lookup

202 S. Halevi, D. Coppersmith, and C. Jutla

operations into two tables, each consisting of 256 four-byte words. Let the eight-
byte input to GS1,M1 , GS2,M2 be denoted (x0, x1, x4, x5, x8, x9, x12, x13), the
output of GS1,M1 be denoted (u0, u1, u4, u5, u8, u9, u12, u13), and the output
of GS2,M2 be denoted (u2, u3, u6, u7, u10, u11, u14, u15). Then we can write:

u0 = M1(0, 0) · S1[x0] ⊕ M1(0, 1) · S1[x13]
u1 = M1(1, 0) · S1[x0] ⊕ M1(1, 1) · S1[x13]
u2 = M2(0, 0) · S2[x0] ⊕ M2(0, 1) · S2[x13]
u3 = M2(1, 0) · S2[x0] ⊕ M2(1, 1) · S2[x13]

(where M(i, j) is the entry in row i, column j of matrix M , indexing starts from
zero). Similar expressions can be written for the other bytes of u. Therefore, if
we set the tables T0, T1 as

T0(x) =

〈
M1(0, 0) · S1[x]

∣∣∣ M1(1, 0) · S1[x]
∣∣∣ M2(0, 0) · S2[x]

∣∣∣ M2(1, 0) · S2[x]

〉

T1(x) =

〈
M1(0, 1) · S1[x]

∣∣∣ M1(1, 1) · S1[x]
∣∣∣ M2(0, 1) · S2[x]

∣∣∣ M2(1, 1) · S2[x]

〉

Then we can compute u0..3 := T0[x0] ⊕ T1[x13], u4..7 := T0[x4] ⊕ T1[x1],
u8..11 := T0[x8] ⊕ T1[x5], and u12..15 := T0[x12] ⊕ T1[x9]. A “reasonably op-
timized” implementation of the round function F (on a 32-bit machine) may
work as follows:

Function F (x0, x1, x2, x3): // each xi is a four-byte word
Temporary storage: u0, u1, u2, u3, each a four-byte word
1. u0 := T0[byte0(x0)] ⊕ T1[byte1(x3)] // first “half round”
2. u1 := T0[byte0(x1)] ⊕ T1[byte1(x0)]
3. u2 := T0[byte0(x2)] ⊕ T1[byte1(x1)]
4. u3 := T0[byte0(x3)] ⊕ T1[byte1(x2)]
5. [byte2(u0) | byte3(u0)] := [byte2(u0) | byte3(u0)] ⊕ [byte2(x0) | byte3(x0)]
6. [byte2(u1) | byte3(u1)] := [byte2(u1) | byte3(u1)] ⊕ [byte2(x1) | byte3(x1)]
7. [byte2(u2) | byte3(u2)] := [byte2(u2) | byte3(u2)] ⊕ [byte2(x2) | byte3(x2)]
8. [byte2(u3) | byte3(u3)] := [byte2(u3) | byte3(u3)] ⊕ [byte2(x3) | byte3(x3)]

9. u0 := u0 �< 2 bytes // swap the two halves
10. u1 := u1 �< 2 bytes
11. u2 := u2 �< 2 bytes
12. u3 := u3 �< 2 bytes

13. x0 := T0[byte0(u2)] ⊕ T1[byte1(u2)] // second “half round”
14. x1 := T0[byte0(u3)] ⊕ T1[byte1(u3)]
15. x2 := T0[byte0(u0)] ⊕ T1[byte1(u0)]
16. x3 := T0[byte0(u1)] ⊕ T1[byte1(u1)]
17. [byte2(x0) | byte3(x0)] := [byte2(x0) | byte3(x0)] ⊕ [byte2(u0) | byte3(u0)]
18. [byte2(x1) | byte3(x1)] := [byte2(x1) | byte3(x1)] ⊕ [byte2(u1) | byte3(u1)]
19. [byte2(x2) | byte3(x2)] := [byte2(x2) | byte3(x2)] ⊕ [byte2(u2) | byte3(u2)]

Scream: A Software-Efficient Stream Cipher 203

20. [byte2(x3) | byte3(x3)] := [byte2(x3) | byte3(x3)] ⊕ [byte2(u3) | byte3(u3)]

21. output (x0, x1, x2, x3)

We note the need for explicit swapping of the two halves above (lines 9-
12). The reason for that is that the tables T0, T1 are arranged so that the part
corresponding to GS1,M1 is in the first two bytes of each entry, and the part
of GS2,M2 is in the last two bytes. The code above can be optimized further,
combining the rotation in these lines with the masking, which is implicit in lines
5-8, 17-20. Hence, the rotation becomes essentially “for free”.

