
Synchronous and Bidirectional

Component Interfaces�

Arindam Chakrabarti1, Luca de Alfaro2,
Thomas A. Henzinger1, and Freddy Y. C. Mang3

1 Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770, USA

{arindam,tah}@eecs.berkeley.edu
2 Department of Computer Engineering

University of California, Santa Cruz, CA 95064, USA
luca@soe.ucsc.edu

3 Advanced Technology Group, Synopsys Inc.
fmang@synopsys.com

Abstract. We present interface models that describe both the input
assumptions of a component, and its output behavior. By enabling us to
check that the input assumptions of a component are met in a design, in-
terface models provide a compatibility check for component-based design.
When refining a design into an implementation, interface models require
that the output behavior of a component satisfies the design specifica-
tion only when the input assumptions of the specification are satisfied,
yielding greater flexibility in the choice of implementations. Technically,
our interface models are games between two players, Input and Output;
the duality of the players accounts for the dual roles of inputs and out-
puts in composition and refinement. We present two interface models in
detail, one for a simple synchronous form of interaction between compo-
nents typical in hardware, and the other for more complex synchronous
interactions on bidirectional connections. As an example, we specify the
interface of a bidirectional bus, with the input assumption that at any
time at most one component has write access to the bus. For these in-
terface models, we present algorithms for compatibility and refinement
checking, and we describe efficient symbolic implementations.

1 Introduction

One of the main applications of modeling formalisms is to capture designs. We
present interface models that are specifically geared to support the component-
based approach to design. Interface models describe both the inputs that can
be accepted by a component, and the outputs it can generate. As an interface
� This research was supported in part by the AFOSR grant F49620-00-1-0327, the
DARPA grant F33615-00-C-1693, the MARCO grant 98-DT-660, the NSF grant
CCR-9988172, the SRC grant 99-TJ-683.003, and the NSF CAREER award CCR-
0132780.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 414–427, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Synchronous and Bidirectional Component Interfaces 415

constrains the acceptable inputs, the underlying component fits into some design
contexts (which meet the constraints), but not into others. Interface models pro-
vide a means for answering four questions that arise in component-based design:
the well-formedness question (can a component be used in some design, i.e., are
the input constraints satisfiable?), the verification question (does a component
satisfy a given property in all designs?), the compatibility question (do two com-
ponents interact in compatible ways in a design?), and the refinement question
(can a component be substituted for another one in every design context without
violating compatibility?).

For each of the questions of well-formedness, verification, compatibility, and
refinement, there are two basic choices for treating inputs and outputs. The graph
view quantifies inputs and outputs with the same polarity; the game view quan-
tifies inputs and outputs with opposite polarities. In the graph view, both inputs
and outputs can be seen as labels in a nondeterministic state transition graph; in
the game view, inputs and outputs are chosen by different players and the result
of each combination of choices determines the state transition. For example, the
graph view is appropriate for the verification question: does a component satisfy
a given property for all acceptable inputs and all possible outputs? On the other
hand, the game view is necessary for the well-formedness question [1,11]: are
there acceptable inputs for all possible choices of outputs? We argue that also
for compatibility and refinement, the game view is the appropriate one.

1.1 The Graph View

The graph view is taken by many process algebras (e.g., [12,17]) and state-based
models (e.g., [15,13,7,4]). These frameworks are aimed at verification. Indeed,
also refinement is typically viewed as a verification question: does a more de-
tailed description of a component generate only behaviors that are permitted by
a more abstract description? Refinement is usually defined as a form of trace
containment or simulation: when quantifying universally over both inputs and
outputs, we say that a component N refines a component M (written N � M)
if, for all input and output choices, the behaviors of N are a subset of those
of M . In particular, N can only produce outputs that are also produced by M ,
and N can only accept inputs that are also accepted by M . This ensures that
every language-theoretic property (such as safety) that holds for M also holds
for N . The graph view of refinement, however, becomes problematic when we
interpret refinement as substitutivity. The output clause is still appropriate: by
requiring that the output behavior of N is a subset of that ofM , it ensures that
if the outputs of M can be accepted by the other components of the design,
so can those of N . The input clause instead is questionable: it states that the
implementation N should be able to accept a subset of the inputs accepted by
the specification M . This raises the possibility that, when N is substituted for
M in a design, N cannot accept some inputs from other components that could
be accepted byM . Hence, substitutivity of refinement does not hold in the graph
view. Indeed, in process algebras and the modeling language SMV [7], if N �M
and M‖P is deadlock-free, it is possible that N‖P deadlocks [3]. To remedy

416 Arindam Chakrabarti et al.

this situation, some models, such as I/O automata [14] and reactive modules [4],
require that components be able to accept all possible inputs; this condition
is known as input-enabledness or receptivity. This requirement forces models to
specify the outputs generated in response to all possible inputs, including inputs
that the designers know cannot occur in the actual design.

