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Abstract. We present a methodology and tool for verifying and cer-
tifying systems code. The veri�cation is based on the lazy-abstraction

paradigm for intertwining the following three logical steps: construct a
predicate abstraction from the code, model check the abstraction, and au-
tomatically re�ne the abstraction based on counterexample analysis. The
certi�cation is based on the proof-carrying code paradigm. Lazy abstrac-
tion enables the automatic construction of small proof certi�cates. The
methodology is implemented in Blast, the Berkeley Lazy Abstraction
Software veri�cation Tool. We describe our experience applying Blast
to Linux and Windows device drivers. Given the C code for a driver and
for a temporal-safety monitor, Blast automatically generates an easily
checkable correctness certi�cate if the driver satis�es the speci�cation,
and an error trace otherwise.

1 Introduction

An important goal of software engineering is to facilitate the construction of cor-
rect and trusted software. This is especially important for low-level systems code,
which usually cannot be shielded from causing mischief by runtime protection
mechanisms. Correctness requires technologies for the veri�cation of software,
which enable engineers to produce programs with few or no bugs. Trust requires
technologies for the certi�cation of software, which assure users that the pro-
grams meet their speci�cations, e.g., that the code will not crash, or leak vital
secrets. Both veri�cation and certi�cation are most e�ective when performed for
actual code, not for separately constructed abstract models.

For veri�cation, model-checking based approaches have the advantages of
being, unlike most theorem-proving based approaches, fully automatic and, un-
like most program-analysis based approaches, capable of checking path-sensitive
properties. The main obstacle to model checking is, of course, scalability. Re-
cently, abstraction-re�nement based techniques have been developed for (mostly)
automatically constructing and model checking abstract models derived directly
from code [3, 7, 25, 16]. However, the main problem faced by such techniques is
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still scalability: for large software systems and complicated speci�cations, the ab-
straction process can take too much time and space, and the resulting model may
again be too large to be model checked. The technique of lazy abstraction [15]
is an attempt to make counterexample-guided abstraction re�nement for model
checking [6, 3] scalable by localizing the abstraction process and avoiding unnec-
essary work. Lazy abstraction builds an abstract model on-the-
y, during model
checking, and on demand, so that each predicate is used only in abstracting those
portions of the state space where it is needed to rule out spurious counterex-
amples. This is unlike traditional predicate-abstraction based model checking
[13, 8, 1], which constructs a uniform predicate abstraction from a given system
and a given set of predicates. The result is a nonuniform abstract model, which
provides for every portion of the state space just as much detail as is necessary
to prove the speci�cation. Also, lazy abstraction short-circuits the traditional
abstract-verify-re�ne loop [3], and avoids the repetition of work in successive
abstraction phases and in successive model-checking phases.

For certi�cation, proof-carrying code (PCC) [18] has been proposed as a mech-
anism for witnessing the correct behavior of untrusted code. Here, the code
producer sends to the consumer the code annotated with loop invariants and
function pre- and postconditions, as well as a proof of correctness of a veri-
�cation condition, whose validity guarantees the correctness of the code with
respect to the speci�cation. From the code and the annotations, the consumer
can build the veri�cation condition and check the supplied proof for correctness.
The checking of the proof is much simpler than its construction. In particular,
by encoding the proof, proof checking becomes a type-checking problem. Proof-
carrying code has the advantages of avoiding trusted third parties, and of being
tamper-proof, because tampering with either the proof or the code will result
in an invalid proof. The main problem faced by PCC is that a user may have
to supply annotations such as loop invariants. In [18] it is shown how loop in-
variants can be inferred automatically for proofs of type and memory safety, but
the problem of inferring invariants for behavioral properties, such as temporal
safety, remains largely open [11].