This structure provides a space/time tradeoff similar to Rijndael: Since the
matrices M1, M2 are symmetric, one can obtain T2(x) from T1(x) using a few
shift operations. Hence, it is possible to store only one table, at the expense
of some slowdown in performance. This tradeoff is particularly important for
Scream, where the tables T0, T1 are key-dependent.

The nonce-setup routine. The nonce-setup routine was designed so that the first
output block can be computed as soon as possible. Although all the entries of the
table W have to be modified during the nonce-setup, an application that does not
use all of them can modify only as many as it needs. Hence an application that
only outputs a few blocks per input nonce, does not have to complete the entire
nonce-setup. Alternatively, an application can execute the nonce-setup together
with the first “chunk” of 16 steps, modifying each mask of W just before this
mask is needed.

Performance in software. We tested the software performance of Scream and
Scream-F on two platforms, both with word-length of 32 bits: One platform is
an IBM PC 300PL, with a 550MHz Pentium-III processor, running Linux and
using the gcc compiler, version 3.0.3. The other platform is an RS/6000 43P-150
workstation, with a 375MHz 304e PowerPC processor, running AIX 4.3.3 and
using the IBM C compiler (xlc) version 3.6.6. On both platforms, we measured
peak throughput, and also timed the key-setup and nonce-setup routines. To
measure peak throughput, we timed a procedure that produces 256MB of output
(all with the same key and nonce). Specifically, the procedure makes one million
calls to a function that outputs the next 256 bytes of the cipher. To eliminate
the effect of cache misses, we used the same output buffer in all the calls. We
list our test results in the table below.

Platform Operation Scream-F Scream SEAL
Pentium-III throughput 5.6 cycle/byte 4.9 cycle/byte 5.0 cycle/byte
550 MHz key-setup 3190 cycles 27500 cycles
Linux, gcc nonce-setup 1276 cycles 1276 cycles
604e PowerPC throughput 3.8 cycle/byte 3.4 cycle/byte 3.45 cycle/byte
375 MHz key-setup 1950 cycles 16875 cycles
AIX, xlc nonce-setup 670 cycles 670 cycles

204 S. Halevi, D. Coppersmith, and C. Jutla

Implementation in different environments. Being based on a Rijndael-like round
function, Scream is amenable for implementations in many different environ-
ments. In particular, it should be quite easy to implement it in hardware, and
the area/speed tradeoff in such implementation may be similar to Rijndael (ex-
cept that Scream needs more memory for the mask table). Also, it should be
quite straightforward to implement it for 8- and 16-bit processors (again, as long
as the architecture has enough memory to store the internal state). Scream is
clearly not suited for environments with extremely small memory, but it can be
implemented with less than 400 bytes of memory (although such implementation
would be quite slow).

4 Security Analysis

Below we examine some possible attacks on Scream-0 and Scream. The discussion
below deals mostly with Scream-0. At the end we briefly discuss the effect of
Scream’s key-dependent S-boxes on these attacks. We examine two types of
attacks, one based on linear approximations of the F function, and the other
exploits the low diffusion provided by a single application of F . In both attacks,
the goal of the attacker is to distinguish the output of the cipher from a truly
random stream.4

4.1 Linear Attacks

It is not hard to see that the F function has linear approximations that approx-
imate only three of the 8-by-8 S-boxes. Since the S-boxes in Scream-0 are based
on the Rijndael S-box, the best approximation of them has bias 2−3, so we can
probably get a linear approximation of the F function with bias 2−9. Namely,
there exists a linear function L such that Prx[L(x, F (x)) = 0] = 1/2 ± 2−9.
(In the full version of this report we show that bias of 2−9 is indeed the best
possible.)

To use this approximation, we need to eliminate the linear masking, intro-
duced by the y, z and the W [i]’s. Here we use the fact that each one of these
masks is used sixteen times before it is modified. For each step of the cipher,
the attacker sees a pair (x ⊕ y ⊕ W [i], F (x)⊕ z ⊕ W [i+1]), where x is random.
Applying the function L to this pair, we get the bit

σ = L(x, F (x)) ⊕ L(y, z) ⊕ L(W [i], W [i + 1])

For simplicity, we ignore for the moment the rotation of the y block after each
step. If we add two such σ’s that use the same y and z blocks, we get τ = σ⊕σ′ =
L(x, F (x)) ⊕ L(x′, F (x′)) ⊕ L(W [i], W [i + 1]) ⊕ L(W [j], W [j + 1]). The last bit
does not depend on y, z anymore. We can repeat this process, adding two such
τ ’s that use the same masks, we end up with a bit

µ = τ ⊕ τ ′ = L(x, F (x)) ⊕ L(x′, F (x′)) ⊕ L(x′′, F (x′′)) ⊕ L(x′′′, F (x′′′))
4 In a separate paper [1], we show that these two types of attacks can be viewed as
two special cases of a generalized distinguishing attack.

