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Abstract. A method of symbolic model checking is introduced that
uses conjunctive normal form (CNF) rather than binary decision dia-
grams (BDD’s) and uses a SAT-based approach to quantifier elimination.
This method is compared to a traditional BDD-based model checking ap-
proach using a set of benchmark problems derived from the compositional
verification of a commercial microprocessor design.

1 Introduction

Symbolic model checking [6,7] is a method of verifying temporal logic properties
of transition systems that relies on a symbolic representation of sets (i.e., as
formulas rather than as an explicit lists). In the finite state case, this method
has become identified with Binary Decision Diagrams [4] (BDD’s), a canonical
form for Boolean formulas that has proved to be quite efficient for this purpose in
practice. Because of the success of BDD’s, and related structures, other forms of
expressing Boolean functions in symbolic model checking have remained largely
unexplored. In this work, we will consider the use of conjunctive normal form
(CNF) as a representation in symbolic model checking. The use of this form
makes it possible to adapt efficient algorithms used in solving the satisfiability
problem (SAT) to the most important operation in symbolic model checking,
quantifier elimination.

In particular, we will show that, with a slight modification, modern SAT al-
gorithms based on the Davis-Logemann-Loveland (DLL) approach can be used
to eliminate universal quantifiers from an arbitrary Boolean formula, producing
a result in CNF. This makes it possible, using standard methods, to compute
a CNF formula equivalent to the CTL formula AXp, where p is an arbitrary
Boolean formula. This in turn makes it possible to evaluate any CTL formula
using fixed point characterizations of the CTL operators (and, in fact, the for-
mulas of the more general µ-calculus).

We will observe that this procedure, using CNF and SAT-based quanti-
fier elimination, can be exponentially more efficient than model checking using
BDD’s, in cases where the resulting fixed points have compact representations in
CNF, but not as BDD’s. We will also compare the SAT-based approach with the
BDD-based approach on a set of benchmark model checking problems derived
from microprocessor verification.
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Related Work In the past, SAT methods have been applied in model checking
in a variety of ways. In bounded model checking [2], the transition relation of a
system is unfolded k times, allowing any counterexamples of up to k states to
be found using a SAT solver. Unless a bound on the length of counterexamples
is known, however, this method cannot actually verify the given property, it can
only produce counterexamples. The method presented here is not bounded, and
produces a guarantee of correctness when the property is true.

SAT solvers have also been used in a hybrid method to detect when a fixed
point has been reached, while quantifier elimination is performed by other means
(generally by the expansion of the quantifier as ∃v.f = f〈0/v〉∨f〈1/v〉, followed
by some simplification method). Examples of this approach include [3,1,17]. Be-
cause of the expense of quantifier elimination in this method, it is usually limited
to sequential machines with a very small number of inputs (typically zero or
one). By contrast, the approach presented here uses SAT methods in the actual
quantifier elimination step, and is not limited in terms of the number of inputs
(examples with hundreds of inputs have been verified). SAT algorithms have
also been used to, in effect, generate a disjunctive decomposition for BDD-based
image computations [9]. Here, BDD’s are not used – the image computation is
entirely based on SAT methods and produces a result in CNF.

Finally, another approach to using SAT in model checking is based on unfold-
ing the transition relation to the length of the longest “shortest path” between
two states [15]. The fact that this length has been reached can be verified using
a SAT solver. Thus, unlike bounded model checking, the method can provide
a guarantee of correctness for any property. Unfortunately, the longest “short-
est path” can be exponentially longer than the diameter of the state space (for
example, the longest shortest path for an n-bit register is 2n, while the diame-
ter is 1). The method presented here does not involve unfolding the transition
relation, and requires a number of iterations bounded by the diameter, as does
traditional symbolic model checking.

