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Abstract. An optimization technique is presented that compresses a
chain of transitions into a single jump transition, thus making a model
smaller prior to model checking. We give compression algorithms, to-
gether with conditions that allow such compressions to preserve next-
time-free LTL. Experimental results are presented and discussed.

1 Introduction

In model checking a multi-component system, memory or/and time necessary to
explore the system’s state space may often grow too fast, even exponentially in
the number of system’s components. This is known as the state space explosion
problem. Methods to fight it, often called “reductions”, constitute one of the
most important directions in formal verification and their effectiveness largely
determines the size of systems manageable by model checking.

This paper suggests a reduction method that attempts to compress a se-
quence of transitions into a single transition, eliminating the interim states.
A simple example of the compression method in the case of a sequential pro-
gram is to replace the consecutive assignments x := 1;x := x + 1 with one
assignment x := 2. Although this substitution might seem always possible, it is
not so. Consider the property always(xz = 2): it holds on the compressed code,
but fails on the original code. The paper formulates rules for correct compression
and suggests simple reduction algorithms based on those rules.

When applied to a multi-process system with interleaving semantics, this
compression method can augment partial order reduction. Partial order reduc-
tion gets its effect by ignoring redundant interleavings. Given two or more execu-
tions that only differ in the interleaving orders of their transitions (for example,
a,band b, a), it suffices to check the property on only one of those executions pro-
vided that its truth value can be guaranteed to be the same on any other one. The
conditions which guarantee this kind of insensitivity to a particular interleaving
order make up the heart of partial order reduction. In general ( [16,4,13,10]),
these conditions require that the transition selected to be executed be irrelevant
to the property and independent (i.e. commutative) with all other transitions,
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and also, it cannot close a state-transition cycle. However, the very same condi-
tions suggest that interim states between the transitions (e.g., between a and b)
are also irrelevant to the property. Hence, there is no reason to execute the
selected sequence (a,b) in steps, transition-by-transition. Instead, it can be ex-
ecuted as an atomic jump transition. Thus, the compression method completes
the partial order reduction approach.

The compression is performed as a program transformation of the same sort
required for static partial order reduction (SPOR) [10,7]. The model checker
operates on the compressed program, which is equivalent (relative to the property
being checked) to the original program.

SDLCheck [12] is a model checking tool developed for verification of SDL
programs [6]. Given an SDL program and a property in a subset of Linear Tem-
poral Logic (LTL) [15], they are both translated into S/R, the input language
of the model checking tool COSPAN [9]. SDLCheck treats each SDL statement
(an assignment, an output, etc.) as an atomic transition and reflects this view
in the S/R model it produces: global states are generated before and after
each SDL statement is executed. SDLCheck implements SPOR in the trans-
lation phase from SDL to S/R. Thus, the S/R model is optimized to have par-
tial order reduction realized in the model checking phase. The combined tool,
SDLCheck+COSPAN;, utilizes all enhancements of COSPAN, including BDD-
based symbolic verification. SDLCheck also implements the compression tech-
nique given in this paper.

SPOR is used to analyze the SDL system, and gather the information re-
quired for the compression.

For instance, it can detect if z is an important variable for the correctness
of the verification, and if it is not, then the compression algorithm replaces the
consecutive assignments z := 1;z := x+1 with x := 2. COSPAN, therefore, does
not generate the interim state after executing z := 1, avoiding many possible
interleavings that would be caused by the transitions of the other processes at
this interim state. After transitions are compressed, SPOR is applied again, but
this time, to the compressed S/R model.

2 Preliminaries

2.1 Modeling Programs by Transition Systems

We model a finite state program by a transition system M = (S,<,T,P,L)
where S is a finite set of states, ¢ € S is the initial state, T is a set of deterministic
transitions, each transition ¢ C S xS, P is a finite set of propositional variables,
and L : S +— 27 is an interpretation function: for every state s, L(s) is the set
of all propositional variables which are true at s.

