
Property Checking via Structural Analysis

Jason Baumgartner1, Andreas Kuehlmann2, and Jacob Abraham3

1 IBM Enterprise Systems Group, Austin, TX 78758
2 Cadence Berkeley Labs, Berkeley, CA 94704
3 The University of Texas, Austin, TX 78712

Abstract. This paper describes a structurally-guided framework for the
decomposition of a verification task into subtasks, each solved by a spe-
cialized algorithm for overall efficiency. Our contributions include the
following: (1) a structural algorithm for computing a bound of a state-
transition diagram’s diameter which, for several classes of netlists, is suf-
ficiently small to guarantee completeness of a bounded property check;
(2) a robust backward unfolding technique for structural target enlarge-
ment: from the target states, we perform a series of compose-based pre-
image computations, truncating the search if resource limitations are
exceeded; (3) similar to frontier simplification in symbolic reachability
analysis, we use induction via don’t cares for enhancing the presented tar-
get enlargement. In many practical cases, the verification problem can be
discharged by the enlargement process; otherwise, it is passed in simpli-
fied form to an arbitrary subsequent solution approach. The presented
techniques are embedded in a flexible verification framework, allowing
arbitrary combinations with other techniques. Extensive experimental
results demonstrate the effectiveness of the described methods at solving
and simplifying practical verification problems.

1 Introduction

Due to the complexity of modern hardware designs, formal verification meth-
ods are finding increasing utilization to augment the coverage shortcomings of
test-based validation approaches. There are two primary methodologies for the
verification of safety properties. Inductive methods use a provided or computed
invariant to prove that no initial state can reach a state that violates a prop-
erty (a target state). State traversal techniques employ exact or approximate
search to find a trajectory from an initial state to a target state; unreachability
is proven if a search exhausts without finding such a trajectory. Because of their
exponential complexity, exact state traversal techniques – whether symbolic or
explicit – are applicable only to small or modestly-sized designs.

Numerous approximate techniques have been proposed to address the capac-
ity limitations of exact state traversal. Overapproximating the set of reachable
states is useful to prove a target unreachable if all target states remain outside
the overapproximation, though cannot readily demonstrate reachability other-
wise. For example, design partitioning [3] can be applied to overapproximate
the set of reachable states by exploring components whose sizes are tractable for

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 151–165, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

152 Jason Baumgartner et al.

exact traversal. Similarly, the concept of a free fence [11] is suggested for proving
the correctness of a property by localization.

Conversely, underapproximate techniques are useful to demonstrate reacha-
bility of targets, but are generally incapable of proving their unreachability. For
example, bounded model checking (BMC) [1] is based upon a satisfiability check
of a finite k-step unfolding of the target. If it can be proven that the diameter
of the design is smaller or equal to k, BMC becomes complete and can thereby
also prove unreachability. A similar underapproximate method is based upon a
bounded backward unfolding of the design starting from the target. The unfolded
structure comprises an enlarged target which can be used to either directly dis-
charge the verification problem or to produce a new, simplified problem to be
solved by a subsequent verification flow.

An inductive proof requires an invariant that implies the property. The base
step of a k-step inductive proof checks that the invariant holds during the first k
time-steps. The inductive step must then show that asserting the invariant dur-
ing time-steps i, . . . , (i + k − 1) implies that it continues to hold at time-step
(i + k). The typical drawback of inductive schemes is the intrinsic difficulty
in determining a powerful enough invariant that is inductive and also implies
correctness of the property. However, for many practical problems, backward
unfolding results in an inductive invariant after several steps.

In this paper we show how the above-mentioned techniques can be synergis-
tically combined to exploit their individual strengths. We first calculate an over-
approximation of the diameter of the design using a novel structural algorithm.
This bound has shown significant practical utility in precluding “redundantly
large” unfoldings, and obviating more costly unbounded proof techniques. We
next alternate between SAT-based forward unfolding and inductive backward
BDD-based unfolding to attempt to solve the property. The forward analysis
is useful for quickly hitting shallow targets, and also efficiently discharges our
induction hypothesis for the backward analysis. The backward analysis is useful
for proving unreachability, and renders a simpler problem – the enlarged target
– otherwise. This iteration terminates if the unfolding depth surpasses the es-
timated diameter or if some resource limitations are exceeded. In the first case
unreachability is proven; in the latter the enlarged target is passed to a subse-
quent solution approach. As demonstrated by our experiments, our technique
efficiently solves many practical targets, and otherwise offers a significant reduc-
tion capability, hence the enlarged target is often much easier to discharge than
the original.

2 Netlists: Syntax and Semantics

Definition 1. A netlist is a tuple N = 〈〈V,E〉, G, T, Z〉 comprising a directed
graph with vertices V and edges E ⊆ V × V , a semantic mapping from vertices
to gate types G : V �→ types, and a set of targets T ⊆ V correlating to a set of
properties AG(¬t), ∀t ∈ T . The function Z : V �→ V is the initial value mapping.

Property Checking via Structural Analysis 153

Our gate types define a set of constants, primary inputs (nondeterministic
bits), registers, and combinational gates with various functions, whose semantics
are provided in Definition 2. The type register is our only sequential gate type;
all others are combinational. The type of a gate may place constraints upon its
incoming edge count – e.g., registers and inverters have an indegree of one. We
assume that every directed cycle comprises one or more registers – i.e., there are
no combinational cycles.