We show that lazy abstraction can be used naturally and eÆciently to con-
struct small correctness proofs for temporal-safety properties in a PCC based
framework. The proof generation is intertwined with the model-checking pro-
cess: the data structures produced by lazy abstraction automatically supply the
annotations required for proof construction, and provide a decomposition of the
proof which leads to a small correctness certi�cate. In particular, using abstrac-
tion predicates only where necessary keeps the proof small, and using the model
checker to guide the proof generation eliminates the need for backtracking, e.g.,
in the proof of disjunctions. Our strategy to generate proofs from model-checking
runs is di�erent from [17, 22]. We exploit the structure of sequential code so that
the proof is an invariant for every control location, along with local checks for
every edge of the control-
ow graph that the invariants are sound. Both [17, 22]
work at the transition-system level. On the other hand, they generate proofs for
properties more general than safety.
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1: do f
lock();

old = new;

2: if (*) f
3: unlock();

new++;

g
4: g while (new != old);

5: unlock();

exit;

LOCK=0 LOCK=1

ERR

lock()

unlock()

lock()unlock()

new++
unlock()

lock()
old=new

unlock()

[new != old]

[new = old]

1

2

3

4

 5

exit

[true]

[true]

Fig. 1. (a) The program Example. (b) Locking speci�cation. (c) CFA.

We have implemented proof generation in the tool Blast [15] for model
checking C programs. Blast has been inspired by the Microsoft Slam project
[3], and attempts to improve on the abstract-verify-re�ne methodology by the
use of lazy abstraction for model construction, and the use of theorem proving for
predicate discovery. We focus here on the automatic veri�cation and certi�cation
of device drivers. Device drivers are written at a fairly low level, but must meet
high-level speci�cations, such as locking disciplines, which are diÆcult to verify
without path-sensitive analysis. They are critical for the correct functioning of
modern computer systems, but are written by untrusted third-party vendors.
Some studies show that device drivers typically contain 7 times as many bugs
as the rest of the OS code [5]. Using Blast, we have run 10 examples of Linux
and Windows device drivers, of up to 60K lines of C code. We have been able
to discover several errors, and construct, fully automatically, small proofs of
correctness, each less than 150K. This demonstrates that lazy-abstraction based
veri�cation and proof generation scales well to large software systems.

2 An Example

We consider a small example to give an overview of lazy abstraction and proof
generation. Consider the program in Figure 1(a). A temporal-safety speci�cation
is a monitor automaton with error locations. Consider the locking discipline
speci�ed by the automaton of Figure 1(b). The monitor uses a global variable
LOCK, which is 1 when the lock is held, and 0 otherwise. An error occurs if
the function lock is called with the lock held (LOCK = 1) or unlock is called
without the lock held (LOCK = 0). The program and speci�cation are input to
Blast as C code, which are then combined to get a single sequential program
with a special error location that is reachable i� the speci�cation is not met.
Thus we assume that the program has a special error label, and safety checking
is checking whether the error label is reachable.
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Fig. 2. Forward search.
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LOCK=0  {LOCK=0}

 

LOCK=1  {LOCK=1 & new+1=old}
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LOCK=0  {LOCK=0 & new=old}
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LOCK=0  {LOCK=0 & new+1=new}

[true]

[new = old]

ERR

Fig. 3. Backward counter-
example analysis.
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1

2

3

4 4

1 5 1 5

 Exit

LOCK=1
& new=old

[true]

[new = old][new != old]

Fig. 4. Search with new
predicate.

We represent programs as control 
ow automata (CFA). A CFA is a directed
graph with vertices corresponding to control points of the program (begins and
ends of basic blocks), and edges corresponding to program operations. An edge
is labeled either by a basic block of instructions that are executed along that
edge, or by an assume predicate that represents the condition that must hold
for the edge to be taken. Figure 1(c) shows the CFA for the program Example.
The program labels correspond to CFA vertices with the same label. The edges
labeled with boxes represent basic blocks; those labeled with [�] represent assume
predicates. The condition of the if (*) statement is not modeled. We assume
that either branch can be taken, hence both outgoing edges are labeled with
[true], which stands for the assume predicate true.

2.1 Veri�cation

The lazy abstraction algorithm comprises two phases. In the forward-search
phase, we build a r eachability tree, which represents a portion of the reachable,
abstract state space of the program. Each node of the tree is labeled by a vertex
of the CFA and a boolean formula, called the r eachable r egion, constructed as a
combination of a �nite set of abstraction predicates. Each edge of the tree is la-
beled by a basic block or an assume predicate. Each path in the tree corresponds
to a path in the CFA. The reachable region of a node describes the reachable
states of the program in terms of the abstraction predicates, assuming execution
follows the sequence of instructions labeling the edges from the root of the tree
to the node. If we �nd that an error node is reachable in the tree, then we go to
the second phase, which checks if the error is real or results from our abstraction
being too coarse (i.e., if we lost too much information by restricting ourselves to
a particular set of abstraction predicates). In the latter case, we ask a theorem
prover to suggest additional abstraction predicates which rule out that particu-
lar spurious counterexample. By iterating the two phases of forward search and
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backwards counterexample analysis, di�erent portions of the reachability tree
will use di�erent sets of abstraction predicates.