The graph view is also limited in its capability to analyze component com-
patibility. If models specify explicitly which inputs can be accepted, and which
ones are illegal, then it is possible to ask the compatibility question generically:
do illegal inputs occur? If we quantify universally over both inputs and outputs,
we obtain a verification question: two components M and N are compatible if,
once composed, they accept all inputs. This is not a natural phrasing of the com-
patibility question: it requires M‖N to accept all inputs, even thoughM and N
could have illegal inputs. A more compositional definition is to call M and N
compatible if there are some input sequences that ensure that all illegal inputs
of M and N are avoided, and to label all other sequences as illegal for M‖N .
This definition of compatibility leads to a dual treatment of inputs (quantified
existentially) and outputs (quantified universally), and to the game view.

1.2 The Game View

According to the game view, inputs and outputs play dual roles. In trace the-
ory [11], a trace model consists in two sets, of accepted and rejected traces, and
games are used to solve the realizability and compatibility questions. In the game
semantics of [2,3] and the interface models of [9,10], components are explicitly
modeled as games between two players, Input and Output. The moves of Input
represent the inputs that can be accepted, and the moves of Output the outputs
that can be generated. To model the fact that these sets can change in time,
after the input and output moves are chosen, the game moves to a new state,
with possibly different sets of accepted inputs and possible outputs.

In the study of compatibility, game-based approaches quantify inputs existen-
tially, and outputs universally. When two components M and N are composed,
their composition may have illegal states, where one component emits outputs
that are illegal inputs for the other one. Yet,M and N are considered compatible
as long as there is some input behavior that ensures that, for all output behav-
iors, the illegal states are avoided: in other words, M and N are compatible if
there is some environment in which they can be used correctly together. In turn,
the input behaviors that ensure compatibility constitute the legal behaviors for
the composition M‖N : when composing component models, both the possible
output behaviors, and the legal input behaviors, are composed.

The game view leads to an alternating view of refinement [5]: a more detailed
component N refines an abstract component M if all legal inputs of M are also
legal for N and if, whenM and N are subject to the same (legal) inputs, N gen-
erates output behaviors that are a subset of those of M . This definition ensures
that, whenever N �M , we can substitute N for M in every design without cre-
ating any incompatibility: in the game view, substitutivity of refinement holds.
The alternating definition of refinement also mirrors the contravariant definition

Synchronous and Bidirectional Component Interfaces 417

of subtyping in programming languages, which also supports substitutivity [18].
Indeed, the game framework can be viewed as a generalization of type theory to
behaviors.

1.3 Synchronous Interface Models

In this paper, we adopt the game view to modeling, and we introduce two in-
terface models for synchronous components. We begin with the simple model of
Moore interfaces : in addition to the usual transition relation of a synchronous
system, which describes the update rules for the outputs, a Moore interface has
a symmetrically-defined transition relation for the inputs, which specifies which
input transitions are acceptable. Our second model, bidirectional interfaces, illus-
trate how game-based models can be richer than their graph-based counterparts.
Bidirectional connections cannot be modeled in the input-enabled setting: there
are always environments that use such connections as input, and environments
that use them as output, so that no component can work in all environments.
Bidirectional connections, however, can be naturally modeled as a game between
Input and Output players. As an example, we encode the access protocol to the
PCI bus, in which several components share access to a multi-directional bus.
By checking the compatibility of the component models, we can ensure that
no conflicts for bus access arise. We have implemented tools for symbolic com-
patibility and refinement checking for both Moore and bidirectional interfaces,
and we discuss how the game-based algorithms can be implemented with minor
modifications to the usual symbolic machinery for graph-based algorithms, and
yield a similar efficiency.

2 Compatibility and Composition

2.1 Moore Interfaces

Moore interfaces model both the behavior of a system component, and the in-
terface between the component and its environment. The state of a module is
described by a set of state variables, partitioned into sets of input and output
variables. The possible changes of output variables are described by an output
transition relation, while the legal changes of input variables are described by
an input transition relation. Hence, the output transition relation describes the
module’s behavior, and the input transition relation describes the input assump-
tions of the interface.

Example 1 We illustrate the features of Moore interfaces by modeling a ±1
adder driven by a binary counter. The adder Adder has two control inputs q0 and
q1, data inputs i7 · · · i0, and data outputs o7 · · · o0. When q0 = q1 = 1, the adder
leaves the input unchanged: the next value of o7 · · · o0 is equal to i7 · · · i0. When
q0 = 0 and q1 = 1, the next outputs are given by [o′7 · · · o′0] = [i7 · · · i0]+1 mod 28,
where primed variables denote the values at the next clock cycle, and [o′7 · · · o′0] is
the integer encoded in binary by o′7 · · · o′0. Similarly, when q1 = 0 and q0 = 1, we

418 Arindam Chakrabarti et al.

have [o′7 · · · o′0] = [i7 · · · i0]−1 mod 28. The adder is designed with the assumption
that q1 and q0 are not both 0: hence, the input transition relation of Adder states
that q′0q

′
1 �= 00. In order to cycle between adding 0,+1,−1, the control inputs q0

and q1 are connected to the outputs q1 and q0 of a two-bit count-to-zero counter
Counter . The counter has only one input, cl : when cl = 0, then q′1q′0 = 11;
otherwise, [q′1q

′
0] = [q1q0]− 1 mod 4.