Outline of this Paper In section 2 we outline the standard DLL approach
to SAT using conflict-based learning. We first consider the satisfiability problem
for CNF formulas, then use this result verify the validity of arbitrary Boolean
formulas. In section 3, this basic algorithm is extended to convert an arbitrary
Boolean formula into CNF, rather than simply checking its validity. In section 4
we extend this algorithm to eliminate universal quantifiers in the result. We
also consider the problem of quantifier elimination under a restriction (i.e, a
“don’t care” condition). In section 5, we then apply this quantifier elimination
procedure in a symbolic CTL model checking algorithm, and show how to de-
tect convergence of the fixed point series. Finally, in section 6, we compare this
approach to a standard method using BDD’s.
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2 The Basic SAT Algorithm

The satisfiability problem (SAT) is to determine whether a Boolean formula in
conjunctive normal form (CNF) has a satisfying assignment. We sketch here a
generalized SAT algorithm using conflict-based learning, introducing only suf-
ficient detail to allow understanding of the algorithms that follow. Details of
the implementation are crucial for performance, but are not covered here. The
reader may refer, for example, to [16,13] for a detailed treatment.

Preliminaries Let V be a finite set of variables and let B stand for the set
{0, 1}. A literal is a variable v ∈ V , or its negation ¬v. A clause is a disjunction
of a set of zero or more literals l1 ∨ · · · ∨ ln (where the disjunction of zero literals
is taken to mean the constant 0). A CNF formula is a conjunction of a set of zero
or more clauses c1 ∧ · · · ∧ cn (where a conjunction of zero clauses taken to mean
the constant 1). In the sequel, we will speak of a clause as a set of literals, and
a CNF formula as a set of clauses, the disjunction or conjunction, respectively,
of these sets being implicit. A clause will be said to be trivial if it contains both
a variable v and its negation ¬v. A trivial clause is equivalent to the constant 1.
In the sequel, will will take “clause” to mean “non-trivial clause”.

An assignment is a partial function from V to B. An assignment is said to
be total when its domain is V . A total assignment A is said to be satisfying for
formula f when f(A), the value of f given A under the usual interpretation of
the Boolean connectives, is 1. We will equate an assignment A with a conjunction
of a set of literals, specifically the set containing ¬v for all v ∈ dom(A) such that
A(v) = 0 and v for all v ∈ dom(A) such that A(v) = 1. Thus, for example, we
will take a ∧ ¬b to stand for the assignment {(a, 1), (b, 0)}.

Boolean Constraint Propagation The basic SAT algorithm builds up an
assignment by making a sequence of arbitrary decisions. During this process,
additional implied assignments are generated by a process called Boolean con-
straint propagation (BCP). That is, given an assignment A and a clause c in the
CNF formula, if all the literals in the clause but one are false in A, then the
remaining literal must be true in any satisfying assignment extending A. Thus,
this implied literal can be added to A without loss of generality. BCP builds an
implication graph, a DAG in which the vertices are literals, and each vertex is
implied by its predecessors.

More formally, for a given CNF formula f and assignment A, let the impli-
cation graph IG(A, f) be a directed acyclic graph (V,E), where V is a set of
literals. For any vertex l ∈ V , let preds(v) denote {l′ ∈ V | (l′, l) ∈ V }. The
implication graph has the following properties:

– Every literal in A is a root.
– For every vertex l not in A, the CNF formula f contains the clause l ∨∨

m∈preds(l) ¬m. We will denote this clause cl(l, A, f).
– For all v ∈ V , V does not contain both v and ¬v.
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We also assume that the graph is maximal, in the sense that no extension of the
graph satisfies the above conditions. Note, however, that the above conditions
do not uniquely define the implication graph. We will refer to literals in A as the
“roots” of the graph, although technically one-literal clauses in f (unit clauses)
can also induce vertices with no predecessors.

As an example, suppose that f = (¬a ∨ b) ∧ (¬b ∧ c ∧ d) and A = a ∧ ¬c. A
possible implication graph IG(A, f) is shown below:

✲

✲
◗

◗◗�

a b

¬c d

We will denote by Af the assignment induced by the implication graph
IG(A, f). That is, Af =

∧
V , where (V,E) = IG(A, f). In our example, Af =

a∧ ¬c∧ b∧ d. It is straightforward to show by induction on the edge relation E
that f ∧A implies Af .