We now describe the lazy-abstraction algorithm on the program Example.
From the speci�cation we know that it is important whether or not the lock is
held, hence we start by considering the two abstraction predicates1 LOCK = 1
and LOCK = 02.

Forward search. Consider Figure 1. We construct a reachability tree in depth-
�rst order. The root is labeled with the entry vertex of the program (location 1).
The reachable region of the root is a boolean expression over the abstraction
predicates which includes the precondition of the program (LOCK = 0, as ini-
tially the lock is not held). The reachable region of each node in the tree is
obtained from the reachable region of the parent and the instructions labeling
the edge between the parent and the node, by an overapproximate successor
computation with respect to the set of abstraction predicates. This computation
involves calls to a theorem prover and is also used in the generation of correctness
certi�cates. In the example, the search �nds a path to an error node, namely,
(1; 2; 3; 4; 5).

Backwards counterexample analysis. We check if the path from the root
to the error node is a genuine counterexample or results from the abstraction
being too coarse. To do this, we symbolically simulate the error trace backwards
in the original program. As we go backwards from the error node, we try to �nd
the �rst node in the reachability tree where the abstract trace fails to have a
concrete counterpart. If we �nd such a pivot node, then we conclude that the
counterexample is spurious and re�ne the abstraction from the pivot node on.
If the analysis goes back to the root without �nding a pivot node, then we have
found a real error in the program.

Figure 3 shows the result of this phase. In the �gure, for each node, the
formula in the curly braces, called the bad region, represents the set of states
that can go from the corresponding control location to an error by executing
the sequence of instructions labeling the path from the node to the error node.
Formally, the bad region of a node is the intersection of the reachable region of
the node with the weakest precondition of true with respect to the sequence of
instructions labeling the path in the reachability tree from the node to the error
node. It is computed inductively, starting backwards from the error node, which
has the bad region true. Note that unlike the search phase, the counterexample
analysis is precise: we track all predicates obtained along a path. In Figure 3,
we �nd that the bad region at location 1 is false, which implies that the coun-
terexample is spurious. In [15] we show how the proof that the bad region at a
node is empty (i.e., unsatis�able) can be used to extract additional abstraction
predicates which rule out the spurious counterexample. In the example, we �nd
that new = old is such an important predicate.

Search with new predicates.We again start the forward-search phase, start-
ing from the pivot node, but this time we track the predicate new = old in
1 Predicates are written in italics, code in typewriter font.
2 This is not necessary; we can also start with the empty set of abstraction predicates.
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addition to LOCK = 0 and LOCK = 1. The resulting search tree is shown in
Figure 4. Notice that we can stop the search at the leaf labeled 1: as the states
satisfying the reachable region LOCK = 0 ^ new = old are a subset of those sat-
isfying the reachable region LOCK = 0 of root, the subtree constructed from the
leaf would be included in the subtree of the root. In the new reachability tree, no
error node is reachable. Hence we conclude that the program Example satis�es
the locking speci�cation.

2.2 Certi�cation

To certify that a program satis�es its speci�cation, we use a standard temporal-
safety rule from deductive veri�cation: given a transition system, if we can �nd
a set I of states such that (1) I contains all initial states, (2) I contains no error
states, and (3) I is closed under successor states, then the system cannot reach
an error state from an initial state. If (1){(3) are satis�ed, then I is called an
invariant set. In our setting, the temporal-safety rule reduces to supplying for
each vertex q of the CFA an invariant formula I(q) such that

1. (LOCK = 0)) I(1);
2. I(ERR) = false;
3. for each pair of CFA vertices q and q0 with an edge labeled op between them,

sp(I(q); op)) I(q0), where sp is the strongest-postcondition operator [10].

Thus, to provide a proof of correctness, it suÆces to supply a location invariant
I(q) for each vertex q of the CFA, and proofs that the supplied formulas meet
the above three requirements.