Definition 2. The semantics of a netlist N are defined in terms of semantic
traces: 0, 1 valuations to gates over time. We denote the set of all legal traces
associated with a netlist by P ⊆ [V ×N �→ {0, 1}], defining P as the subset of all
possible functions from V × N to {0, 1} which are consistent with the following
rule. The value of gate v at time i in trace p is denoted by p(v, i).

p(v, i) =

c : vis a constant vertex with value c∈{0, 1}
si

vp
: vis a primary input with sampled value si

vp

Gv

(
p(u1, i), ..., p(un, i)

)
: vis a combinational gate and Gv = G(v)

p(u1, i− 1) : vis a register and i > 0
p
(
Z(v), 0

)
: vis a register and i = 0

Term uj denotes the source vertex of the j-th incoming edge to v, implying
(uj , v) ∈ E.

The initial values of a netlist represent the values that registers can take at
time 0; note that this function is ignored for non-register types. For a set of
vertices U ⊆ V , let regs(U) = {v ⊆ U : G(v) = register}, and let coi(U) be the
set of vertices in the cone of influence of U . We assume that coi

(
Z(regs(V))

)
contains no registers. Furthermore, we do not allow combinational cycles, which
makes Definition 2 well-formed. We say that target t is hit in trace p at time i
if p(t, i) = 1. A state is a mapping from registers to 0, 1 values. We refer to the
set of states for which there exists a primary input mapping that hits t ∈ T as
the set of target states.

Definition 3. The diameter1 of U ⊆ V , denoted by d(U), is the minimum
d ∈ N such that for any trace p and ∀i, j ≥ 0, there exists a trace p′ such that
p
(
regs(coi(U)), i

)
= p′

(
regs(coi(U)), i

)
and p(U, i+ j+d) = p′(U, i+k) for some

0 ≤ k < d.

In other words, if any state s′ is reachable from state s, then s′ is reach-
able in less than d steps from s. By this definition, the diameter of a purely
combinational cone is 1; the diameter of mod c-counter is c. Clearly AG(¬t) iff
∀p ∈ P.

∧d(t)−1
i=0

(
p(t, i) = 0

)
.

1 Our definition of diameter is generally one greater than the standard definition for
graphs.

154 Jason Baumgartner et al.

...

...

...

...

......
...

Cj−2 Cj+1Cj

Rj−1
Rj+1

Cj−1

Rj

Fig. 1. Slice of TSAP structure

3 Diameter Approximation

In this section, we discuss a structural algorithm for computing an upper bound
d̂(t) ≥ d(t) on the diameter of target t. The goal is to find a practically tight
overapproximation such that bounded search can be applied in a complete man-
ner. A simple bound is 2|regs(coi(t))|, though this bound is often too weak to be
of any practical value. Semantic approaches at obtaining a bound [1,13] are of
formidable complexity – often greater than a BMC of the target itself.

There are two characteristics of practical netlists which may be exploited
to structurally compute a tighter diameter bound. First, netlists seldom repre-
sent monolithic strongly connected graphs. Instead, they often comprise multiple
maximal strongly connected components (SCCs); an approximation of diameter
can thus be derived from an estimation of the individual SCC diameters. Second,
although the overapproximate diameter of a component is generally exponential
in its register count, several commonly occurring structures have much tighter
bounds. For example, as proven in Theorem 1, the diameter of a single memory
row comprising n registers is 2 instead of 2n; acyclic registers only cause a linear,
rather than multiplicative increase in diameter.

Definition 4. A topologically sorted acyclic partitioning (TSAP) of V into n
components is a labeling comp : V �→ {1, 2, . . . , n} such that ∀u, v ∈ V.

(
(u, v) ∈

E ⇒ comp(u) ≤ comp(v)
)
.

Let Ri = {v : comp(v) = i} denote the i-th component of a TSAP. Let Ci =
Ri ∪ {u : ∃v.((u, v) ∈ E ∧ u ∈ ⋃i−1

j=1 Rj ∧ v ∈ ⋃n
j=i+1 Rj

)}. Set Ci adds to Ri

the elements of lower-numbered components which fan out to higher-numbered
components. For example, in Figure 1, some elements of component Rj−1 are
included in Cj and Cj+1, though no elements of Rj are included in Cj+1 since
no outgoing edges from Rj have sinks beyond Rj+1. We distinguish between the
following specific types of components of a TSAP. Let xi be a register vertex
and yi be the source of the incoming edge to xi, denoting the present-state and
next-state function of the corresponding register, respectively.

– A combinational component (CC) contains only non-register vertices.

Property Checking via Structural Analysis 155

– A constant register component (NC) contains only register vertices whose
incoming edges are sourced by their outputs; i.e. yi = xi.

– An acyclic register component (AC) contains only register vertices whose
incoming edges are inputs to the component.

– A memory register component (MC) is composed solely of a set of r×c regis-
ters and combinational gates, for r ≥ 1 and c ≥ 1. The next-state functions
of the registers have the form: yi,j = (xi,j ∧

∧w
k=1 ¬load i,k)∨∨w

k=1(data i,j,k∧
load i,k), for 1 ≤ i ≤ r and 1 ≤ j ≤ c, where datai,j,k and load i,k are inputs
to the component. Let rows(Ri) = r for MC Ri.