Conflict-Based Learning Given an assignment A, a clause is said to be in
conflict when all of its literals are false in Af . If any clause in the CNF formula f
is in conflict, then our assignment A cannot be extended to a satisfying assign-
ment. In this case, a technique called conflict-based learning is used to deduce a
new clause that will, in effect, prevent us from becoming blocked in the same way
in the future. This new clause, called the conflict clause, is deduced by resolving
existing clauses in f using the implication graph as a guide.

First, we must define resolution. Given two clauses of the form c1 = v ∨ A
and c2 = ¬v∨B, we say that the resolvent of c1 and c2 is A∨B, provided A∨B
is non-trivial (i.e, contains no contradictory literals). For example, the resolvent
of a ∨ b and ¬a ∨ ¬c is b ∨ ¬c, while a ∨ b and ¬a ∨ ¬b have no resolvent, since
b∨¬b is trivial. It is easy to see that any two clauses have at most one resolvent.
The resolvent of c1 and c2 (if it exists) is a clause that is implied by c1 ∧ c2 (in
fact, it is exactly (∃a)(c1 ∧ c2)).

Now, suppose that c = l1 ∧ · · · ∧ ln is a clause in f that is in conflict.
We know that the implication graph contains the literals ¬l1 . . .¬ln. Further
suppose that some literal li ∈ c is not in A (i.e., is not a root of the implication
graph). Then by definition f contains the clause cl(¬li, A, f) = ¬li ∨¬m1 ∨· · · ∨
¬mk where m1 . . .mk are the predecessors of ¬li in the implication graph. The
resolvent of c and cl(¬li, A, f) is a clause that is itself in conflict.

As an example, suppose that that we add the clause (¬b∨¬d) to the example
above. This clause is in conflict, since the implication graph contains both b
and d. Taking the resolvent of cl(d,A, f) = (¬b ∧ c ∧ d) with the conflicting
clause (¬b ∨ ¬d), we obtain an implied clause (¬b ∨ c), which is also in conflict.
Resolving this clause with cl(b, A, f) = (¬a∨b), we obtain another implied clause
(¬a ∨ c), also in conflict.

The following is a generic conflict-based learning procedure that takes a
clause in conflict and produces an implied clause (also in conflict) by repeat-
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edly applying resolution steps until some termination condition T is satisfied, or
no further steps are possible:

0 procedure deduce(c, A, f)
1 while ¬T and exists l ∈ c such that ¬l �∈ A
2 let c = resolvent of cl(¬l, A, f) and c
3 return c

Since the resulting clause is implied by f , it can be added to f without changing
its satisfiability.

Basic SAT Procedure We now put together the methods of Boolean con-
straint propagation and conflict-based learning to obtain a generic procedure for
determining the satisfiability of a CNF formula f :

0 procedure SAT(f)
1 let A = ∅
2 repeat
3 if f contains 0 return “unsatisfiable”
4 else if some clause c in conflict
5 add clause deduce(c, A, f) to f
6 remove some literals from A
7 else if Af is total, return “satisfiable”
8 else
9 choose a literal l such that l �∈ A and ¬l �∈ A
10 add l to A

The procedure heuristically guesses new literals (i.e., decisions) to add to the
assignment A. If at any point a conflict occurs in the implication graph IG(A, f),
we call the procedure deduce to generate an implied clause, which is added
to f , and then we “backtrack”, removing some literals from A. Otherwise, the
procedure terminates when either the implied assignment Af is total (in which
case we have a satisfying assignment) or the empty clause 0 is deduced (in which
case the f is unsatisfiable). We assume throughout that the implication graph
IG(A, f) is updated incrementally to reflect any changes in A or f .