The location invariants can be mined from the reachability tree. In particular,
the invariant for q is the disjunction of all reachable regions that label the nodes
in the tree which correspond to q. For example, I(4) is (LOCK = 0 ^ :new =
old)_(LOCK = 1^new = old) . It is easy to check that (LOCK = 0)) I(1), since
the root of the reachability tree is labeled by the precondition of the program
(LOCK = 0). Also, as there is no node labeled ERR in the tree, we get the
second requirement by de�nition. The interesting part is checking that the third
requirement, that for each edge q

op
�!q0 of the CFA, sp(I(q); op)) I(q0). Consider

the edge 4
[new!=old]
������!1 . We need to show that

sp((LOCK = 0 ^ :new = old) _ (LOCK = 1 ^ new = old); [new! = old])) (LOCK = 0):

By distributing sp over _, we are left with the proof obligation ((LOCK = 0)_

false)) (LOCK = 0) . To prove this, notice that the disjuncts on the left can be
broken down into subformulas obtained from the reachable regions of individual
nodes. Hence we can show the implication by matching each subformula with the
appropriate successor on the right. So we get the two obligations (LOCK = 0))

(LOCK = 0) and false ) (LOCK = 0). Exactly these obligations were generated
in the forward-search phase when computing abstract successors. Each obligation
is discharged, and the whole proof assembled, using a proof-generating theorem
prover.

531Temporal-Safety Proofs for Systems Code      



3 From Lazy Abstraction to Veri�cation Conditions

3.1 Control 
ow automata

Syntax. A control 
ow automaton C is a tuple hQ; q0; X; Op;!i, where Q is
a �nite set of control locations, q0 is the initial control location, X is a �nite
set of typed variables, Op is a set of operations, and !� (Q � Op � Q) is a
�nite set of edges labeled with operations. An edge (q; op; q0) is also denoted

q
op
�! q0. The set Op of operations contains (1) basic blocks of instructions, i.e.,

�nite sequences of assignments lval = exp, where lval is an lvalue from X

(i.e., a variable, structure �eld, or pointer dereference), and exp is an arithmetic
expression over X; and (2) assume predicates assume(p), where p is a boolean
expression over X (arithmetic comparison or pointer equality), representing a
condition that must be true for the edge to be taken. For ease of exposition
we describe our method only for CFAs without function calls; the method can
be extended to handle function calls in a standard way (and function calls are
handled by the Blast implementation). A program written in an imperative
language such as C can be transformed to a CFA [21].

Semantics. The set VX of (data) valuations over the variables X contains the
type-preserving functions from X to values. A state is a pair in Q�VX . A region
is a set of states; letR be the set of regions. We use �rst-order formulas over some
�xed set of relation and function symbols to represent regions. The semantics of
operations is given in terms of the strongest-postcondition operator [10]: sp(r; op)
of a formula r with respect to an operation op is the strongest formula whose
truth holds after op terminates when executed in a valuation that satis�es r. For
a formula r 2 R and operation op 2 Op, the formula sp(r; op) 2 R is syntacti-
cally computable. However, we leave certain relation and function symbols (e.g.,
multiplication) uninterpreted, and the set of states denoted by sp(r; op) may be
overapproximate. A location q 2 Q is reachable from a precondition Pre 2 R

if there is a path q0
op

1��! q1
op

2��! � � �
op
n��! qn in the CFA and a sequence of

formulas ri, for i 2 f0; : : : ; ng, such that qn = q, r0 = Pre, rn 6, false, and
sp(ri; opi+1) = ri+1 for all 0 � i < n. The witnessing path is called a feasible
path from (q0;Pre) to q.

3.2 Veri�cation conditions

Let C = hQ; q0; X; Op;!i be a CFA with a precondition Pre 2 R and a special
error location qE 2 Q. We consider the speci�cation that there is no feasible path
in C from (q0;Pre) to the error location qE . Such a path is called an error trace.
Note that every temporal-safety property can be checked in this way, using a
product with a suitable monitor automaton. A veri�cation condition (VC) [10]
for a program and a speci�cation is a �rst-order formula r such that the validity
of r ensures that the program adheres to the speci�cation. In order to produce the
VC we require that every location q of the CFA is annotated with a formula, the
invariant region I(q). Given the invariants I: Q! R, the veri�cation condition
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VC(C ;Pre; qE ; I) that asserts the correctness of the CFA is

(Pre ) I(q0)) ^ (I(qE) = false) ^
^

q
op

�!q0

�
sp(I(q); op)) I(q0)

�
;

which contains one conjunct for each edge of C . In other words, the VC states
that the invariant of each location is an inductive overapproximation of the states
that can be reached at that location. Formally, if VC(C ;Pre; qE ; I) is valid, then
the error location qE is not reachable in C from Pre [10].