– A queue register component (QC) is composed solely of a set of r×c registers
and combinational gates, for r > 1 and c ≥ 1. The next-state functions of
the registers have the form: y1,j = (x1,j ∧ ∧w

k=1 ¬loadk) ∨ ∨w
k=1(dataj,k ∧

loadk); yi,j = (xi,j ∧ ∧w
k=1 ¬loadk) ∨ (xi−1,j ∧ ∨w

k=1 loadk), for 1 < i ≤ r
and 1 ≤ j ≤ c, where dataj,k and loadk are inputs to the component. Let
rows(Ri) = r for QC Ri.

– All remaining components are general components (GC). Let |regs(Ri)| de-
note the number of registers in GC Ri, which must be greater than 0. If
there exists a combinational path from an input of Ri to any combinational
gate u ∈ Ri, and ∃v.((u, v) ∈ E ∧ v /∈ Ri

)
, we say that the GC is Mealy.

Note that MCs and QCs are generalized for w write ports. Further generaliza-
tions are possible, though we have found these adequate for commonly-occurring
structures. NCs may have constant initial values (in which case they should be
simplified by constant propagations) or symbolic initial values (e.g., implement-
ing forall variables).

Our approximation of the diameter of a target t is based upon a TSAP
of its coi . We prefer TSAPs with maximally-sized ACs, NCs, MCs, and QCs
to ensure tighter approximation, which are obtained by first partitioning coi(t)
into maximal SCCs, then selectively clustering components so as not to introduce
cycles.

Let ε(i) = 0 if i = 0, or if (Ci−1 ∩Ci �= ∅), or if Ri is a Mealy GC; otherwise
ε(i) = 1. Further, let δ(i) = 1 − ε(i). Term ε(i) denotes whether Ri constitutes
a cut between components R1 . . . Ri−1 and components Ri+1 . . . Rn, and δ(i) =
¬ε(i). In Figure 1, only Rj−1 constitutes a cut (provided that it is not a Mealy
GC), hence ε(j − 1) = 1, whereas ε(j) = ε(j + 1) = 0. The following formulas
for computing D(i) and S(i) provide the key to our diameter estimation for Ri.
Let Q : Ri �→ {CC ,NC ,AC ,MC ,QC ,GC } denote the type of component Ri.

D(i) =

8>>><
>>>:

1 : i = 0

D(i − 1) : i > 0 ∧ Q(Ri) ∈ {CC, NC, AC}
D(i − 1) · �rows(Ri) + δ(i)

�
: i > 0 ∧ Q(Ri) ∈ {MC , QC}

D(i − 1) · �Di − ε(i)
�
+ ε(i) : i > 0 ∧ Q(Ri) = GC

S(i) =

8>>><
>>>:

0 : i = 0

S(i − 1) : i > 0 ∧ Q(Ri) ∈ {CC, NC, GC}
S(i − 1) + ε(i) : i > 0 ∧ Q(Ri) ∈ {MC , QC}
S(i − 1) + 1 : i > 0 ∧ Q(Ri) = AC

156 Jason Baumgartner et al.

Term Di represents an upper-bound on the diameter GC Ri; clearly 2|regs(Ri)|

is conservative. We may use other estimation techniques, such as approximate
reachability analysis [3], to find tighter bounds on the diameter of a GC. Note
that the recurrence diameter [1] must be used with such an approach due to
possible input constraints to the GC in the composed netlist.

Theorem 1. The value D(i) +S(i) is an upper-bound on the diameter of com-
ponent Ri. Further, term d̂(t) = D(i) + S(i) is an upper-bound on the diameter
of target t for comp(t) = i.

Proof. Our proof is based upon the hypothesis that for cut Ci, any arbitrarily-
ordered succession of c reachable valuations is producible within c ·D(i) + S(i)
time-steps. The theorem follows from assigning c = 1. We will prove this hy-
pothesis by induction on i. The intuition behind this hypothesis is that compo-
nent Ri+1 may transition from each state only upon a distinct valuation of Ci.
Therefore, in order to ensure that we attain an upper bound on the diameter
of Ri+1, we generally must wait for a succession of c = D(i+1) valuations to Ci.

Our base case has i = 1. If Q(R1) ∈ {NC ,CC}, we obtain D(1) = 1 and
S(1) = 0. This result is correct, since any valuation producible by C1 is pro-
ducible every time-step due to its lack of sequential behavior. Q(R1) cannot be
MC, QC, or AC since those types require other components to drive their in-
puts. Finally, if Q(R1) = GC , then D(1) = D1 which is an upper bound on the
diameter of C1 by definition, hence our proof obligation is satisfied.