Note that there are many heuristic choices to be made in this procedure.
Notable among these are the choice of which literals to add to A (the deci-
sion heuristic), the choice of literals to eliminate by resolution in the conflict-
based learning procedure, and the order of building the implication graph. These
heuristic choices vary between solvers and strongly effect the efficiency of the
procedure, but are essentially orthogonal to the methods introduced here.

Proving Validity of Arbitrary Boolean Formulas Given an arbitrary
Boolean formula (not in CNF), there is a standard procedure for construct-
ing a CNF formula that is unsatisfiable exactly when p is valid. We assume a
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set of input variables VI ⊂ V , and a Boolean formula p over VI . For simplicity,
we also assume p uses only disjunction and negation, and contains no double
negation (i.e. subformulas of the form ¬¬q). For every subformula q of the form
r ∨ s, we introduce a distinct variable vq. To each subformula of p we can now
associate a literal lq, which is q if q is an input, vq if q is a disjunction, and
¬vr if q is of the form ¬r. Now, we construct a CNF formula CNF(p), which
contains, for each subformula q of the form r ∨ s, the clauses

{(vq ∨ ¬lr), (vq ∨ ¬ls), (¬vq ∨ lr ∨ ls)}
It is not difficult to show that for any assignment A to VI , there is a unique
satisfying assignment A′ of CNF(p) consistent with A, and such that A′(lp) =
p(A). A a result, the CNF formula CNF(p)∧¬lp is unsatisfiable exactly when p
is valid.

3 Characterizing Boolean Functions in CNF

Now, given an arbitrary formula p, rather than checking the validity of p, we wish
to construct an equivalent formula to p in conjunctive normal form. This can be
done by a slight modification of the basic SAT algorithm. Briefly, we construct
a SAT problem for the validity of p, and run the SAT algorithm as described
above. However, if a satisfying assignment is found, instead of terminating, we
construct a new clause that is in conflict (i.e., rules out the satisfying assignment)
and continue the procedure. This new clause, which we will call a blocking clause,
must have the following properties:

– It must contain only variables in VI ,
– It must be false in the current assignment Af , and
– It must be implied by lp ∧ CNF(p).

The following procedure uses blocking clauses to compute a CNF formula χ
equivalent to p:

0 procedure toCNF(p)
1 let f = CNF(p) ∧ ¬lp, χ = 1, and A = ∅
2 repeat
3 if f contains 0, return χ
4 else if some clause c in conflict
5 add clause deduce(c, A, f) to f
6 remove some literals from A
7 else if Af is total
8 choose a blocking clause c′

9 add c′ to f and χ
10 else
11 choose a literal l such that l �∈ A and ¬l �∈ A
12 add l to A
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Each time a satisfying assignment is obtained, the procedure generates a new
clause whose complement characterizes a set of satisfying assignments (i.e., it
rules out a set of cases where p is false). When the CNF formula becomes unsat-
isfiable, these clauses precisely characterize p. We can argue partial correctness
of this procedure as follows. The procedure maintains the invariant that p im-
plies χ (since only clauses implied by p are added to χ). Further, at all times f
is equivalent to CNF(p) ∧ ¬lp ∧ χ. Thus, on termination, when f = 0, there is
no assignment that makes p false and χ true, in other words, χ implies p. If the
procedure terminates, therefore, χ is a CNF formula equivalent to p.

Of course, the important question is how to choose a blocking clause when
a satisfying assignment is reached. Such a clause can be generated using the
conflict-based learning procedure. However, to ensure that the conflict clause
we generate involves only input variables, we must use an alternate implication
graph to generate it, in which all the roots are assignments to input variables.