3.3 Invariant generation via lazy abstraction

The invariants required for the VC are got automatically from the data structure
built by the lazy-abstraction algorithm [15]. We assume that both the code
producer and consumer are working at the CFA level. Consider a CFA C =
hQ; q0; X; Op;!i. Let T be a rooted tree, where each node is labeled by a pair
(q; r) 2 Q � R, and each edge is labeled by an operation op 2 Op. We write
n : (q; r) if node n is labeled by control location q and region r. If there is an edge
from n : (q; r) to n0 : (q0; r0) labeled by op, then node n0 is a (op; q0)-son of node n.
We write LeavesT for the set of leaf nodes, and IntT for the set of internal nodes.
The tree T is a reachability tree for the CFA C if (1) each internal node n : (q; r)
has a (op; q0)-son n0 : (q0; r0) for each edge q

op
�! q0 of C ; (2) if n0 : (q0; r0) is a

(op; q0)-son of n : (q; r), then sp(r; op) ) r0; and (3) for each leaf node n : (q; r),
there are internal nodes n1 : (q; r1); : : : ; nk : (q; rk) such that r ) (r1 _ : : : _ rk).
The reachability tree is safe w.r.t. to precondition Pre 2 R and error location
qE 2 Q if (1) the root has the form n : (q0;Pre) and (2) for all nodes of the form
n : (qE ; r), we have r , false.

Theorem 1. [15] Let C be a CFA with precondition Pre and error location qE .
If the lazy-abstraction algorithm LA(C ;Pre; qE) terminates, then it returns either
an error trace, or a safe reachability tree.

The reachability problem for CFAs is undecidable, so LA may not terminate on
all inputs. However, it terminates on all our examples (and [15] contains some ter-
mination criteria). A safe reachability tree witnesses the correctness of the CFA,
and the reachable regions that label its nodes provide invariants. In particular,
if T is a safe reachability tree for (C ;Pre; qE), then the invariant region I(q) of
each control location q of C is de�ned to be the union of all reachable regions of
internal nodes of T labeled by q, that is, I(q) =

W
n:(q;r)2IntT

r. From these invari-

ants, we will generate a proof of the veri�cation condition VC(C ;Pre; qE ; I). In
fact, we modify the lazy-abstraction algorithm to guide, during the construction
of a safe reachability tree, the generation of the correctness proof.

4 Proof Generation

Representing proofs. We encode the proof of the veri�cation condition in
LF [14], so that proof checking reduces to a linear-time type-checking problem.
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The logic we encode in LF is �rst-order logic with equality and special relation
and function symbols for arithmetic and memory operations. The encoding is
standard [14, 18], and is omitted. The inference rules of the proof system include
the standard introduction and elimination rules for the boolean connectives used
in natural deduction with hypothetical judgments [23], together with special
rules for equality, arithmetic, and memory operations. In Blast, proofs are
represented in binary form using Implicit LF [20]. We use the proof encoding
and checking mechanism of an existing PCC implementation to convert proofs
from a textual representation to binary, and to check proofs.

Generating proofs. Given a safe reachability tree T for a CFA C with pre-
condition Pre and error location qE , we must prove the three conjuncts of the
veri�cation condition VC(C ;Pre; qE ; I), namely, that (1) the precondition im-
plies the invariant of the initial location, (2) the invariant of the error location
is false, and (3) the invariants are closed under postconditions. We prove each
conjunct separately. The �rst conjunct of the VC is Pre ) I(q0). Since the root
of T is labeled with the control location q0 and the reachable region Pre, the
precondition Pre is a disjunct of the invariant I(q0). Hence, the �rst conjunct fol-
lows from simple propositional reasoning. The second conjunct is I(qE) = false.
This is again true by the construction of T and the invariants. For the third
conjunct, it suÆces to show a proof obligation for each edge of the CFA. We
use distributivity of postconditions and implication over disjunction to break
the obligation for a CFA edge into individual obligations for the edges of the
safe reachability tree that correspond to the CFA edge. Then we discharge the
smaller proof obligations by relating them to the construction of the reachable
regions during the forward-search phase of the lazy-abstraction algorithm.