For a transition t, the set start(t) (the set final(t)) include all states that
appears in a pair (s1, s2) € t as s1 (respectively, s3). Since transition ¢ is assumed
deterministic, we associate it with a function ¢ : start(t) — final(t) such that
t(s1) = sg iff (s1,s2) € t. For a state s, the set of transitions enabled at s is
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enabled(s) = {t € T | s € start(t)}. We assume for simplicity that for every
state s, enabled(s) # 0.

A state-transition path of M is an infinite or finite alternating sequence of
states and transitions o = 1,11, 89,t2,... (ends in a state if it is finite) in
which ¢;(s;) = s;+1. Let 0|k be the projection of o on a set K. An infinite
state-transition path is called a run of M if it starts from the initial state .

To specify properties of a system M, we use LTLy, which is LTL without
the next—time operator. M satisfies an LTLy formula ¢, denoted by M [ ¢, iff
for every run o of M, the proposition sequence L(c|g) satisfies ¢, denoted by
ols | ¢, — we refer the reader to the literature for the exact definition (see, for
example, [15]). Checking if M = ¢ is performed by a model checking procedure.

2.2 Static Partial Order Reduction

Model checking algorithms construct reachable state space of M, by starting
from the initial state and by successively exploring all the transitions enabled
at a state. Partial order reduction techniques calculate, for each state s, a set of
transitions called stamper(s), which is a subset of the enabled transitions at s.
Only the transitions in stamper(s) are used to generate the next states of s,
rather than using all the enabled transitions, thus omitting some runs of M.
Stamper' sets must satisfy certain conditions, so that at least one run that does
not satisfy ¢ (if such a run existed in M in the first place) is not omitted.

Partial order reduction follows the observation that the correctness of ¢ on
a proposition sequence m = p1,pa, ... (where p; C P) does not depend on how
many times one and the same subset P appears as adjacent elements (hence
stutters) in 7. An integer i > 2 is said to be a wvisible index for « if p; # pi—1.
Let 71 < iy < ... be all the visible indices of 7. By taking the fluent projection of
7 defined as fluent(w) = p1,pi,, Piy - - -, we define stuttering equivalence relation
on two proposition sequences 7 and 7’ as, m ~g 7 if fluent(n) = fluent(n’).
Two systems M = (S,¢,T,P,L) and M’ = (S’,¢',T',P, L) with common P are
said to be stuttering equivalent, denoted by M ~g; M’, iff for each run o of M,
there exists a run o’ of M’ such that L(o|s) ~s L'(c’|s/), and vice versa.

In [10,7], the stamper set conditions were modified into the static partial
order reduction (SPOR) form, making it possible to select the stamper sets prior
to actual model checking, and, hence, syntactically convert M into a (reduced)
system M’. The following is a SPOR variation of the main partial order reduction
theorem [13].

Theorem 1. 2. If SPOR reduces M to M', then M ~¢ M'.

Since any LTLy formula ¢ is stuttering-closed [11] (i.e. if © ~g 7’ then 7 = ¢
iff 7’ |= ¢), the following holds too.

! Different names have been used in the literature for different but similar condi-
tions [16,4,13]. The term “stamper” is introduced in [14] to unify “stubborn”, “am-
ple”, “persistent”, etc. sets of transitions.

2 The proof is given in detail in [17].
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Corollary 1. For any LTL, formula ¢, M = ¢ iff M = ¢'.

The implementation of SPOR algorithm is defined for a transition system M
given in the form of process control flow graphs (supplied with additional infor-
mation from the source program, which characterizes the data effects of tran-
sitions). The SPOR algorithm, in this setting, returns (identifies) a subset of
stamper transitions A C T', such that if A C A is a subset of enabled transitions
of a single process, then A = stamper(s) is a stamper set at s.