Such a graph can be generated in the following way. Suppose we have a
satisfying assignment Af for f . Let A′ = Af ↓ VI (the projection of Af onto the
input variables) and let f ′ = CNF(p) ∧ χ. We can show that A′

f ′ = Af , that is,
the implication graph IG(A′, f ′) induces the same assignment as IG(A, f). This
can be argued as follows: first, we know that Af is a satisfying assignment for f ′,
since f ′ contains a subset of the clauses in f . Further, since CNF(p) determines
the non-input variables as a function of the input variables, it follows that Af

is the unique satisfying assignment consistent with A′. Finally, since the truth
value of any subformula of p can be inferred from the truth values of its own
immediate subformulas, it follows that the assignment A′

f ′ is total. Since A′

implies A′
f ′ and Af is the only satisfying assignment consistent with A′, it

follows that A′
f ′ = Af .

Now, in particular, since f contains the clause (¬lp), it follows that the clause
(lp) is in conflict in IG(A′, f ′). As a result, by computing c′ = deduce(lp, A′, f ′),
we obtain a clause that is implied by CNF(p) ∧ lp (since this implies f ′), and is
in conflict (i.e., false in the current assignment). Further, we can ensure that c′

involves only input variables by modifying the termination condition T in deduce
so that resolution may terminate only when c′ contains only input literals. This
must eventually occur since all the roots of the implication graph IG(A′, f ′) are
input literals. Thus c′ is a blocking clause.

Clearly, it would be wise from a performance point of view to maintain the
alternate implication graph IG(A′, f ′) incrementally, updating it as changes oc-
cur in Af . In this way we avoid reconstructing the entire graph each time a
satisfying assignment is found. Further, there is no need to add a literal to A′ if
that literal is already implied by the existing assignment. Thus, A′ will typically
be smaller than Af ↓ VI , which will generally result in shorter blocking clauses.

As an example, suppose that p = (a∧b)∨c, and suppose that we have guessed
the assignment A = a. A possible implication graph is shown in (a) below. Note
that the literal ¬lp always occurs in the implication graph because f includes the
unit clause (¬lp). At this point, we have a satisfying assignment. Projecting onto
the input variables, we have A′ = a∧¬b∧¬c. The resulting alternate implication
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graph IG(A′, f ′) is shown in (b) below. Note that the implied assignment is the
same as in the original graph, and further, clause (lp) is in conflict. Thus, we
begin the conflict-based learning process with clause (lp). We first eliminate lp, to
obtain (la∧b∨c). Since this contains a non-input variable va∧b, we must continue.
Thus, we eliminate la∧b, obtaining the blocking clause (b∨c). Adding this clause,
we undo the assignment to a and continue. Suppose we once again guess A = a.
This time, instead of reaching a satisfying assignment, we find the new clause
(b ∨ c) in conflict. Thus, we perform the normal conflict analysis, obtaining
the conflict clause (¬a). Propagating implications, this yields a new satisfying
assignment where A′ = ¬a∧b∧¬c. This in turn yields the blocking clause (a∨c).
This clause is in conflict in the empty assignment, thus, the standard conflict
analysis infers the empty clause, and the procedure terminates, returning the
CNF formula (b ∨ c) ∧ (a ∨ c).

✲

✲
✘✘✘✿
�

✘✘✘✿✲

❍❍❥

a) implication graph

¬b

¬c

a

¬lp

¬la∧b

¬c

¬ba

¬la∧b

b) alternate graph rooted at inputs

¬lp

4 Quantification and Image Computations

As noted in the introduction, in order to compute AXp, we need to be able to
eliminate universal quantifiers. That is, given a Boolean formula p, and a set of
variables W = w1, . . . , wn, we would like to construct a Boolean formula equiv-
alent to ∀W.p. This is quite easily done if p is a CNF formula, as we simply
delete all the literals of the form wi or ¬wi. That is, the universal quantifier
distributes over the conjunction, and also over the disjunction within a clause,
since the literals in the clause have independent support. It follows that to com-
pute a CNF formula for ∀W.p, we have only to convert p to CNF form using
procedure toCNF and then delete the literals wi and ¬wi from the result. This
procedure may be highly inefficient however. In the extreme case, we may gen-
erate an exponentially large CNF formula for p, which then becomes equivalent
to the single clause 0 when quantification is applied.