When we compose Counter and Adder , we synthesize for their composition
Counter‖Adder a new input assumption, that ensures that the input assump-
tions of both Counter and Adder are satisfied. To determine the new input
assumption, we solve a game between Input, which chooses the next values of cl
and i7 · · · i0, and Output, which chooses the next values of q0, q1, and o7 · · · o0.
The goal of Input is to avoid a transition to q1q0 = 00. At the states where
q1q0 = 01, Input can win if cl = 0, since we will have q′1q′0 = 11; but Input can-
not win if cl = 1. By choosing cl ′ = 0, Input can also win from the states where
q1q0 = 10. Finally, Input can always win from q1q0 = 11, for all cl ′. Thus, we as-
sociate with Counter‖Adder a new input assumption encoded by the transition
relation requiring that whenever q1q0 = 10, then cl ′ = 0. The input requirement
q1q0 �= 00 of the adder gives rise, in the composite system, to the requirement
that the reset-to-1 occurs early in the count-to-zero cycle of the counter. ✷

Given a set W of typed variables with finite domain, a state s over W is a
function that assigns to each x ∈ W a value s[[x]] of the appropriate type; we
write S[W] for the set of all states over W . We denote by W ′ = {x′ | x ∈ W}
the set obtained by priming each variable in W ; given a predicate ϕ on W , we
denote by ϕ′ the predicate on W ′ obtained by replacing in ϕ every x ∈ W with
x′ ∈ W ′. Given a state s ∈ S[W] and a predicate ϕ on W , we write s |= ϕ if
ϕ is satisfied under the variable interpretation specified by s. Given two states
s, s′ ∈ S[W] and a predicate ϕ on W ∪W ′, we write (s, s′) |= ϕ if ϕ is satisfied
by the interpretation that assigns to x ∈ W the value s[[x]], and to x′ ∈ W ′ the
value s′[[x]]. Moore interfaces are defined as follows.

Definition 1 (Moore interface) A Moore interface
M = 〈V i

M ,Vo
M , θi

M , θo
M , τ i

M , τo
M 〉 consists of the following components:

– A finite set V i
M of input variables, and a finite set Vo

M of output variables.
The two sets must be disjoint; we define VM = V i

M ∪ Vo
M .

– A satisfiable predicate θi
M on V i

M defining the legal initial values for the
input variables, and a satisfiable predicate θo

M on Vo
M defining the initial

values for the output variables.
– An input transition predicate τ i

M on VM ∪(V i
M)′, specifying the legal updates

for the input variables, and an output transition predicate τo
M on VM ∪(Vo

M)′,
specifying how the module can update the values of the output variables.
We require that the formulas ∀VM .∃(V i

M)′.τ i
M and ∀VM .∃(Vo

M)′.τo
M hold. ✷

The above interfaces are called Moore because the next value of the output
variables can depend on the current state, but not on the next value of the input
variables, as in Moore machines. The requirements on the input and output

Synchronous and Bidirectional Component Interfaces 419

transition relations ensure that the interface is non-blocking: from every state
there is some legal input and possible output. Given a Moore interface M =
〈V i

M ,Vo
M , θi

M , θo
M , τ i

M , τo
M 〉, we let Traces(V i

M ,Vo
M , θi

M , θo
M , τ i

M , τo
M) be the set of

traces ofM , consisting of all the infinite sequences s0, s1, s2, . . . of states of S[VM]
such that s0 |= θi

M ∧ θo
M , and (sk, sk+1) |= τ i

M ∧ τo
M for all k ≥ 0.

Composition of Moore interfaces. Two Moore interfaces M and N are com-
posable if Vo

M ∩ Vo
N = ∅. If M and N are composable, we merge them into a

single interface P as follows. We let Vo
P = Vo

M ∪ Vo
N and V i

P = (V i
M ∪ V i

N) \ Vo
P .

The output behavior of P is simply the joint output behavior of M and N ,
since each interface is free to choose how to update its output variables: hence,
θo

P = θo
M ∧ θo

N and τo
P = τo

M ∧ τo
N . On the other hand, we cannot simply adopt

the symmetrical definition for the input assumptions. A syntactic reason is that
θi

M ∧ θi
N and τ i

M ∧ τ i
N may contain variables in (Vo

P)
′. But a deeper reason is

that we may need to strengthen the input assumptions of P further, in order
to ensure that the input assumptions of M and N hold. If we can find such a
further strengthening θi and τ i, then M and N are said to be compatible, and
P =M‖N with θi

P and τ i
P being the weakest such strengthenings; otherwise, we

say that M and N are incompatible, and M‖N is undefined. Hence, informally,
M and N are compatible if they can be used together under some assumptions.