3 Compressing Links into Jump Transitions

Since the correctness of an LTLy property actually depends on fluent(L(o|s)),
the stuttering states, and the transitions outgoing from these states are not
needed at all. We take this view, and try to identify such stuttering states, and
the outgoing transitions from these states. We then combine a chain of stuttering
transitions into a single jump transition, so that the intermediate stuttering
states disappear. As an introductory example, assume that we have the following
transitions t1 = {(s1,s2)} and to = {(s2,s3)}. If 51 is reachable, then so is s
and s3, and a model checker has to generate all these states. If L(s2) = L(s3),
then ¢; and ¢ can be safely replaced with the transition ju, ) = {(s1,53)}
in M, s; and s3 will still be reachable, but s5 is no longer reachable. This is the
basic idea, however there are certain conditions under which such a transition
compression can be done.

Below, we define the rules for compressing a transition system M. Also we
claim the correctness of the rules by a number of lemmas. The proofs of the
lemmas are given in [3] and omitted here due to the space limitations. We as-
sume that a transition system M has been analyzed for static partial order
reduction (hence, the stamper transitions are known), but has not been reduced
yet. Applying compression rules to M may modify it into a different transition
system M’, which we can show is then stuttering-equivalent to M.

Definition 1. Given two transitions a,b € T of a system M = (S,s,T,P, L),
the pair (a,b) is called a link in M if the following conditions hold:
(1) final(a) = start(b)
(2) {b} is a stamper set at all the states in start(b)
(3) For any run o, o|(.p) i either
(i) a finite sequence of the form (ab)* or (ab)*a; or
(ii) an infinite sequence of the form (ab)*
Given a link (a,b), we define the jump transition relation as
Jiap) = {(8a, 80)|5a € start(a) A sp = b(a(sa))}

Intuitively, conditions 1 and 3 guarantee that we only produce a jump transi-
tion for a pair of transitions that follow each other, in the sense that b cannot get
enabled before a on any run of M. They further impose that a is the only enabler
for b. Removing the transitions a and b, and inserting the new transition j, ),
will end up in missing some reachable states. Condition 2 guarantees that such
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states are either at the start or in the middle of some stuttering sequence of
states, and thus safe to remove. The conditions of Definition 1 can further be
relaxed, but this formulation is relatively easier to explain and implement.

Lemma 1. Given a transition system M = (S,¢,T,P, L) and a link (a,b) in M,
let M" = (8,6, TU{jap} \{a b}, P,L). Then, M ~z M'.

Lemma 2. Given a transition system M = (S,¢,T,P,L), and a link (a,b)
in M, let M" = (S,¢,T U {jap} \{a,b},P,L). Then if {a} is stamper in M
and start(a) N final(b) = 0, then {jp)} is stamper in M'.

Lemma 3. Given a transition system M = (S,¢,T,P,L), and two transitions
t1,to € T, such that start(ty)Nstart(te) = 0, let to & T be defined as tg = t1 Uts.
Then for M' = (S,¢, T U{to} \ {t1,t2},P, L), M ~g M’.

Lemma 4. Given a transition system M = (S,¢,T,P,L), and a transition

to €T, let t1,to € T be two transitions such that t1 and ts are a partitioning
for to. Then for M' = (S,¢, T U {t1,t2} \ {to}, P, L), M ~g M’'.

4 Compressing Transitions in a Multi-process System

A transition system M = (S,¢,T,P, L) is a model for a multi-process program
with an inter-process communication through message exchange, such as an SDL
program [6]. The Algorithm 2 given below compresses local, input and output
transitions with other local, input and output transitions, which all belong to one
and the same process. The Algorithm 1 attempts to convert (to some extent) a
pair of corresponding output and input transitions into a rendezvous transition.
Thus, the interim and final transition systems which the algorithm produces
may be associated with a multi-process program having both message exchange
and two-process rendezvous synchronization. Below we explain specific features
of such transition systems.