To alleviate his problem, we can introduce the quantification step into the
SAT algorithm itself. This yields the following procedure:

0 procedure forall(W, p)
1 let f = CNF(p) ∧ ¬lp, χ = 1, and A = ∅
2 repeat
3 if f contains 0, return χ
4 else if some clause c in conflict
5 add clause deduce(c, A, f) to f
6 remove some literals from A
7 else if Af is total
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8 choose a blocking clause c′

8a remove literals of form wi or ¬wi from c′

9 add c′ to f and χ
10 else
11 choose a literal l such that l �∈ A and ¬l �∈ A
12 add l to A

This differs from the previous algorithm only in the addition of line 8a,
which universally quantifies the variables w1, . . . , wn in the blocking clause c′.
This procedure maintains the invariant that ∀W.p implies χ (since c′ is always
implied by p, it follows that ∀W.c′ is always implied by ∀W.p). Further, at all
times f is equivalent to CNF(p)∧¬lp∧χ. Thus, on termination, when f = 0, there
is no assignment that makes p false and χ true, in other words, χ implies p, hence
∀W.χ implies ∀W.p, hence χ ⇒ ∀W.p. If the procedure terminates, therefore, χ
is a CNF formula equivalent to ∀W.p.

Quantifier Elimination under a Restriction Typically in a symbolic model
checking application, we are given a restriction r on the result of an operation.
That is, we only care about the value of the resulting formula when r is true.
In this case, we would like to evaluate (∀W.p) ↓ r, which is defined to mean
some formula g such that r ∧ g = r ∧ ∀W.p. This can be accomplished using
the quantifier elimination procedure forall by simply replacing CNF(p) with
CNF(p)∧CNF(r)∧ lr . This in effect restricts the satisfying assignments to those
that satisfy r. When the algorithm terminates, χ is a CNF formula for (∀W.p) ↓ r.
Further, in the case when r ⇒ ∀W.p, there is no satisfying assignment, hence the
algorithm returns χ = 1. This is a useful property, as we will shortly observe.

5 Symbolic Model Checking Using SAT Methods

We now consider the use of the above quantifier elimination algorithm in sym-
bolic CTL model checking. We assume the reader is familiar with the temporal
logic CTL, as defined by Clarke and Emerson [8], and with symbolic model
checking methods [12]. To give a symbolic CTL model checking algorithm us-
ing a given representation for Boolean functions, it suffices to give an algorithm
for reducing the formula AXp, where p is a Boolean formula, into the given
form. The remaining operators of the logic can then be derived using standard
equivalences and fixed point characterizations.

Briefly, we assume a set of state variables S = s1, . . . , sn and a set of com-
binational variables W = w1, . . . , wk. The transition relation of the model is
given by a set of equations of the form s′i = δi(S,W ). For a given propositional
formula p, we can characterize AXp as:

AXp = ∀W. p〈δi/si〉
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That is, we can compute a CNF formula equivalent to AXp by syntactically
substituting each si by δi, and then applying our universal quantifier elimination
algorithm to the combinational variables wi, . . . , wk. Now, for example, we can
compute AGp, using the “frontier set simplification” method, as the conjunction
of the following sequence:

Z1 = p

Zi+1 = (AX Zi) ↓
i∧

j=1

Zj

To evaluate the “frontier set” Zi+1, we can use our algorithm for quantifier elim-
ination under a restriction. This sequence converges when

∧i
j=1 Zj ⇒ (AX Zi),

in which case Zi+1 is the constant 1. This gives us a way to detect convergence
without solving an additional SAT problem, and yields the following procedure
for computing a Boolean formula equivalent to AGp:

0 procedure AG(p)
1 let Z = Q = p
2 while Z �= 1
3 let Z = (∀W. p〈δi/si〉) ↓ Q
4 let Q = Q ∧ Z
5 return Q

It is straightforward to derive algorithms for the other CTL modalities using
their fixed point characterizations. Note that the existential modalities can be
obtained using the duality EXp = ¬AX¬p.