Consider the edge q
op
�! q0 of C , and the corresponding proof obligation

sp(I(q); op) ) I(q0). Recall that I(q) is the union of all reachable regions
of nodes of T labeled by q. Since sp distributes over disjunction, it suÆces

to prove
�W

n:(q;rn)2IntT
sp(rn; op)

�
)
�W

m:(q0;rm)2IntT
rm

�
, or equivalently, to

prove
V

n:(q;rn)2IntT

�
sp(rn; op))

W
m:(q0;rm)2IntT

rm

�
. Hence, it suÆces to prove

one obligation for each internal node labeled by q. For every internal node
n : (q; rn) of T , there is a unique (op; q

0)-son m : (q0; rm) of n. This observation is es-
sential for guiding the proof generation. We break the proof of sp(rn; op)) I(q0)
into two cases, corresponding to whether m is an internal node or a leaf.

If m is an internal node of T , then it suÆces to prove sp(rn; op) ) rm. We
generate a proof for this by considering the computation that put the edge from
n to m into the safe reachability tree. Assume that rn =

W
Ri, where each disjunct

Ri is a conjunction of literals, and each literal is either an abstraction predicate
or its negation. Then rm =

W
R0
i, where for each i, the disjunct R0

i is computed
as an overapproximate (abstract) successor region of Ri as follows [15]: the literal
p (resp., :p) appears in R0

i i� sp(Ri; op) ) p (resp., sp(Ri; op) ) :p) is valid.
Distributing sp over disjunction, it suÆces to prove sp(Ri; op) ) rm, which
further reduces to proving sp(Ri; op)) R0

i for each i. This is proved by putting
together exactly the proofs used in the abstract successor computation.
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If m is a leaf of T , then we break the proof into three parts. First, we generate
a proof for sp(rn; op)) rm as above. Second, we check why the node m is a leaf
of the safe reachability tree. There must be a set S = fk j k : (q0; rk)g of nodes of
T such that rm )

W
k2S rk; this set can be obtained from the lazy-abstraction

algorithm. We extract the proof of the above implication. Third, we notice thatW
k2S rk ) I(q0), by the de�nition of I(q0). These three proofs are combined into

a proof of sp(rn; op)) I(q0).

Our proof generation is optimized in two ways. First, we use the intermediate
steps of the model checker to break a proof that invariants are closed under post-
conditions into simpler proofs about the disjuncts that make up the invariants.
Moreover, these proofs are available from the forward-search phase of the model
checker. Second, we reduce the size of the proof by using a coarse, nonuniform
abstraction suÆcient for proving correctness, as provided by the lazy-abstraction
algorithm. This eliminates predicates that are not essential to correctness and
submits fewer obligations to the proof generator than would a VC obtained by
direct symbolic simulation of all paths.

5 Experiments

5.1 The Blast toolkit

We have implemented a tool that applies lazy abstraction and proof generation
for temporal-safety properties of C programs. The input to Blast is a C pro-
gram and a safety monitor written in C; these are compiled into a CFA with a
special error state. The lazy-abstraction algorithm runs on the CFA and returns
either a genuine error trace or a proof of correctness (or fails to terminate). Our
handling of C features follows that of [1]. We handle all syntactic constructs
of C, including pointers, structures, and procedures (leaving the constructs not
in the predicate language uninterpreted). However, we model integer arithmetic
as in�nite-precision arithmetic (no wraparound), and we assume a logical model
of the memory. In particular, we model the expression p+ i, where p is a pointer
and i is an integer, as yielding a pointer value that points to the object pointed
to by p. Hence, we do not model pointer arithmetic precisely.