Definition 2 (Compatibility and composition of Moore interfaces) For
any two Moore interfaces M and N , we say that M and N are composable
if Vo

M ∩ Vo
N = ∅. If M and N are composable, let Vo

P = Vo
M ∪ Vo

N , V i
P =

(V i
M ∪ V i

N) \ Vo
P , VP = Vo

P ∪ V i
P , θ

o
P = θo

M ∧ θo
N , and τo

P = τo
M ∧ τo

N .
The interfaces M and N are compatible (written M ��N) if they are compos-

able, and if there are predicates θi on V i
P and τ i on VP ∪ (V i

P)
′ such that (i) θi is

satisfiable; (ii) ∀VP .∃(V i
P)

′.τ i holds; (iii) for all s0, s1, s2, . . . ∈ Traces(V i
P ,Vo

P , θ
i,

θo
P , τ

i, τo
P) we have s0 |= θi

M ∧ θi
N and, for all k ≥ 0, (sk, sk+1) |= τ i

M ∧ τ i
N .

The composition P = M‖N is defined if and only if M ��N , in which case
P is obtained by taking for the input predicate θi

P and for the input transition
relation τ i

P the weakest predicates such that the above condition holds. ✷

To compute M‖N , we consider a game between Input and Output. At each
round of the game, Output chooses new values for the output variables Vo

P ac-
cording to τo

P ; simultaneously and independently, Input chooses (unconstrained)
new values for the input variables V i

P . The goal of Input is to ensure that the
resulting behavior satisfies θi

M ∧ θi
P at the initial state, and τ i

M ∧ τ i
N at all state

transitions. If Input can win the game, then M and N are compatible, and the
most general strategy for Input will give rise to θi

P and τ i
P ; otherwise, M and N

are incompatible. The algorithm for computing θi
P and τ i

P proceeds by comput-
ing iterative approximations to τ i

P , and to the set C of states from which Input
can win the game. We let C0 = t and, for k ≥ 0:

τ̃k+1 = ∀(Vo
P)

′.
(
τo
P → (τ i

M ∧ τ i
N ∧ C′

k)
)

Ck+1 = Ck ∧ ∃(V i
P)

′.τ̃k+1. (1)

Note that τ̃k+1 is a predicate on Vo
P ∪ V i

P ∪ (V i
P)

′. Hence, τ̃k+1 ensures that,
regardless of how Vo

P are chosen, from Ck+1 we have that (i) for one step, τ i
M

420 Arindam Chakrabarti et al.

and τ i
N are satisfied; and (ii) the step leads to Ck. Thus, indicating by C∗ =

limk→∞ Ck and τ̃∗ = limk→∞ τ̃k the fixpoints of (1) we have that C∗ represents
the set of states from which Input can win the game, and τ̃∗ represents the most
liberal Input strategy for winning the game. This suggests us to take τ i

P = τ̃∗.
However, this is not always the weakest choice, as required by Definition 2: a
weaker choice is τ i

P = ¬C∗ ∨ τ̃∗, or equivalently τ i
P = C∗ → τ̃∗. Contrary to

τ i
P = τ̃∗, this weaker choice ensures that the interface P is non-blocking. We
remark that the choices τ i

P = τ̃∗ and τ i
P = C∗ → τ̃∗ differ only at non-reachable

states. Since the state-space of P is finite, by monotonicity of (1) we can compute
the fixpoint C∗ and τ̃∗ in a finite number of iterations. Finally, we define the
input initial condition of P by θi

P = ∀Vo.(θo
P → (θi

M ∧ θi
N ∧C∗)). The following

algorithm summarizes these results.

Algorithm 1 Given two composable Moore interfaces M and N , let C0 = t,
and for k > 0, let the predicates Ck and τ̃k be as defined by (1). Let τ̃∗ =
limk→∞ τ̃k and C∗ = limk→∞ Ck; the limits can be computed with a finite num-
ber of iterations, and let θi

∗ = ∀Vo.
(
θo

P → (θi
M∧θi

N∧C∗)
)
. Then the interfacesM

andN are compatible iff θi
∗ is satisfiable; in this case their composition P =M‖N

is given by

Vo
P = Vo

M ∪ Vo
N τo

P = τo
M ∧ τo

N θo
P = θo

M ∧ θo
N

V i
P = (V i

M ∪ V i
N) \ Vo τ i

P = C∗ → τ̃∗ θi
P = θi

∗. ✷

Implementation considerations. We have implemented composition and compat-
ibility checking for Moore interfaces by extending the Mocha model checker [6]
to interfaces. To obtain an efficient implementation, we represent both the
input and the output transition relations using a conjunctively decomposed rep-
resentation, where a relation τ is represented by a list of BDDs τ1, τ2, . . . , τn
such that τ = ∧n

i=1τi. When computing P = M‖N , the list for τo
P can be

readily obtained by concatenating the lists for τo
M and τo

N . Moreover, assume
that τo

P is represented as
∧n

i=1 τ
o
i , and that τ i

M ∧ τ i
N is represented as

∧m
j=1 τ

o
j .