4.1 A Multi-process Transition System

In a multi—process transition system M, processes P are subsets of transitions:
P C 27, Transitions T are partitioned into two sets, 7' and T2, that contain,
respectively, “private” and “rendezvous” transitions. Each private transition be-
longs to only one process p € P, which performs this transition (yet, a private
transition may access variables of other processes too: consider, for example, an
output action that updates a buffer variable of a receiving process). A rendezvous
transition belongs to exactly two different processes p, ¢ € P. For each process p,
we may produce (by translation from the source program) a graph G?, called the
control flow graph of p. The graph’s nodes IV are called locations. Multiple edges
are allowed between two locations. However, there exist two mappings from the
graph edges F into the locations N that give for each edge e € E its starting
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and final locations, sloc(e) and floc(e)®. The edges in GP are associated with
the transitions p, i.e. there exists a one-to-one mapping p — FE. We denote ¢
the edge associated with transition t. If ¢ is a rendezvous transition shared by
processes p and ¢ then it is associated with edge t¥ in graph GP and edge t7
in graph GY9. We will also apply edge specific notations (fanin, fanout, starting
and final nodes, etc.) to transitions. In p, the following conditions are assumed
to hold:

— All transitions in p which are enabled at the initial state ¢ have the common
starting location, let loc?. No other transition may leave this location.

— For every run o of M, o|, corresponds to a (infinite or finite) path in G?.

Lemma 5. Ifa is the only fanin transition of a location and b is the only fanout
transition of the same location then for a and b the condition 8 of Definition 1
18 true.

As explained above, the SPOR algorithm analyzes the process control flow
graphs of system M (enriched with the data effects of transitions) and returns the
set of stamper transitions A C T. Thus, a multi-process (transition) system M
can be represented by a tuple (S,s,7 =T*UT? P,L, P, (GP)pep, A).

We also introduce a multi-process system with message exchange. In such
systems, the set of private actions T'! is further partitioned into subsets of local,
output and input transitions, denoted respectively by, T¢, T° and T". We assume
that the output transitions p° C p of process p, are partitioned into subsets,
called output signals. Respectively, the input transitions ¢* C ¢ of process ¢, are
partitioned into subsets called input signals. There exists a matching mapping
from the set of (all) output signals to the set of (all) input signals such that at
most one output signal of process p matches a given input signal of process q.
This gives us a relation C C T° x T that connects every output transition
of process p with one or more input transitions which all belong to process q.
Relation C reflects, for example, a communication topology of SDL programs.
Below, we refer to C as to the signal connection of system M.

4.2 Syntactic Manipulations with Transitions

In the implementation of the compression algorithms, we have to deal with
syntactic representation of transitions of a system M. An example of syntax that
fits well our purpose is Dijkstra guarded command g(X) < U := e(X), where
guard ¢g(X) is a boolean expression, and U := e(X) is a parallel assignment of
values produced by expressions e(X) to variables U. In the context of this syntax,
states of the system M are given as valuations of program’s variables X, among
which we assume to have not only data variables D of the source program, but
also the program counters of the processes, i.e. control variables, which model the
control flow graphs of M. For example, if a is a local (input or output) transition
of process p that starts in location ¢; and finishes in location ¢y then it can be

% Through introducing interim nodes, graph G can be explained as a traditional
graph, where edges are pairs of nodes.
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expressed by the command p.c = ¢; Ag(D) — V,p.c := e(D), ca, where p.c is the
program counter of process p and V is a list of (different) data variables. In a
case of a local transition, all data variables used in this command must be local
variables of process p. Additionally, in a case of an input or output action, one
shared data variable is involved, which models the input buffer of the receiving
process. A rendezvous transition we will deal with is represented by the following
command:

pec=ci ANgc=clNg(D)— V,pc,q.c:=e(D),ch, i

where ¢, cb and ¢, ¢l are, respectively, locations in processes p and gq.