Blast makes use of several existing tools. We use the CIL compiler infras-
tructure [21] to construct CFAs from C programs. We use the CUDD package
[24] to represent regions as BDDs over sets of abstraction predicates. Finally,
we use the theorem prover Simplify [9] for abstract-successor computations and
inclusion checks, and the (slower) proof-generating theorem prover Vampyre [4]
where proofs are required. The cost of veri�cation and certi�cation is dominated
by the cost of theorem proving, so we incorporate automatic lemma extraction
by caching theorem prover calls. Our experiments show that many atomic proof
obligations that arise during the entire process are identical, and so the size of
the proof in dag representation is considerably smaller than a derivation tree.
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5.2 Checking device drivers with Blast

The Linux kernel has two primitive locking functions, spin lock and spin unlock,
which are used extensively by device drivers to ensure mutual exclusion. We
checked the locking speci�cation from Figure 1(b) on the Linux drivers listed
in the top part of Table 1. We modeled the behavior of the kernel using a non-
deterministic main function which calls all possible device functions registered
with the kernel. Column 2 shows the code size. Column 3 gives the total num-
ber of abstraction predicates; the number of active predicates is the maximum
number of predicates considered at any one point in the model-checking process.
The times are for a 700 MHz Pentium III processor with 256M RAM, and for
veri�cation only; in all cases parsing time is less than a second. Column 5 shows
the part of veri�cation time spent in counterexample analysis. We found several
interprocedural bugs in the locking behavior. For example, we found paths in
aha152x.c where a lock can be acquired twice; see also [12]. On the other hand,
some correctness proofs use nontrivial data dependencies involving conditional
locking (e.g., tlan.c), or unlocking based on some status code (e.g., ide.c), and
come up as false positives in [12].

We also ran Blast on an I/O request packet (IRP) completion speci�cation
for several device drivers included in the Microsoft Windows NT DDK3; this
is shown in the bottom part of Table 1. The Windows OS uses an IRP data
structure to communicate with a kernel-mode device driver. The IRP completion
speci�cation gives correct ways for Windows device drivers to handle IRPs by
specifying a sequence of functions to be called in a certain order, and speci�c
return codes. The entire speci�cation is captured by a safety-monitor automaton
with 22 states. To check this speci�cation against some drivers from the DDK, we
wrote a model of the rest of the kernel as nondeterministic functions modeling the
interface, and we wrote a driver main function that calls the dispatch routines
nondeterministically. We found several bugs in the drivers involving incorrect
status codes. These bugs were independently con�rmed by Slam [2].

5.3 Experiences with Blast

We conjecture that the following are the main reasons for the eÆciency of the
lazy-abstraction algorithm.

1. Sparse reach set. While the state space of programs is huge, the set of states
that are reachable is often very small. Traditional abstraction schemes com-
pute the abstract transition relation for the entire state space. Lazy ab-
straction, on the other hand, considers only the reachable part of the state
space. We believe that this is the single most important advantage of lazy
abstraction.

2. Local structure. Instead of building a uniform predicate abstraction, the lazy-
abstraction algorithm exploits the control-
ow structure of the program by
using predicates only where required. This ensures that abstract successors

3 Available from http://www.microsoft.com/ddk.
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Program Postprocessed Predicates Blast Time Ctrex analysis Proof Size
LOC Total Active (sec) (sec) (bytes)

qpmouse.c 23539 2 2 0.50 0.00 175
ide.c 18131 5 5 4.59 0.01 253

aha152x.c 17736 2 2 20.93 0.00
tlan.c 16506 5 4 428.63 403.33 405

cdaudio.c 17798 85 45 1398.62 540.96 156787
floppy.c 17386 62 37 2086.35 1565.34
[�xed] 93 44 395.97 17.46 60129

kbfiltr.c 12131 54 40 64.16 5.89
48 35 256.92 165.25

[�xed] 37 34 10.00 0.38 7619
mouclass.c 17372 57 46 54.46 3.34
parport.c 61781 193 50 1980.09 519.69 102967

Table 1. Veri�cation times with Blast. A blank proof size indicates a bug was found.

are computed only to the necessary precision, and recomputed only in parts
of the state space where the abstraction changes. Large parts of the state
space that are known to be error free are not searched again. This also helps
in producing compact proofs.

3. Cartesian post. Our experiments show that we can replace the most precise
but computationally expensive abstract-postcondition computation [8] by an
imprecise one [1, 15], and still prove all properties of interest. This speeds up
the computation signi�cantly.4

While our running times and proof sizes are encouraging, we feel there is a lot
of room for improvement. We are transitioning to an oracle-based representa-
tion of proofs [19], which we expect, based on previous experience, to further
reduce the size of the proofs by an order of magnitude. The times taken by the
counterexample analysis often dominates the veri�cation time. We believe that
a faster theorem prover and optimization techniques from program analysis will
be useful in speeding up the process.
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