Given Ck, from (1) we obtain the conjunctive decomposition
∧m+1

j=1 τ̃k+1,j for
τ̃k+1 by taking τ̃k+1,m+1 = ¬∃(Vo

P)
′.(τo

P ∧ ¬C′
k) and, for 1 ≤ j ≤ m, by taking

τ̃k+1,j = ¬∃(Vo
P)

′.(τo
P ∧ ¬τ i

j). We also obtain Ck+1 = ∃(V i
P)

′.
∧m+1

j=1 τ̃k+1,j . All
these operations can be performed using image computation techniques. Once
we reach k such that Ck ≡ Ck+1, the BDDs τ̃k,1, . . . , τ̃k,m+1 form a conjunctive
decomposition for τ̃∗. Since the two transition relations τ̃∗ and C∗ → τ̃∗ differ
only for the behavior at non-reachable states, in our implementation we take
directly τ i

P = τ̃∗, obtaining again a conjunctive decomposition. With these tech-
niques, the size (number of BDD variables) of the interfaces that our tool is able
to check for compatibility, and compose, is roughly equivalent to the size of the
models that Mocha [6] can verify with respect to safety properties.

2.2 Bidirectional Interfaces

Bidirectional interfaces model components that have bidirectional connections.
To model bidirectionality we find it convenient to add to the Moore model a setQ

Synchronous and Bidirectional Component Interfaces 421

of locations. Informally, each location q ∈ Q partitions the interface variables into
inputs and outputs, and determines what values are legal for the inputs, and
what values can be assigned to the outputs. At each location q ∈ Q, a particular
choice of output and input values determines the successor location q′. The
precise definition is as follows.

Definition 3 (Bidirectional interfaces) A bidirectional interface M is a tu-
ple 〈VM , QM , q̂M , vo

M , φi
M , φo

M , ρM 〉 consisting of the following components:
– A finite set VM of input or output (inout) variables.
– A finite set QM of locations, including an initial location q̂M ∈ QM .
– A function vo

M : QM → 2VM , that associates with all q ∈ QM the set vo
M (q)

of variables that are used as outputs at location q. For all q ∈ QM , we denote
by vi

M (q) = VM \ vo
M (q) the set of variables that are used as inputs.

– Two labelings φi
M and φo

M , which associate with each location q ∈ QM a
predicate φi

M (q) on vi
M (q), called the input assumption, and a predicate

φo
M (q) on vo

M (q), called the output guarantee. For all q ∈ QM , both φi
M (q)

and φo
M (q) should be satisfiable.

– A labeling ρM , which associates with each pair of locations q, r ∈ QM a
predicate ρM (q, r) on VM , called the transition guard. We require that for
every location q ∈ QM , (i) the disjunction

∨
r∈QM

ρM (q, r) is valid and
(ii) ∀r, r′ ∈ QM , (r �= r′) ⇒ ¬(ρM (q, r) ∧ ρM (q, r′)). Condition (i) ensures
that the interface is non-blocking, and condition (ii) ensures determinism. ✷

We let V i
M =

⋃
q∈QM

vi
M (q) and Vo

M =
⋃

q∈QM
vo

M (q) be the sets of all variables
that are ever used as inputs or outputs (note that we do not require V i

M ∩Vo
M =

∅). We define the set Traces(〈VM , QM , q̂M , φi
M , φo

M , ρM 〉) of bidirectional traces
to be the set of infinite sequences q0, s0, q1, s1, . . ., where q0 = q̂M , and for all k ≥
0, we have qk ∈ QM , sk ∈ S[VM], and sk |= (φi

M (qk) ∧ φo
M (qk) ∧ ρM (qk, qk+1)).

For q0, s0, q1, s1, . . . ∈ Traces(〈VM , QM , q̂M , φi
M , φo

M , ρM 〉) and k ≥ 0, we say
that qk is reachable in 〈VM , QM , q̂M , φi

M , φo
M , ρM 〉.

Composition of bidirectional interfaces is defined along the same lines as for
Moore interfaces. Local incompatibilities arise not only when one interface out-
put values do not satisfy the input assumptions of the other, but also when the
same variable is used as output by both interfaces. The formal definition follows.

Definition 4 (Composition of bidirectional interfaces)
Given two bidirectional interfacesM andN , let V⊗ = VM∪VN , Q⊗ = QM×QN ,
and q̂⊗ = (q̂M , q̂N). For all (p, q) ∈ QM × QN , let φo

⊗(p, q) = φo
M (p) ∧ φo

M (q),
and for all (p′, q′) ∈ QM × QN , let ρ⊗((p, q), (p′, q′)) = ρM (p, p′) ∧ ρN (p, p′).
The interfaces M and N are compatible (written M ��N) if there is a label-
ing ψ associating with all (p, q) ∈ Q⊗ a predicate ψ(p, q) on V⊗ \ (Vo

M (p) ∪
Vo

N (q)) such that (i) ψ(p, q) is satisfiable at all (p, q) ∈ Q⊗, and (ii) all traces
(p0, q0), s0, (p1, q1), s1, (p2, q2), s2, . . . ∈ Traces(V⊗, Q⊗, q̂⊗, ψ, φo

⊗, ρ⊗) satisfy, for
all k ≥ 0, the conditions (a) Vo

M (pk)∩Vo
N (qk) = ∅ and (b) sk |= φi

M (pk)∧φi
N (qk).