Scream: A Software-Efficient Stream Cipher 205

Since L(x, F (x)) has bias of 2−9, the bit µ has bias of 2−36, so after seeing about
272 such bits, we can distinguish the cipher from random.

Since each of the masks is used sixteen times before it is modified, we have
about

(16
2

)
choices for the pairs of σ’s to add (still ignoring the rotation of y),

and about
(16
2

)
choices for the pairs of τ ’s to add. Hence, 256 steps of the cipher

gives us about
(16
2

)2 ≈ 214 bits µ. After seeing roughly 256 · 258 = 266 steps of
the cipher (i.e., 270 bytes of output), we can to collect the needed 272 samples
of µ’s to distinguish the cipher from random.

The rotation of y. The rotation of y makes it harder to devise attacks as above.
To cancel both the y and the z blocks, one would have to use two different ap-
proximations with the same output bit pattern, but where the input bit patterns
are rotated accordingly. We do not know if it possible to devise such approxima-
tion with bias of 2−9.

The secret S-boxes. The introduction of key-dependent S-boxes in Scream does
not significantly alter the analysis from above. Since the S-boxes are key-
dependent, an attacker cannot pick “the best approximations” for them, but
on the other hand these S-boxes have better approximations than the Rijndael
S-box. Thus, the attacker can use a random approximation, and it will likely to
be roughly as good as the best approximation for the fixed S-boxes.

4.2 Low-Diffusion Attacks

A low-diffusion attack exploits the fact that not every byte of F (x) is influenced
by every byte of x (and vise versa). For example, there are output bytes that
only depend on six input bytes. In fact, in the full version of this report we show
that knowing two bytes of x and one byte of (linear combination of bytes in)
F (x), we can compute another byte of (linear combination of bytes in) F (x).
Namely, we have a (non-degenerate) linear function L with output length of
four bytes, so that we can write L(X, F (x))3 = g(L(X, F (x))0..2), where g is an
known deterministic function (with three bytes of input and one byte of output).

As for the linear attacks, here too we need to eliminate the linear masking,
introduced by the y, z and the W [i]’s. This is done in very much the same
way. Again, we ignore for now the rotation of the block y. For each step of the
cipher the attacker sees the four bytes L(x ⊕ y ⊕ W [i], F (x) ⊕ z ⊕ W [i + 1]).
We eliminate the dependence on y, z by adding two such quantities that use
the same y, z blocks. This gives a four-byte quantity L(x, F (x))⊕L(x′, F (x′))⊕
L(W [i], W [i + 1]) ⊕ L(W [j], W [j + 1]). Adding two of those with the same i, j,
we then obtain the four byte quantity

L(x, F (x)) ⊕ L(x′, F (x′)) ⊕ L(x′′, F (x′′)) ⊕ L(x′′′, F (x′′′))

We can write this last quantity in terms of the function g, as a pair (r1 ⊕ r2 ⊕
r3 ⊕ r4, g(r1) ⊕ g(r2) ⊕ g(r3) ⊕ g(r4)), where the ri’s are three-byte long, and
the g(ri)’s are one-byte long. In a separate paper [1], we analyze the statistical

206 S. Halevi, D. Coppersmith, and C. Jutla

properties of such expressions, and calculate the number of samples that needs
to be seen to distinguish them from random.

The rotation of y. Again, the rotation of y makes it harder to devise attacks as
above. In the full paper we show, however, that we can still use a low-diffusion
attack on the F function, in which guessing six bytes of (x, F (x)) yields the value
of four other bytes. Applying tools from our paper [1] to this relation, we can
compute that the amount of output text that is needed to distinguish the cipher
from random along the lines above, is merely 244 bytes. However, the procedure
for distinguishing is quite expensive. The most efficient way that we know how
to use these 244 bytes would require roughly 250 space and 280 time.