We next proceed to the inductive step. If Q(Ri+1) = NC , then our result is
correct by the base case analysis since such components have no inputs sourced
by other components. If Q(Ri+1) = CC , then our result is correct by hypothesis,
noting that Ri+1 is a purely combinational function of Ci and primary inputs.
If Q(Ri+1) = AC , then D(i + 1) = D(i) and S(i + 1) = S(i) + 1. This result
is correct since the initial values of an AC have semantic importance only at
time 0, and since an AC merely delays some values of Ci by one time-step. If
Q(Ri+1) ∈ {MC ,QC }, then we obtain D(i+ 1) = D(i) · (rows(Ri+1) + δ(i+ 1)

)
and S(i + 1) = S(i) + ε(i + 1). This result is correct by noting that it can
take at most c · D(i) + S(i) time-steps to reach any possible succession of c
valuations to Ci by hypothesis. If δ(i+1) = 1, then Ci fans out to Ci+2, meaning
that we generally must wait for c =

(
rows(Ri+1) + 1

)
valuations to Ci to be

sure that we have an upper bound on the diameter of Ci+1. If δ(i + 1) = 0,
then we need only wait for c = rows(Ri+1) valuations to Ci, plus one extra
time-step for the load to take effect upon Ci+1. Lastly, if Q(Ri+1) = GC , then
D(i + 1) = D(i) · (Di+1 − ε(i + 1)

)
+ ε(i + 1) and S(i + 1) = S(i), where Di+1 is

defined as an upper-bound on the diameter of Ri+1. For ε(i + 1) = 0 this result
is obvious. Otherwise, note that any trace segment begins in one state of Ri+1,
and c = (Di+1 − 1) transitions, which must initiate within c ·D(i) + S(i) time-
steps, plus one for the final transition to complete, is sufficient to put Ri+1 into
any of its subsequently-reachable states. Hence D(i + 1) = D(i) · (Di+1 − 1) + 1
time-steps satisfies our obligation. ��

Property Checking via Structural Analysis 157

We lastly observe that localization [11] has shown significant practical utility
in quickly proving unreachability, and possibly enhancing reachability analysis.
Localization consists of using a cut frontier (the free fence) to isolate an over-
approximate localized coi for target t, yielding localized target t′. Term d̂(t′)
may be useful to enable bounded analysis, rather than often-more-expensive un-
bounded analysis, to solve t′ since localized cones may often have structurally-
calculatable shallow diameters. This technique may be useful not only to analyze
certain localized cones more efficiently, but also to select better localized cones.
For example, one may incrementally add gates to a localized cone to make it as
large as possible – hence the overapproximation becomes tighter, as long as the
incremental additions preserve a shallow diameter.

4 Target Enlargement

A k-step enlargement of target t incrementally computes the set of states that
can reach t in k transitions. If an initial state becomes part of the enlarged tar-
get during this process, the target is proven reachable. Otherwise, if during the
current enlargement step no new states are enumerated that have not been en-
countered in “shallower” steps, the target is proven unreachable. If k ≥ d(t) steps
are performed without reaching an initial state, unreachability can be inferred.
If at any step the computing resources exceed a given limit, the enlargement
process is truncated and the verification problem is reformulated based upon
the states enumerated during shallower steps (refer to Figures 2 and 3).

Target enlargement is based upon pre-image computation, for which there
are three primary techniques: (1) transition-relation based methods [2,16,15,5],
(2) transition-function based methods using the constrain operator [4], and (3)
transition-function based methods using the compose operator [6]. We utilize
the latter, since the set of registers in the support of each iteration of a target
enlargement is often a small subset of those in the entire coi of the target.
This precludes entailing unnecessary computational complexity, and well-suits
our goal of rendering a simpler problem with as few registers as possible – the
enlarged target – if the target is not solved during enlargement.

Figure 2 shows the pseudocode for our target enlargement algorithm. In
step 1, BSAT(N, t, i) denotes a SAT-based bounded check of target t using un-
folding depth i. We use BSAT to attempt to hit the target as well as to dis-
charge our induction hypothesis for the the subsequent backward analysis. We
use SAT rather than BDD-based analysis since the former is often more effi-
cient for bounded analysis. If the overapproximate diameter is surpassed in the
bounded search, we discharge the target in step 1b.

If BSAT is inconclusive, we perform compose-based pre-image computations2.
We apply early quantification of primary input variables to keep the intermedi-
ate BDD size small; as soon as the last composition which has a given primary
2 We may alternatively iterate between BSAT and pre-image computation with re-
source bounds.

158 Jason Baumgartner et al.

Algorithm Enlarge(N, t, k, d̂(t))

1. for (i = 0; i < k; i++)
(a) Apply BSAT(N, t, i). If t is reachable, then return REACHABLE with BSAT

trace.
(b) If i = d̂(t), then return UNREACHABLE.

2. Build BDD0 for t over the primary inputs and registers in its transitive fanin.
3. Existentially quantify primary inputs from BDD0.
4. for (i = 1; i ≤ k; i++)

(a) Compute MLP [12] schedule S = (v1, . . . , vs) for registers supporting BDD i−1.
(b) Rename all variables v in BDD i−1 to v′, forming BDD i.
(c) for (j = 1; j ≤ |S|; j++)

i. BDD i = bdd compose(BDD i, v
′
j , fvj), which substitutes fvj in place of

variable v′
j in BDD i, where fvj is the BDD for the next-state function

of vj .
ii. Perform early quantification of primary inputs from BDD i.
iii. Minimize BDD i with bdd compact [8] using BDD0 . . . BDDi−1 as don’t

cares.
iv. If BDD i is too large, assign k = i − 1 and return BDDi−1.

(d) If BDD i is 0, then return UNREACHABLE.
5. return BDDk.