The composition P = M‖N is defined if and only if M and N are compatible;
if they are, then P = M‖N is obtained by taking for φi

P the weakest predicate

422 Arindam Chakrabarti et al.

ψ such that the above conditions (a) and (b) on traces hold, by taking for QP

the subset of locations of Q⊗ that are reachable in 〈V⊗, Q⊗, q̂⊗,Vo⊗, φi
P , φ

o⊗, ρ⊗〉,
by taking VP = V⊗ and q̂P = q̂⊗, and by taking for Vo

P , φ
i
P , φ

o
P , and ρP the

restrictions of Vo
⊗, φ

i
⊗, φ

o
⊗, and ρ⊗ to QP . ✷

Algorithm 2 Given two bidirectional interfacesM and N , let V⊗ = VM ∪VN ,
Q⊗ = QM ×QN , and q̂⊗ = (q̂M , q̂N). For all (p, q) ∈ QM ×QN , let φi

⊗(p, q) =
φi

M (p)∧φi
M (q), and for all (p′, q′) ∈ QM×QN , let ρ⊗((p, q), (p′, q′)) = ρM (p, p′)∧

ρN (p, p′). The input labeling φi⊗(p, q) is computed by repeating the following
steps, that progressively strengthen the input assertions:

[Step 1] For all (p, q) ∈ QM ×QN , if vo
M (p) ∩ vo

N (q) �= ∅, then initialize
φi⊗(p, q) to f; otherwise initialize φi⊗(p, q) to the predicate ∀vo⊗(p, q).
(φo

⊗(p, q)→ (φi
M (p) ∧ φi

N (q)).

[Step 2] For all (p, q) and (p′, q′) in QM×QN , if φi
⊗(p

′, q′) is unsatisfiable,
then replace φi⊗(p, q) with φi⊗(p, q) ∧ ∀vo⊗(p, q).(φo⊗(p, q) → ¬ρ⊗((p, q),
(p′, q′)).

Repeat [Step 2] until all input assumptions are replaced by equivalent
predicates, i.e., are not strengthened.

We have thatM ��N iff φi
⊗(q̂M , q̂N) is satisfiable. IfM ��N then their composition

P is defined by taking QP to be the subset of locations of Q⊗ that are reachable
in 〈V⊗, Q⊗, q̂⊗, vo

⊗, φ
i
P , φ

o
⊗, ρ⊗〉, by taking VP = V⊗ and q̂P = q̂⊗, and by taking

for vo
P , φ

i
P , φ

o
P , and ρP the restrictions of vo

⊗, φ
i
⊗, φ

o
⊗, and ρ⊗ to QP . ✷

We have developed and implemented symbolic algorithms for composition and
compatibility and refinement checking of bidirectional interfaces. The tool, writ-
ten in Java, is based on the CUDD Package used in JMocha [8]. In our implemen-
tation, the locations are represented explicitly, while the input assumptions and
output guarantees at each location are represented and manipulated symboli-
cally. This hybrid representation is well-suited to the modeling of bidirectional
interfaces, where the set of input and output variables depends on the location.

Example 2 (PCI Bus) We consider a PCI bus configuration with two PCI-
compliant master devices and a PCI arbiter as shown in Figure 1(a). Each PCI
master device has an gnt input and a req output to communicate with the ar-
biter, and a set of shared (read-write) signals, the IRDY and the FRAME, which are
used to communicate with target devices. The arbiter ensures that at most one
master device can write to the shared signals. Figure 1(b) shows a graphical de-
scription of the interface representing a master device. The figure shows for each
location, the assumption (“a”), the guarantee (“g”), the set of inout variables
that the interface writes to, and guarded transitions between locations. Compos-
ing two such interfaces we obtain the interface shown in Figure 1(c). Location
Owner_Owner is illegal because both components write the shared variables FRAME
and IRDY. Input assumptions of locations Req_Req, Owner_Req and Req_Owner
are strengthened to make the illegal location unreachable. Note that this prop-
agates the PCI master’s assumptions about its environment to an assumption

Synchronous and Bidirectional Component Interfaces 423

Fig. 1. PCI and Token-ring Protocols 1(a) PCI Local Bus Structural Dia-
gram 1(b) PCI Master Interface 1(e) Composite interface for two PCI Master
Modules 1(d) Token Ring Network Configuration 1(e) Token-ring NT Interface

on the behavior of the arbiter (which is the environment of the composite mod-
ule): the arbiter should never assert gnt1 (gnt2) during or after asserting gnt2
(gnt1), until req2 (req1) is de-asserted at least once. ✷