6 Comparison with BDD-Based Symbolic Model
Checking

We now compare this approach to symbolic model checking using SAT tech-
niques to a standard approach using binary decision diagrams (BDD’s). In our
experiments, both techniques use the same fixed point iteration for AGp (though
we will also compare to a BDD method using a forward traversal method). The
BDD-based technique is implemented in the Cadence SMV system.1 It uses a
“conjunctive partitioning” approach [5] to the reverse image computation. It
also uses “dynamic variable ordering” [14] to optimize the BDD variable order
during the computation. The quantifier elimination algorithm forall was imple-
mented by modifying the ZCHAFF SAT solver [13] from Princeton University.
The decision variable heuristics and implication graph mechanism in that solver
are unchanged. The implementation is quite inefficient, in that it reconstructs
the entire implication graph IG(A′, f ′) when a satisfying assignment is found,
rather than maintaining this structure incrementally. Thus, there is considerable
room for improvement in performance results presented. All computations are
1 http:/www-cad.eecs.berkeley.edu/~kenmcmil
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performed on workstation using a 900MHz Pentium III processor, and the Linux
operating system.

A Simple Example To begin with, it is generally held that BDD’s provide
a more compact representation for Boolean functions than, for example CNF.
However, there are some interesting cases where the CNF form can be exponen-
tially more compact than the BDD form. Consider, for example, the following
simple sequential machine that we will call swap. The state of swap consists
of n k-bit binary numbers, x0, . . . , xn−1. We assume that n ≤ 2k. The input to
the machine is a number i, in the range 0, . . . , n− 1. At each step, the machine
swaps the values of xi and xi−1 mod n. In the initial state of the machine, we
have, for all j, xj = j. We would like to check the property AG(x0 �= x1), that
is, the first two numbers are always different. What is interesting about this
problem is that AG(x0 �= x1) is precisely the set of states such that all the xi’s
are distinct. This is similar to a situation that occurs in real systems that rely
on the fact that no resource is allocated to two different users.

We note that the BDD representing the fact that “all the xi’s are distinct”
is exponential for any variable order. On the other hand, there is a cubic CNF
representation for this proposition, of the form:

∧

i

∧

j>i

∧

v

(xi �= v ∨ xj �= v)

Of course, since our SAT-based algorithm does not compute a minimal CNF
formula for AGp, we are not guaranteed to obtain a result of this size. However,
it is plausible that the CNF-based technique could perform exponentially better
than a BDD-based technique on this example.

In fact, this turns out to be the case. Figure 1 plots the run time performance
of a BDD-based model checker and our SAT-based model checker in computing
AG(x0 �= x1), as we increase n, letting k = �log2 n�. The BDD-based model
checker was stopped at n = 10, having exhausted 250MB of memory. We note
that in fact the BDD run time is increasing exponentially, while the time for
the SAT-based model checker increases approximately as n4.5. Similar results
are also obtained using BDD’s with a forward traversal approach. It appears
therefore, that the CNF approach can be more efficient than binary decision
diagrams in some cases.

Microprocessor Verification Benchmarks We now compare these two tech-
niques on a more substantial set of benchmarks. These are publicly available
model checking problems derived from the compositional verification of one unit
of a commercial microprocessor design, using techniques describe in [10].2 All of

2 The design is the PicoJava II (TM) design from Sun Microsystems, Inc. The RTL-
level source code for this design is available from Sun Microsystems. The benchmark
suit is described at http:/www-cad.eecs.berkeley.edu/~kenmcmil, and can be gen-
erated from the source code using the Cadence SMV tool.
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Fig. 1. Run time for SAT- and BDD-based model checkers on swap

the formulas to be checked in this benchmark suite are of the form AGp, where p
is Boolean, and all are true in the initial states (i.e., no counterexamples are gen-
erated).