Fig. 2. Algorithm Enlarge for target enlargement

input i in its support is performed, we may quantify i. We utilize a modified
MLP algorithm [12] for our quantification and composition scheduling. At each
MLP scheduling step, we either schedule a composition, or “activate” an input
to simplify future scheduling decisions – initially, all primary inputs are “inac-
tive.” Our goal is to minimize the lifetime of input variables, from activation
until quantification, and to delay the introduction of registers. Each composi-
tion step eliminates one next-state register variable v′, and introduces zero or
more present-state register variables v and primary inputs. The following modi-
fications of the MLP algorithm have proven to be the most useful:

– At each scheduling step, we schedule compositions of all registers with no
inactive primary inputs in their support which introduce at most one regis-
ter not already in the BDD support. Each such composition eliminates the
corresponding v′ variable from the BDD support, and adds at most one v
variable to the support, which is typically beneficial for minimizing peak
BDD size. We next schedule compositions of all registers with zero inac-
tive, and nonzero active, inputs in their support, regardless of their register
support, to force input quantification.

– If no register satisfies the above criteria, we instead activate an input. When
choosing which input i to activate, we select one which is in the support of
an unscheduled register with the fewest, though non-zero, inactive inputs in
its support. Ties are broken to minimize the total number of registers not
already in the BDD support which would need to be introduced before i
could be quantified.

Property Checking via Structural Analysis 159

After each quantification, the intermediate BDD i is simplified by the bdd com-
pact operator [8], using the BDDs of previous iterations as don’t cares3. Ef-
fectively, this simplification attempts to prove inductiveness of the target; the
corresponding hypothesis was previously discharged by BSAT. The resulting sim-
plified BDD ′

i satisfies the relation BDD i \
⋃i−1

j=0 BDD j ⊆ BDD ′
i ⊆

⋃i
j=0 BDD j

and size(BDD ′
i) ≤ size(BDD i), where size(BDD i) represents the node count

of BDD i. The bdd compact operation cannot introduce new variables into the
support of a BDD, but may eliminate some. Hence it is well-suited for our goal
of minimizing the support of each pre-image step and thereby of the enlarged
target. It is also this goal that prompts us to keep each BDD i distinct. Using
don’t cares instead of constraints weakens our unreachability analysis, thus a
fixed-point may never be reached. However, as demonstrated by our experimen-
tal results, many targets can be solved or significantly simplified which affirms
the chosen trade-off of precision versus computational efficiency.

If the BDD size at any step exceeds a given limit, the enlargement process
is truncated and the BDD of the previous iteration is returned. This prevents
exceedingly large enlarged targets which could harm the subsequent verifica-
tion flow. We have found that this approach – from structure to BDDs back
to structure – is more effective in a flexible toolset than enlargement by purely
structural transformation [14]. The latter does tend to yield large, redundant
structures which may seriously hinder subsequent BDD- or simulation-based
analysis methods. In contrast, our enlargement approach often reduces the size
of the target cone and thus enhances any subsequent verification approach.

Using SAT rather than BDDs for an inductive proof may occasionally be
more efficient. However, if unsuccessful, our BDD-based result can be reused to
directly represent the simplified function of the k-step enlarged target. A similar
reuse is not possible for a SAT-based method. In [7] it is proposed to apply cubes
obtained during an inductive SAT call as “lighthouses” to enhance the ability to
subsequently hit targets; such an incomplete approach, however, precludes the
structural reductions of our technique.

5 Top-Level Algorithm

In this section we discuss the overall flow of our decomposition algorithm Verify
which is illustrated in Figure 3. We first determine a limit on the number of
enlargement steps and then call the algorithm Enlarge on target t. If Enlarge
returns a reachable or unreachable solution, this result is returned. Otherwise a
structure representing the enlarged target is added to N . This is performed by
creating a new netlist N ′ which encodes the function of the BDD of the enlarged
target. The output gate of N ′, denoted as t′, is a combinational function over the
3 A similar reachability-based approach would exploit states that can hit t within k
time-steps as don’t cares when assessing reachability of a state that can hit t in
exactly k steps. With this observation, we may use these don’t cares also to simplify
the next-state functions of registers, which may further reduce the complexity for a
subsequent verification flow.

160 Jason Baumgartner et al.

registers in N . The composition of N and N ′, denoted as N ‖ N ′, is then passed
to a subsequent verification flow to attempt to solve t′. For example, we may next
apply retiming and combinational optimizations [9] which have the potential to
further reduce the netlist size before another application of Verify is attempted.
This effectively applies the presented approach as a reentrant engine in a general
transformation-based verification [9] flow. If a subsequent engine demonstrates
unreachability of t′, then t is also unreachable. If the subsequent verification flow
hits t′, we use simulation and another BSAT in step 6 to undo the effects of the
enlargement on the trace. Because of its speed, a simulation preprocessing for
eliminating easy-to-hit targets as step 0 may be useful in a robust toolset.

Algorithm Verify (N, t)

1. Determine a limit on number of enlargement steps
k = min

�
user specified limit, d̂(t)

�
.

2. Invoke algorithm Enlarge(N, t, k, d̂(t)) to enlarge the target. If the problem is
solved (result ∈ {REACHABLE, UNREACHABLE}) return result with any ap-
plicable trace.

3. Synthesize the BDD for the enlarged target from step 2 into netlist N ′, compose N ′

onto N , and declare new target t′ ∈ V (N ′). This results in a new problem (N ‖
N ′, t′).