2.3 Properties of Compatibility and Composition

If M and N are composable Moore interfaces, we define their product M ⊗ N
by Vo

M⊗N = Vo
M ∪Vo

N and V i
M⊗N = (V i

M ∪V i
N) \Vo

M⊗N , and by letting θo
M⊗N =

θo
M ∧θo

N , θi
M⊗N = θi

M ∧θi
N , τo

M⊗N = τo
M ∧τo

N , and τ i
M⊗N = τo

M ∧τ i
N . Intuitively,

an environment for a Moore interfaceM is an interface that drives all free inputs
of M , ensuring that all the input assumptions are met. Precisely, we say that a
Moore interface N is an environment for a Moore interface M if M and N are
composable and closed (i.e., Vo

M ∩Vo
N = ∅, and V i

M⊗N = ∅), and if the following
conditions hold:

– Non-blocking: θi
M⊗N is satisfiable, and ∀Vo

M⊗N .(∃V i
M⊗N)′.τ i

M⊗N holds.

424 Arindam Chakrabarti et al.

– Legal: for all sequences s0, s1, s2, . . . of states in S[VM⊗N] with s0 |= θo
M⊗N

and (sk, sk+1) |= τo
M⊗N for all k ≥ 0, we have also that s0 |= θi

M⊗N and
(sk, sk+1) |= τ i

M⊗N for all k ≥ 0.

Analogous definitions for product and environment can be given for bidirectional
interfaces. The following theorem states the main properties of compatibility
and composition of Moore interfaces; an analogous result holds for bidirectional
interfaces.

Theorem 1 (properties of compatibility and composition) The follow-
ing assertions hold:

1. Given three Moore interfaces M , N , P , either (M‖N)‖P and (M‖N)‖P
are both undefined (due to non-composability or incompatibility), or they are
both defined, in which case they are equal.

2. Given two composable Moore interfaces M and N , we have that M ��N iff
there is an environment for M ⊗N .

3. Given two compatible Moore interfaces M and N , and P composable with
M‖N , we have that (M‖N)��P iff there is an environment for M ⊗N ⊗ P .

The second assertion makes precise our statement that two interfaces are com-
patible iff there is some environment in which they can work correctly together.
The third assertion states that composition does not unduly restrict the in-
put assumptions: checking compatibility with the composition M‖N amounts
to checking compatibility with M and N .

3 Refinement

We define refinement as alternating simulation [5]: roughly, a component N
refines M (written N � M) if N can simulate all inputs of M , and if M can
simulate all outputs of N . Encoding the relation between the states of two Moore
interfaces M and N by a predicate R, we can state the definition of refinement
as follows.

Definition 5 (Refinement of Moore interfaces) Given two Moore inter-
faces M and N , we have that N � M if V i

N ⊆ V i
M and V i

M ∩ (Vo
M ∪ Vo

N) = ∅,
and if there is a predicate R on VM ∪ VN such that the following formulas are
valid:

θi
M ∧ θo

N → ∃(Vo
M \ Vo

N).(θi
N ∧ θo

M ∧R)
R ∧ τ i

M ∧ τo
N → ∃(Vo

M \ Vo
N)′.(τ i

N ∧ τo
M ∧R′) ✷

As for normal simulation, there is a unique largest refinement relation between
any two Moore interfaces. Hence, Definition 5 provides an iterative algorithm
for deciding refinement: let R0 = t, and for k ≥ 0, let

Rk+1 = Rk ∧ ∀(VM ∪ VN)′.
(
τ i
M ∧ τo

N → ∃(Vo
M \ Vo

N)′.(τ i
N ∧ τo

M ∧R′
k)

)
. (2)

Synchronous and Bidirectional Component Interfaces 425

Denoting with R∗ = limk→∞Rk the fixpoint (that again can be computed in a
finite number of iterations), we have that N � M if and only if (i) V i

N ⊆ V i
M

and V i
M ∩ (Vo

M ∪ Vo
N) = ∅, and (ii) θi

M ∧ θo
N → ∃(Vo

M \ Vo
N).(θ

i
N ∧ θo

M ∧R). In
order to obtain an efficient implementation, we can again take advantage for the
computation of (2) of list representations for the transition relations, and apply
image-computation techniques.

Refinement of bidirectional interfaces is defined similarly, except that the
refinement relation relates the locations of the two interfaces, rather than the
states. The definition is as follows.

Definition 6 (Refinement of bidirectional interfaces) Given two bidirec-
tional interfaces M and N , N refines M (N � M) iff there is a binary relation
�⊆ QN×QM such that q̂N � q̂M , and such that for all q � p we have (i) vi

N (q) ⊆
vi

M (q), (ii) vo
N (q) ⊇ vo

M (p), (iii) φi
M (p) → φi

N (q), (iv) φo
N (q) → φo

M (p), (v) for
all s ∈ S[vi

M (p)] and all t ∈ S[vo
N (q)], if s |= ρM (p, p′) and t |= ρN (q, q′), then

q′ � p′. ✷

We can check whether N � M by adapting the classical iterative refinement
check [16]. We start with the total relation �0= QN × QM , and for k ≥ 0, we
let �k+1 be the subset of �k such that conditions (i)–(v) hold, with �k in place
of � in condition (v). Once we reach m ≥ 0 such that �m+1=�m, we have
that N �M iff q̂N � p̂N . Since bidirectional interfaces are deterministic we can
reduce the refinement checking problem to graph reachability on the product
interface and hence N �M can be decided in O(|QN | × |QM |) time.