When representing a transition a by a guarded command g(X) — U := e(X),
g(X) defines the set of states where a is enabled (start(a)). If g(X) = g1(X) V
92(X) and ¢1(X) A g2(X) = false, then the command can immediately be split
into two commands as, g1(X) — U := e(X) and ¢2(X) — U := e(X), cf.
Lemma 4. Merging two transitions, cf. Lemma 3, whose guards are disjoint is
a bit more complicated, since, a variable, say, x may be updated in the both
commands, say, by expression f1(X) in one and expression f3(X) in the other
one. Yet, this is still simple: in the merged command, x will be updated by the
conditional expression if g1 (X) then f1(X) else fo(X) fi.

Merging commands (which represent transitions) as explained above can be
utilized in an implementation of the algorithms given below. However, we need
a more complicated splitting method. Consider two consecutive output transi-
tions a, b of process p that send messages to two different processes ¢; and g¢s.
In general, we cannot make a jump transition j, ;) that implements the both
outputs in one step, i.e. simultaneously sends messages to ¢; and g2, because the
output b may be disabled (for example, the input buffer of process g2 is full) when
output a is enabled. However, if we split a into two outputs a; and as such that a;
is enabled iff output b is enabled, then we can make the jump transition j,, )
(note that a copy of transition b must be preserved to work as a partner of
transition ag). Thus, we need a method to split transition a in such a way that
s € start(aq1) iff s € start(a) and a(s) € start(b). Since, start(a) is expressed by
the guard of the command for transition a — let it be ¢g%(X) — U® := e*(X),
the problem is only to express the predicate a(s) € start(b).

Fortunately, this problem can be approached through a well studied tech-
nique of manipulation with program actions and predicates. Namely, we refer
to the weakest liberal precondition predicate transformer [3] wip(«, ), where
« is a program action and 7 is a predicate. In our context, « is the update
function of transition a, i.e. the parallel assignment U?® := e*(X), and 7 stands
for start(b), which is already expressed by the guard g?(X) of the transition b
command. Thus, the predicate a(s) € start(b) can be syntactically expressed
as wip(U® := e%(X), g*(X)). This wip expression can then be unfolded into an
ordinary boolean expression through substitution of the expression e%(X) for
occurrences of variables U? in the guard g°(X).

A harder task would be to express the set of final states of transition a. How-
ever, in order, to obtain good compression it may suffice to under-approximate
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this set with a big enough set F' C final(a), which is expressible by a boolean
expression in a chosen syntax. The first approximation set F' can always be given
by the expression p.c = floc(a) provided that a belongs to process p.

4.3 Compression Algorithms

Next are two compression algorithms, presented in a pseudo-algorithmic form.
These algorithms can be implemented, by embedding the steps into the traver-
sal of the control flow graph. The algorithms perform syntactic modification of
control flow graphs (and related components) of a multi-process system M.

Algorithm 1 deals with output/input pairs of (connected) transitions. It splits
output o and input ¢ in such a way that reveals the rendezvous sub-case of their
interaction: namely, an output sub-transition o; makes a link with input sub-
transition 71, whereas the remaining private sub-transitions oo and iy take care
of the asynchronous sub-case of the original output/input interaction.

Algorithm 1. Revealing a rendezvous component of an output/input pair.
Input: Multi-process system M augmented with a signal connection C.

Action: Modify M as follows. In each pair of processes (p, q), p,q € P, such that
an output signal of p matches an input signal of ¢, for each pair of transitions
(0,4) € C such that i is a stamper transition, do the following:

1. Choose an approximation set F' C final(o), using available heuristics (for
example, the set expressed by condition p.c = floc(0)).

2. Split input transition ¢ into ¢; and is, and output transition o into o; and o9
in such a way that s € start(iy) iff s € start(i) N F and s € start(oy) iff
o(s) € start(iq).

3. (Fact: the pair (o01,41) is a link.) Make a jump transition j = j,, ;). (Note
that j is a rendezvous transition shared by processes p and gq.)