The secret S-boxes. At present, we do not know how to extend low-diffusion
attacks such as above to deal with secret S-boxes. Although we can still write the
same expression L(X, F (x))3 = g(L(X, F (x))0..2), the function g now depends
on the key, so it is not known to the attacker. Although it is likely that some
variant of these attacks can be devised for this case too, we strongly believe that
such variants would require significantly more text than the 264 bytes that we
“allow” the attacker to see.

5 The Cipher Scream-F

In Scream, we used key-dependent S-boxes to defend against “low-diffusion at-
tacks”. A different approach is to keep the S-box fixed, but to add to the main
body of the cipher some “key dependent operation” before outputting each block.
This approach was taken in Scream-F, where we added one round of Feistel lad-
der after the round function, using a key-dependent table. However, since the
only key-dependent table that we have is the mask table W, we let W double
also as an “S-box”. Specifically, we add the following lines 3a-3e between lines 3
and 4 in the main-loop routine from Figure 3.

3a. view the table W as an array of 64 4-byte words Ŵ [0..63]
3b. x0..3 := x0..3 ⊕ Ŵ [1 + (x4 ∧ 00111110)]
3c. x4..7 := x4..7 ⊕ Ŵ [x8 ∧ 00111110]
3d. x8..11 := x8 ..11 ⊕ Ŵ [1 + (x12 ∧ 00111110)]
3e. x12..15 := x12..15 ⊕ Ŵ [x0 ∧ 00111110]

We note that the operation xi ∧ 00111110 in these lines returns an even
number between 0 and 62, so we only use odd entries of W to modify x0..3 and
x8..11, and even entries to modify x4..7 and x12..15. The reason is that to form the
output block, the words x0..3, x8..11 will be masked with even entries of W , and
the words x4..7, x12..15 will be masked by odd entries. The odd/even indexing is
meant to avoid the possibility that these masks cancel with the entries that were
used in the Feistel operation.5
5 It is still possible that two words, say x0..3 and x4..7, are masked with the same
mask, but it seems less harmful.

Scream: A Software-Efficient Stream Cipher 207

5.1 Conclusions

We presented Scream, a new stream cipher with the same design style as SEAL.
The new cipher is roughly as fast as SEAL, but we believe that it is more secure.
It has some practical advantages over SEAL, in flexibility of implementation,
and also in the fact that it can take a full 128-bit nonce (vs. 32 bits in SEAL).
In the process of designing Scream, we studied the advantages and pitfalls of
the SEAL design style. We hope that the experience from this work would be
beneficial also for future ciphers that uses this style of design.

Acknowledgments. This design grew out of a study group in IBM, T.J. Wat-
son during the summer and fall of 2000. Other than the authors, the study group
also included Ran Canetti, Rosario Gennaro, Nick Howgrave-Graham, Tal Rabin
and J.R. Rao. The motivation for this work was partly due to the NESSIE “call
for cryptographic primitives” (although we missed their deadline by more than
one year).

References

1. D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with
linear masking. manuscript, 2002.

2. J. Daemen and V. Rijmen. AES proposal: Rijndael. Available on-line from NIST
at http://csrc.nist.gov/encryption/aes/rijndael/, 1998.

3. S. Fluhrer. Cryptanalysis of the SEAL 3.0 pseudorandom function family. In Pro-
ceedings of the Fast Software Encryption Workshop (FSE’01), 2001.

4. H. Handschuh and H. Gilbert. χ2 cryptanalysis of the SEAL encryption algorithm.
In Proceedings of the 4th Workshop on Fast Software Encryption, volume 1267 of
Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 1997.

5. P. Rogaway and D. Coppersmith. A software optimized encryption algorithm. Jour-
nal of Cryptology, 11(4):273–287, 1998.

A Constants and Test Vectors

The Rijndael S-box, S[0..255] = [
63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 ca 82 c9 7d fa 59 47 f0
ad d4 a2 af 9c a4 72 c0 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 09 83 2c 1a 1b 6e 5a a0
52 3b d6 b3 29 e3 2f 84 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 51 a3 40 8f 92 9d 38 f5
bc b6 da 21 10 ff f3 d2 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db e0 32 3a 0a 49 06 24 5c
c2 d3 ac 62 91 95 e4 79 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 70 3e b5 66 48 03 f6 0e
61 35 57 b9 86 c1 1d 9e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16]

208 S. Halevi, D. Coppersmith, and C. Jutla

The constant pi (for key-setup)
pi = [24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44]