4. Utilize an arbitrary verification flow to attempt to solve (N ‖ N ′, t′).
5. If step 4 yields UNREACHABLE return UNREACHABLE.
6. If step 4 yields REACHABLE with a trace p, undo the effects of the enlargement

by the following steps:

(a) Complete p over N with simulation up to the first hit of t′ to obtain p′. This
is needed because the cone-of-influence of t and t′ may differ and p may be
only partial.

(b) Cast BSAT(N, t, k) from the last state of p′, which must be satisfiable, to
obtain p′′.

(c) Concatenate p′′ onto p′, overwriting the last time-step of p′ with the first
time-step of p′′, to obtain p′′′.

(d) return REACHABLE with p′′′.

Fig. 3. Top-level algorithm Verify

Theorem 2. Algorithm Verify (N, t) is sound and complete.

The proof of Theorem 2 is straight-forward, and omitted due to space limitations.

6 Experimental Results

In this section we provide experimental results. All experiments were run on
an IBM ThinkPad model T21 running RedHat Linux 6.2, with an 800 MHz
Pentium III and 256 MB main memory. We set the peak BDD size to 217 nodes,
and capped BSAT (using a structural SAT solver [10]) to 10 seconds per target
with an upper-bound of fifty steps.

Property Checking via Structural Analysis 161

Our first set of experiments were performed on the ISCAS89 benchmark
netlists. The results are provided in Table 6. Since these benchmarks have no
specified properties, we labeled each primary output of these netlists as a target.
Column 1 gives the name of the benchmark and Column 2 provides the number
of registers that are included in the various component types: constants (NCs),
acyclic (ACs), table cells (MCs or QCs), and complex (GCs). Column 3 lists the
average diameter d̂ of all targets t with d̂(t) ≤ 20 and their count. These are
candidates to be discharged with BMC. The bound of 20 was chosen arbitrarily
as being typically efficient for bounded search. The next columns provide results
for two distinct runs: first a standard run using the techniques as described in
the previous sections, and second a “reduction-only” run which does not apply
BSAT to solve the problem. Instead, if BSAT would solve the target in i steps,
our enlargement is performed to depth j = i−1; if j < 1, we only build BDD0 in
Enlarge. For the standard run in Column 4 we report the number of targets in
the netlist, the number of targets which are hit, and the number of targets that
are proven unreachable. The number of unreachable results proven with BDDs is
provided in parenthesis. In Column 5 we report the accumulated size of the coi’s
of unsolved targets in terms of the number of registers and primary inputs, and
the number eliminated in the corresponding enlarged cones. Column 6 reports
the average number of seconds spent per target, and the peak memory usage.
For the reduction-only run we report coi sizes and reduction results (similar to
Column 5) in Column 7.

There are several noteworthy points in Table 6. Our techniques solve most
targets whether reachable or unreachable, regardless of netlist size – 1575 of
1615 targets are solved. Though the “difficulty” of these targets is unknown,
this is an indication of the robustness of our approach. Many registers are non-
complex: 26% are acyclic registers, and 6% are table cells. For netlists with
unsolved targets, we achieve an average reduction per netlists of 5.3% in register
count and 5.0% in primary input count, and a cumulative reduction of 12.2% for
registers and 10.3% for primary inputs. A total of 381 targets have a diameter
of less than 20. Our reduction-only run yields an average reduction per netlist
of 13.9% in registers and 13.0% in primary inputs.

In Table 6 we provide a similar analysis for randomly-selected targets from
the IBM Gigahertz Processor (GP). Most targets, 254 out of 284, are solved.
A large fraction of the registers is non-complex: 1% are constants, 57% are
acyclic, and 10% are table cells. A total of 91 targets have a diameter of less
than 20. We achieve an average reduction per netlist of 12.1% in registers and
11.1% in primary inputs. The reduction-only run yields an average reduction
per netlist of 54.9% in registers and 54.8% in primary inputs, and a cumulative
reduction of 70.6% of registers and 69.5% of primary inputs.

We now discuss several netlists in more detail. Netlist I IBBQn is a large
table-based netlist. Forward reachability analysis of the optimized [10] cone of
a single unreachable target with a diameter of three (comprising 442 registers
and 134 primary inputs) requires 172.3 seconds and 25 MB with a MLP [12] al-
gorithm, with sift variable ordering enabled and a random initial ordering. Our

162 Jason Baumgartner et al.

Table 1. Experimental results for the ISCAS89 benchmarks

Model regs in: NC;AC; Avg. d̂ Standard Run Reduction-Only Run
MC+QC; GC < 20; |T |;Rch; regs (inputs) Time/|T | (s); regs (inputs)

Count Unrch (BDDs) Eliminated ; Sum Mem (MB) Eliminated ; Sum
PRO- 0 ; 107 ; 1.5 ; 6 73 ; 69 ; 4 (0) 0 (0); 0 (0) 0.07 ; 15 146 (126) ;
LOG 1 ; 28 2044 (1438)
S1196 0 ; 18 ; 0 ; 0 3.3 ; 14 14 ; 14 ; 0 (0) 0 (0); 0 (0) 0.08 ; 12 24 (56); 88 (196)
S1238 0 ; 18 ; 0 ; 0 3.3 ; 14 14 ; 14 ; 0 (0) 0 (0); 0 (0) 0.08 ; 12 24 (56); 88 (196)
S1269 0 ; 9 ; 17 ; 11 4.0 ; 2 10 ; 10 ; 0 (0) 0 (0); 0 (0) 0.10 ; 15 289 (145);