4. In process p, replace o by j,02. In process ¢, replace i by j,is.

5. In graph GP, replace edge o by two new edges oz, 7P which both have the
same starting and final locations as o. In graph GY, replace edge ¢ by two
new edges i, 79 which both have the same starting and final locations as .

6. In the set of stamper transitions A, replace i by is and, if transition o € A
then also replace o by o9, j. In relation C replace pair (o0,4) by (02,1i2).

Return the modified system M’ and the signal connection C’. The sets
T!, T°, T? T? are changed according to the changes in processes P and their
control flow graphs (G?)pecp.

A hammock is a set of n > 1 edges (or associated transitions) such that they
all start at one location, let, s and finish at one location, let, f, not necessarily
different from s. We say that an edge (a transition) b follows a if sloc(b) =
floc(a). A chain is a set of n > 1 edges (or associated transitions) such that
(i) they form an acyclic path, i.e. may be ordered into a sequence ey, ...e,
where e; ;1 follows e; and e; does not follow e,,, and (ii) each of them has either
one fanin or one fanout edge. A hammock (chain) is maximal if it would not
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be a hammock (respectively, chain) any more if any other edge (transition) is
included into it. Below, whenever a hammock (chain) of edges {e1,...e,} is
said to be replaced by a new edge e, it is meant that sloc(e) = sloc(e;) and
floc(e) = floc(ey,) (if the edges form a chain, e; and e, are, respectively, the
first and last elements).

Algorithm 2 compresses chains and hammocks in each process of system M.
For simplicity, it only deals with private transitions and ignores rendezvous tran-
sitions. Algorithm 2 utilizes Procedure 1 that basically (though not exclusively)
targets output transitions, for which making a link with a preceeding transition,
say, a, is a problem: the set of final states of transition a does not necessarily
(in a fact, almost never) coincides with the set of starting states of the following
output transition. As an example, consider two consequtive outputs.

Algorithm 2. Compressing hammocks and chains.

Input: A multi-process system M.

Variables: C';, H and R will keep temporary sets of (structures of) transitions
of a current process p. C' is designated for chains, H for hammocks, R contains
those remaining transitions of process p that the algorithm has not rejected to
deal with yet. Some pairs of transitions in chains of C' can be marked as bad.

Action: Modify each process p € P and graph GP, and the A as follows.

1. Initialize: C' := the maximal chains of p \ T?, H := the maximal hammocks
of p\T?, R:=p\ (T?UJCUH).

2. If no chain in C' contains transitions a, b s.t. b follows a and (a,b) is not bad
then do the following. If H = ) then select the next process in P and go to
step 1. Otherwise, go to step 6.

3. Otherwise, pick up such a pair (a,b) in a chain of C, which is not marked
bad and b follows a. If (a,b) is not a link then perform Procedure 1 given
below and then go to step 2.

4. ((a,b) is a link.) In process p replace a and b by a jump transition j = jiqp)-.
In graph GP replace the chain {a,b} by a new edge j. Remove b from A. If
a € A then replace a by j. Remove a and b from (a chain in) C.

5. If any fanin or fanout transition of j belongs to a chain in C' then include j
into this chain. Otherwise, include j into a hammock h € H such that
{j} U h is a hammock. If no such hammock is found, then, check if j makes
a hammock with a transition r € R. If it does, include the hammock {j,r}
into H and remove r from R. Otherwise, include j into R. Go to step 2.

6. If H = () then go to step 2. Otherwise, choose a hammock, let, {a1,...a,} €
H and remove it from H. If the hammock cannot be merged into a single
transition a (cf. Lemma 4), then repeat this step 6.

7. In process p replace ai,...a, by a. In graph GP replace the hammock
{a1,...an} by a new edge a. If all aq,...a, € A then replace all of them
by a; otherwice, A:= A\ {a1,...a,}.

8. If a makes a chain with transitions in the set {a} U RU|JC then form the
maximal chain (in this set) that contains a and include it into C. Chains
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from C are included into this new chain with their bad markings (if any).
Remove from R the transitions which participate in this new chain. Go to
step 6.