Test vectors for Scream-S
*** key-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
W0[0] = [b6 a5 0b bf f3 9b 9e 99 28 b0 35 18 7b 7d 9c 7b]
W0[15] = [83 32 53 22 db 10 00 31 49 3a a4 80 3a 41 8c b3]

*** nonce-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
X = [b4 b7 7e 35 6a 24 0c c8 a7 41 b8 c7 d7 29 68 82]
Y = [e4 f4 1d 3b fd 07 d4 3c cb df a9 bb 25 df 65 6c]
Z = [87 de 72 cd 96 5a 96 24 b4 eb 79 66 57 26 fd f9]
W[0] = [66 d4 35 4d 2c 90 5f 0e 7f cc 25 59 43 ba d2 22]
W[15] = [a8 0e b6 56 be aa 5d d2 8d ca fe 07 1b f9 9c 7a]

*** stream test vectors ***
key = [01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10]

nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
out[0] = [74 8c 59 f2 0d 76 9e a8 7a 6d c1 87 46 e6 4a c0]
out[1] = [bd 3b 39 cd 12 18 43 0f 80 fa e0 1b 2e 60 f1 74]
out[4] = [15 21 8a 46 fb ee 26 54 98 8d 2b 80 8a 87 f4 5e]
out[16] = [cb 32 f4 d6 f7 ce 57 69 e2 a3 ac d8 37 e1 37 82]
out[1023] = [97 ec 87 f0 a0 6c e7 0b 75 e6 12 25 50 1f 82 e3]

nonce = [01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01]
out[0] = [47 68 06 37 83 85 99 af d2 8f fb 2e dd fc 9d 2e]
out[1] = [7b d3 0b e4 7a a6 3b 5f 4f 5f 05 06 66 17 d5 a2]
out[4] = [98 aa 20 75 73 c7 fa fc 1c 4c 27 61 46 14 3c 1d]
out[16] = [b3 33 a4 8e 17 50 8e ab b2 68 fb 60 67 56 46 1e]
out[1023] = [a5 41 b3 37 c6 bd 8a 4b 41 a1 40 5f ea c5 a3 f5]

Test vectors for Scream-F
*** key-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
W0[0] = [be a0 cd 9a 5d f6 85 59 c0 3f a9 c5 53 fd ad e1]
W0[15] = [eb 2e ab 45 26 ee 49 e1 34 db 97 87 62 d1 3b 25]

*** nonce-setup test vectors ***
key = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
X = [d4 10 c5 bf bd 7b fd 81 37 4e e3 b0 c1 bf 8b a6]
Y = [51 a6 7f 38 3d 0d 95 26 bf b5 b0 e8 26 b5 e4 93]
Z = [53 50 b7 d6 87 3d df 8c 7f 9b 10 7c e0 92 d0 02]
W[0] = [cb ad d5 c2 b0 85 af 77 6c d8 ef ce 7b 36 65 3a]

Scream: A Software-Efficient Stream Cipher 209

W[15] = [19 14 5e 0a 4d 23 1c d5 f9 6f 85 8a 39 38 81 a1]

*** stream test vectors ***
key = [01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10]

nonce = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]
out[0] = [39 ec 4a 06 45 4d c3 cd 96 dd ef 0c f0 c2 67 40]
out[1] = [a0 ea 56 e7 e3 c8 f5 df 34 ea 35 ee 77 ed da 66]
out[4] = [8a c8 93 af 83 ed 0a 53 6b e9 f4 7c b6 6d 21 67]
out[16] = [e0 8c fe 31 34 a7 48 ca 14 10 f9 58 50 71 49 20]
out[1023] = [a4 e2 fc be 0a 47 53 9a 23 e0 79 25 5c be ea e7]

nonce = [01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01]
out[0] = [2e 70 fb 8c d5 d8 50 a8 94 38 0e 85 46 9d 33 fc]
out[1] = [33 39 da 86 9c a1 f7 1b 3a d0 16 16 ea 42 24 1a]
out[4] = [1a 79 cf 13 01 67 2c 52 25 13 8c c8 89 fb 50 72]
out[16] = [c8 f2 3f ca 4e 0c 47 46 1a b3 7b 34 1b 57 c7 96]
out[1023] = [6e 63 21 c1 9b 49 08 57 84 87 14 ea 4f 08 4b 7d]

	Introduction
	A More Secure SEAL
	The End Result(s)
	Organization

	The Design of Scream
	The Ciphers {Scream}

	Implementation and Performance
	Security Analysis
	Linear Attacks
	Low-Diffusion Attacks

	The Cipher Scream-F
	Conclusions

	Constants and Test Vectors