296 (152)
S13207 1 0 ; 314 ; 1.7 ; 51 152 ; 131 ; 26 (0); 527 (18) 1.02 ; 107 3155 (302);

128 ; 196 12 (9) 24244 (2172)
S1423 0 ; 3 ; 16 ; 55 1.0 ; 1 5 ; 5 ; 0 (0) 0 (0); 0 (0) 0.13 ; 15 2 (0); 278 (69)
S1488 0 ; 0 ; 0 ; 6 0.0 ; 0 19 ; 18 ; 0 (0) 0 (0); 6 (8) 0.74 ; 23 0 (0); 114 (152)
S1494 0 ; 0 ; 0 ; 6 0.0 ; 0 19 ; 18 ; 0 (0) 0 (0); 6 (8) 0.89 ; 23 0 (0); 114 (152)
S1512 0 ; 0 ; 0.0 ; 0 21 ; 10 ; 8 (8); 8.22 ; 24 135 (93);

1 ; 56 0 (0) 437 (283) 837 (543)
S15850 1 0 ; 99 ; 2.3 ; 112 150 ; 135 ; 8 (1) 451 (54); 0.68 ; 63 2425 (321);

124 ; 311 1450 (174) 9683 (1301)
S208 1 0 ; 0 ; 0 ; 8 0.0 ; 0 1 ; 1 ; 0 (0) 0 (0); 0 (0) 0.27 ; 15 0 (0); 8 (10)
S27 0 ; 1 ; 2 ; 0 2.0 ; 1 1 ; 1 ; 0 (0) 0 (0); 0 (0) 0.23 ; 12 0 (0); 3 (4)
S298 0 ; 0 ; 1 ; 13 0.0 ; 0 6 ; 6 ; 0 (0) 0 (0); 0 (0) 0.12 ; 15 22 (6); 54 (18)
S3271 0 ; 6 ; 0 ; 110 7.0 ; 1 14 ; 14 ; 0 (0) 0 (0); 0 (0) 0.11 ; 15 0 (0); 1248 (339)
S3330 0 ; 103 ; 1 ; 28 1.0 ; 6 73 ; 73 ; 0 (0) 0 (0); 0 (0) 0.08 ; 15 146 (125); 2044 (1442)
S3384 0 ; 111 ; 0 ; 72 7.8 ; 4 26 ; 26 ; 0 (0) 0 (0); 0 (0) 0.09 ; 15 26 (25); 2587 (425)
S344 0 ; 0 ; 4 ; 11 3.3 ; 3 11 ; 10 ; 1 (0) 0 (0); 0 (0) 0.09 ; 15 6 (2); 129 (75)
S349 0 ; 0 ; 4 ; 11 3.0 ; 3 11 ; 10 ; 1 (0) 0 (0); 0 (0) 0.09 ; 15 3 (1); 126 (74)
S35932 0 ; 0 ; 0 ; 1728 0.0 ; 0 320 ; 320 ; 0 (0) 0 (0); 0 (0) 2.01 ; 105 0 (0); 331776 (11200)
S382 0 ; 6 ; 0 ; 15 0.0 ; 0 6 ; 6 ; 0 (0) 0 (0); 0 (0) 1.71 ; 15 34 (6); 96 (18)
S38584 1 0 ; 47 ; 1.0 ; 38 304 ; 301 ; 1 (0) 0 (0); 1.54 ; 88 17925 (458);