Example 3 (Token Ring) The IEEE 802.5 (Token Ring) is a widely used
deterministic LAN protocol. Figure 1(e) shows an interface modeling a node
that initially does not have the token. The same diagram with T as initial state
would represent a node that initially has the token. We call these two interfaces
NT and T , respectively. The token ring components are connected in a cyclic
network; each pair of adjacent nodes communicate by req and gnt signals (Fig-
ure 1(d)). The req signal flows clockwise, and is used to request the token; the
signal give flows counterclockwise, and is used to grant the token. The protocol
fails if more than one node has the token simultaneously: indeed, we can verify
that two T interfaces are not compatible, while an NT interface is compatible
with a T interface. Moreover, the protocol works for any number of participating
nodes. To verify this, we check two refinements: first, an open-ring configuration
consisting entirely of NT nodes is a refinement of the configuration consisting
in just one NT node; second, an open-ring configuration with any number of
NT nodes and one T node is a refinement of a configuration consisting in a
single T node. Our implementation is able to perform the above compatibility
and refinement checks in a fraction of a second. ✷

The notion of refinement, in addition to implementation, captures also substitu-
tivity: if N refines M , and M is compatible with the remainder P of the design,
then P is also compatible with N .

426 Arindam Chakrabarti et al.

Theorem 2 (Substitutivity of refinement) Consider three bidirectional
Moore or bidirectional interfaces M,N,P , such that M ��P , and N � M . If
(Vo

N ∩ V i
P) ⊆ (Vo

M ∩ V i
P), then N ��P and (N‖P) � (M‖P).

The result has a proviso: all the variables that are output by N and input by P
should also be output by M . If this were not the case, it would be possible for
the additional outputs of N to violate the input assumptions of P .

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent
program specifications. In Proc. 16th Int. Colloq. Aut. Lang. Prog., volume 372 of
Lect. Notes in Comp. Sci., pages 1–17. Springer-Verlag, 1989. 415

2. S. Abramsky. Games in the semantics of programming languages. In Proc. of the
11th Amsterdam Colloquium, pages 1–6. ILLC, Dept. of Philosophy, University of
Amsterdam, 1997. 416

3. S. Abramsky, S. Gay, and R. Nagarajan. A type-theoretic approach to deadlock-
freedom of asynchronous systems. In TACS’97: Theoretical Aspects of Computer
Software. Third International Symposium, 1997. 415, 416

4. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
pages 7–48, 1999. 415, 416

5. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In CONCUR 97: Concurrency Theory, volume 1466 of Lect. Notes in
Comp. Sci., pages 163–178. Springer-Verlag, 1998. 416, 424

6. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: modularity in model checking. In CAV 98: Proc. of 10th
Conf. on Computer Aided Verification, volume 1427 of Lect. Notes in Comp. Sci.,
pages 521–525. Springer-Verlag, 1998. 420

7. E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In CAV 96: Proc. of 8th Conf. on Computer Aided Verification,
volume 1102 of Lect. Notes in Comp. Sci., pages 419–422. Springer-Verlag, 1996.
415

8. L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang,
C. Meyer-Kirsch, and B. Y. Wang. Mocha: A model checking tool that exploits
design structure. In ICSE 01: Proceedings of the 23rd International Conference on
Software Engineering, 2001. 422

9. L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of 8th European
Software Engineering Conference and 9th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering (ESEC/FSE), pages 109–120. ACM Press, 2001.
416

10. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In EMSOFT 01: Proc. of First Int. Workshop on Embedded Software, volume 2211
of Lect. Notes in Comp. Sci., pages 148–165. Springer-Verlag, 2001. 416

11. D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1988. 415, 416

12. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 415
13. N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996. 415
14. N. A. Lynch and M. Tuttle. Hierarcical correctness proofs for distributed algo-

rithms. In Proc. of 6th ACM Symp. Princ. of Dist. Comp., pages 137–151, 1987.
416

Synchronous and Bidirectional Component Interfaces 427

15. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991. 415

16. R. Milner. An algebraic definition of simulation between programs. In Proc.
of Second Int. Joint Conf. on Artificial Intelligence, pages 481–489. The British
Computer Society, 1971. 425

17. R. Milner. Communication and Concurrency. Prentice-Hall, 1989. 415
18. J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996. 417

	Synchronous and Bidirectional Component Interfaces
	Introduction
	The Graph View
	The Game View
	Synchronous Interface Models

	Compatibility and Composition
	Moore Interfaces
	Bidirectional Interfaces
	Properties of Compatibility and Composition

	Refinement