These benchmark problems, as generated by the Cadence SMV system, con-
tain a large number of functionally equivalent nodes. This is due partly to the
fact that the logic in the RTL design description is unoptimized, and also to the
fact that the abstraction steps performed by Cadence SMV can generate many
redundant expressions. The benchmarks were preprocessed using a technique
called “BDD sweeping” [11] to combine functionally equivalent nets, since this
technique was found by Kuehlmann and Baumgartner to substantially improve
the performance of SAT-based bounded model checking at little expense.3

In the algorithm for AGp, we also perform a lightweight optimization of
the CNF formula that results from the quantifier elimination procedure. This
procedure is based on a ZBDD representation of the clause set, and results in
the elimination of some subsumed clauses, and resolution of some clause pairs
(i.e., it can resolve a ∨ b and a ∨ ¬b to a). This is done because the quantifier
elimination procedure is observed to produce many redundant clauses. The time
required for this optimization is generally small compared to the total run time,
but it is not included in run time figures presented below, which are therefore
slightly optimistic.

The left graph in figure 2 plots the performance of the SAT-based method
against the performance of the BDD-based method. Points above the diagonal
line indicate a faster run time for the BDD-based technique, while points be-
low the line indicate a faster time for the SAT-based approach. A time of 1800
seconds indicates that a computation was stopped at 1800 seconds without com-
pleting. This time is indicated by the heavy dashed lines in the figure. In no case
was a computation stopped because of memory exhaustion.

For reference, right graph compares the run times of the “backward” SAT-
based approach against a forward traversal method using BDD’s. This compar-
ison is less direct, but it shows at least that the previous comparison is not a
“straw man”.
3 Personal communication.
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Fig. 2. Microprocessor verification benchmark

What we observe in this experiment is that, while the total run time is
much smaller for the BDD-based technique, for most individual problems, the
SAT-based method is faster (in some cases by two orders of magnitude). In the
direct comparison, the SAT-based method performed better in 11 cases, while
the BDD-based method performed better in 7 cases. However, the graph clearly
shows that the variance in run times is greater for the SAT-based method than
for the BDD-based method. Overall, this is a promising result, since there is
likely to be much room for improvement in the SAT-based methods, especially
given the highly inefficient implementation of the procedure that was used in the
comparison. It suggests at the very least that it would be a good policy to devote
a short time to model checking using the SAT-based method before trying the
BDD-based approach.

7 Conclusion

We have observed that a traditional DLL-style SAT solver can be modified to
perform quantifier elimination on Boolean formulas, producing a result in CNF.
This in turn provides a basis for symbolic model checking that is not based
on BDD’s. This may provide an advantage over BDD-based model checking in
the case when the CNF form is more compact than the BDD form (which may
happen, for example, when resource allocation is involved), or if the SAT-based
image computation step proves to be faster than the BDD-based approach. In
a preliminary benchmark comparison against a standard BDD-based approach,
the new approach appears promising, especially given the relative maturity of
BDD-based model checkers.

In particular, there are several ways in which the current implementation
might be improved. In the first place, as mentioned above, our implementation
is highly inefficient, since it does not maintain the implication graph incremen-
tally (no self-respecting SAT solver would do this!). Secondly, the BDD-based
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approach is using the “conjunctive partitioning” method, based on early quan-
tification to simplify the representation of the transition relation. Without this
technique, it is unlikely that any of the benchmarks could be completed. On
the other hand, the SAT-based method is computing the reverse image in a sin-
gle step. It is possible that computing the image incrementally, using the early
quantification technique, would also improve the performance of the SAT-based
method correspondingly. Finally, the method suffers from the fact that “block-
ing clauses” may only contain input variables. It is straightforward to construct
examples that produce an exponentially large number of blocking clauses simply
because quantified clauses cannot be learned that involve larger subformulas. In
fact, an ordinary SAT solver that could only learn clauses over input variables
would be quite inefficient. If a solution can be found for this problem, a dramatic
improvement in performance might result.
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