9. If @ makes a hammock {a,r} with transition r € R then include it into H
and remove r from R. Otherwise, include a into R. Go to step 6.

Return the modified system M’

In Algorithm 2, each process p is modified within two loops that perform
in one or more turns, one after another. The first loop (steps from 2 through 5
and Procedure 1) attempts to compress chains in C' as much as possible. When
nothing remains to compress in C, the second loop (steps from 6 through 9)
attempts to merge hammocks in H as much as possible. Each of the loops may
generate a new hammock for H. The first loop may also include a new transition
into an existing hammock in H, whereas the second loop may generate a new
chain for C' with a transition in R. When nothing is left to compress (merge) in
both C and H, modification of process p finishes and the next process is selected.

Procedure 1. (Performed for pair (a,b), if it is not a link.)

1. If b € A or a or b makes a link with a transition in the same chain of C' that
a, b belong to then go to step 2. Otherwise, go to step 3.

2. In C, mark the pair (a, b) as bad. If a follows ¢ and (¢, a) is bad, then remove a
from C. If d follows b and (b,d) is bad, then remove b from C. Return to
continue step 3 of Algorithm 2.

3. Split transition a into ai,as s.t. state s € start(a;) iff s € start(a) and
a(s) € start(b). In process p, replace a by ay, as. In graph G?, let sloc(a) = A
and floc(a) = A1; then, make a new location Ay and replace the edge a by
two new edges a1, as s.t. the both have A as the starting location, whereas
floc(a1) = A and floc(az) = Aa. Associate the edges a; and ag with
transitions a; and ag, respectively. (Fact: (a1, b) is a link. Note that in GP
edge ao is not connected yet to edge b.)

4. Make the jump transition j = j,, ). In process p replace a; by j. In graph
G? replace chain {a1,b} by a new edge j, and associate transition b with a
new edge b s.t. sloc(b’) = A2 and floc(b') = floc(b). (Thus, from now on,
the new location \s effectively replaces the old \; — so that the new edge
b’ follows az). If a € A then replace it by j,as. Remove a,b from (a chain
in) C. Return to continue step 3 of Algorithm 2.

Theorem 2. Given a multi-process transition system M (with signal connection
C), Algorithm 2 (respectively Algorithm 1) returns a transition system M’ such
that M ~st M.

The proof of this theorem follows from the two facts: (i) each complete se-
quence of steps of the algorithm (Algorithm 2 or Algorithm 1, respectively)

produces an intermediate system M such that M ~g M, and (ii) the algorithm
terminates. In Algorithm 1, a complete sequence of steps include all steps that
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deal with one output/input pair (0,4). In Algorithm 2, there are two types of
complete step sequences: one deals with a pair of transitions (a,b) taken from a
chain in C' and the other one deals with a hammock taken from H.

5 Implementation and Experimental Results

Experimental results are presented in this section. Currently, revealing a ren-
dezvous component of output/input transition pairs is not implemented. The
table below summarizes our results.

||Example | Experiments ||
Explicit, SPOR |Explicit, SPOR, Compression
1548 sec, 380M | 1080sec, 204M

Symbolic, SPOR | Symbolic, SPOR, Compression
87 sec, 20M 54 sec, 9.4M
Symbolic+SPOR+Compression
HW/SW Elevator|- 14403 sec, 415M

Symbolic, SPOR | Symbolic, SPOR, Compression
21 sec, 28 M 18 sec, 24M

Leader(6)

Sort(12)

Triple Ring

A leader election protocol with 6 processes could only be verified using an ex-
plicit search, since the symbolic verification ran out of memory. The compressed
system could be verified in a shorter time and using less memory than the un-
compressed system. The sort example (a chain of SDL processes that runs as a
parallel sorting algorithm), on the contrary, could not be verified (even with 7
processes) using explicit search after waiting 24 hours. However, the compres-
sion technique in this case also reduced the amount of time and memory required
in symbolic search. As a HW/SW co-design example, we tried a simple eleva-
tor system as given in [10]. This example could only be verified using symbolic
search, SPOR and compression all at the same time. It ran out of memory when
compression was not used.

Fourth example is a ring consisting of three processes P, () and R such that P
sends messages to @, () to R and R to P. The property we checked is invisible
in processes P and @. Using SDLCheck with SPOR and no compression, we
generated S/R code for this program. Then we manually modified this S/R code
in such a way that one of the output/input pairs, namely, between P and @, is
split into the rendezvous action and non-rendezvous output and input (respec-
tively, in P and @.) The result of this small optimization, which is additional
to SPOR, is not just 15% improvement. The more important is what it indeed
demonstrates. Since, the cycle of inter-process communication [7] has been delib-
erately broken in process R (in SDLCheck, this is controllable), all local actions
in P and (Q appear stamper.

As a result, they are enforced to execute prior to any input and output ac-
tions. Therefore, neither of the two non-rendezvous actions (the output from P
to @ and the corresponding input in (), which remain after extraction of the
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rendezvous component, ever becomes enabled. In other words, communication
between P and @ could be implemented as fully rendezvous, for this particular
property. Remarkably, COSPAN recognizes and utilizes this situation. Before
actual model checking, COSPAN applies the localization reduction, which elim-
inates state variables that fall out of the influence cone of the property. So, we
can observe that this reduction indeed completely eliminates the buffer of the
process ). We emphasize that no such effect can be observed using only (any)
one or even (any) two of the three reductions we applied in the sequence: com-
pression of the output/input pair (based on SPOR), SPOR itself and (finally)
localization reduction.

As the experimental results suggest, the transition compression may help
reducing the required time and memory further, in addition to other relief tech-
niques such as SPOR, localization reduction, symbolic verification, etc.

6 Conclusion and Related Work

A formal basis for the compression of transitions in a transition system is pre-
sented. The formalization of the method at the transition system level provides
a more general framework than previous work. Recently, a similar approach was
outlined in [5] and then elaborated in [18] that compresses transitions of one
process. However, even within a single process, that approach does not com-
press consecutive output transitions. We show that consecutive transitions may
be compressed, provided that the conditions of Definition 1 are satisfied. The
other method does not suggest any technique for extracting a rendezvous compo-
nent from asynchronous communication, as we do. Although the previous work
states that their method is closely related to partial order reduction, the exact
relationship is not made explicit. We show this relationship explicitly.

The compression method presented, may also make some of the variables
in the system automatically removed, as in the case of the triple ring example.
Live variable analysis, given in [I] can be considered as a similar approach.
However, live variable analysis technique identifies the unused assignments to
variables, and then removes these assignments from the model. Note that, in
the triple ring example, the buffer of the process is actually used effectively in
the original system. It becomes unused only after compressing the output and
input transitions into a jump transition. Therefore, a live variable analysis on
the original system would not recognize the process’ buffer as a dead variable.

An observation that partial order reduction may be improved by jumping via
a sequence of stamper (ample) transitions, was reported in [2], which suggests
a different method (called a leap) that simultaneously executes transitions from
all (current) stamper sets, rather than from one such set. This means merging
independent concurrent transitions from different processes, hence, contrasts to
compressing consequtive transitions from one or several processes. The leap and
compression methods can be combined together, and SDLCheck implements
this. However, our experiments do not show that the leap method consistently
improves performance. For example, even after waiting eight hours, we could not
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verify the sorting algorithm with 12 processes when we used a compressed S/R
model that realizes the leap technique. Apparently, such performance decline is
due to the intrinsic complexity of the leap mechanism, which must deal (during
the model checking, not statically) with the entire set of all current stamper sets.

Our method can benefit directly from any progress in the field of partial order
reduction theory. Relaxing visibility conditions of transitions [14], for example,
can directly be incorporated into our tool.
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