4 ; 1375 1377 (24) 105273 (2564)
S386 0 ; 0 ; 0 ; 6 0.0 ; 0 7 ; 7 ; 0 (0) 0 (0); 0 (0) 0.07 ; 14 0 (1); 42 (43)
S400 0 ; 6 ; 0 ; 15 0.0 ; 0 6 ; 6 ; 0 (0) 0 (0); 0 (0) 1.72 ; 15 34 (6); 96 (18)
S420 1 0 ; 0 ; 0 ; 16 0.0 ; 0 1 ; 1 ; 0 (0) 0 (0); 0 (0) 0.25 ; 15 0 (0); 16 (18)
S444 0 ; 6 ; 0 ; 15 0.0 ; 0 6 ; 6 ; 0 (0) 0 (0); 0 (0) 1.80 ; 15 34 (6); 96 (18)
S4863 0 ; 62 ; 0 ; 42 0.0 ; 0 16 ; 16 ; 0 (0) 0 (0); 0 (0) 0.09 ; 15 0 (0); 1664 (784)
S499 0 ; 0 ; 0 ; 22 0.0 ; 0 22 ; 22 ; 0 (0) 0 (0); 0 (0) 0.09 ; 16 0 (0); 484 (22)
S510 0 ; 0 ; 0 ; 6 0.0 ; 0 7 ; 4 ; 0 (0) 0 (0); 18 (57) 6.64 ; 25 0 (0); 42 (133)
S526N 0 ; 0 ; 1 ; 20 0.0 ; 0 6 ; 2 ; 0 (0) 8 (2); 64 (12) 10.44 ; 27 10 (2); 96 (18)
S5378 0 ; 115 ; 0 ; 64 2.0 ; 2 49 ; 47 ; 1 (1) 4 (0); 164 (33) 0.59 ; 26 165 (37); 7087 (1456)
S635 0 ; 0 ; 0 ; 32 0.0 ; 0 1 ; 0 ; 0 (0) 0 (0); 32 (2) 18.23 ; 15 0 (0); 32 (2)
S641 0 ; 7 ; 0 ; 12 1.0 ; 3 24 ; 23 ; 1 (1) 0 (0); 0 (0) 0.09 ; 15 64 (64); 319 (338)
S6669 0 ; 181 ; 0 ; 58 3.0 ; 37 55 ; 55 ; 0 (0) 0 (0); 0 (0) 0.08 ; 15 16 (0); 3061 (1466)
S713 0 ; 7 ; 0 ; 12 1.0 ; 3 23 ; 22 ; 1 (1) 0 (0); 0 (0) 0.10 ; 15 64 (64); 304 (323)
S820 0 ; 0 ; 0 ; 5 5.3 ; 18 19 ; 19 ; 0 (0) 0 (0); 0 (0) 0.23 ; 13 0 (0); 90 (324)
S832 0 ; 0 ; 0 ; 5 5.3 ; 18 19 ; 19 ; 0 (0) 0 (0); 0 (0) 0.25 ; 13 0 (0); 90 (324)
S838 1 0 ; 0 ; 0 ; 32 0.0 ; 0 1 ; 1 ; 0 (0) 0 (0); 0 (0) 0.29 ; 15 0 (0); 32 (34)
S9234 1 0 ; 45 ; 9 ; 157 1.2 ; 21 39 ; 37 ; 2 (0) 0 (0); 0 (0) 0.06 ; 16 146 (24); 1786 (317)
S938 0 ; 0 ; 0 ; 32 0.0 ; 0 1 ; 1 ; 0 (0) 0 (0); 0 (0) 0.33 ; 15 0 (0); 32 (34)
S953 0 ; 23 ; 0 ; 6 2.0 ; 3 23 ; 23 ; 0 (0) 0 (0); 0 (0) 0.13 ; 15 23 (8); 143 (288)
S967 0 ; 23 ; 0 ; 6 2.0 ; 3 23 ; 23 ; 0 (0) 0 (0); 0 (0) 0.14 ; 15 23 (8); 143 (288)
S991 0 ; 0 ; 0 ; 19 3.9 ; 17 17 ; 17 ; 0 (0) 0 (0); 0 (0) 0.08 ; 13 64 (564); 67 (629)

compose-based search requires 34.7 seconds and 16 MB for the same BDD condi-
tions. However, because of its small diameter, the presented approach can solve
the target using SAT in 0.46 seconds and 16 MB. After one step of enlargement,
the cone drops to 380 registers and 132 primary inputs; the second step solves
the target.

L FLUSHn is a largely feed-forward netlist. For one target with 38 registers
and 47 primary inputs, reachability analysis of the optimized target with MLP
requires 1.20 seconds and 11 MB. Optimization [10] plus retiming [9] with MLP
solves the target in 0.60 seconds with 13 MB. Compose-based search requires
0.50 seconds and 9 MB. Due to a shallow diameter of three, our techniques
solve the target using SAT in 0.19 seconds with 9 MB. The first two steps of
enlargement of this target reduce it to 4 then 2 registers, and 3 then 2 primary
inputs, respectively. The third step hits the target.

Property Checking via Structural Analysis 163

Table 2. Experimental results for GP netlists

Model regs: NC;AC; Avg. d̂ Standard Run Reduction-Only Run
MC+QC; GC < 20; |T |;Rch; regs (inputs) Time/|T | (s); regs (inputs)

Count Unrch (BDDs) Eliminated ; Sum Mem (MB) Eliminated ; Sum
CP RAS 0 ; 279 ; 66 ; 315 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.61 ; 19 1 (0); 554 (131)
CLB CNTL 0 ; 29 ; 2 ; 19 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.24 ; 15 0 (0); 84 (12)
CR RAS 0 ; 96 ; 6 ; 329 0.0 ; 0 1 ; 0 ; 0 (0) 0 (0); 401 (99) 3.55 ; 24 0 (0); 401 (99)
D DASA 0 ; 16 ; 81 ; 18 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.24 ; 15 11 (17); 20 (25)
D DCLA 0 ; 382 ; 1 ; 754 0.0 ; 0 2 ; 1 ; 1 (1) 0 (0); 0 (0) 7.65 ; 44 273 (67); 469 (133)
D DUDD 0 ; 30 ; 28 ; 71 4.4 ; 5 22 ; 14 ; 8 (6) 0 (0); 0 (0) 1.15 ; 25 491 (353); 1009 (725)
I IBBQn 0 ; 623 ; 1488 ; 0 2.9 ; 15 15 ; 8 ; 7 (0) 0 (0); 0 (0) 0.28 ; 60 190 (30); 2169 (437)
I IFAR 0 ; 303 ; 11 ; 99 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.31 ; 16 8 (0); 101 (35)
I IFPF 11 ; 893 ; 44 ; 598 0.0 ; 0 1 ; 1 ; 0 (0) 0 (0); 0 (0) 2.72 ; 40 745 (152); 746 (154)
L3 SNP1 25 ; 529 ; 39 ; 82 0.0 ; 0 5 ; 4 ; 1 (0) 0 (0); 0 (0) 1.21 ; 22 7 (0); 595 (164)
L EMQn 5 ; 146 ; 6 ; 66 0.0 ; 0 1 ; 0 ; 1 (1) 0 (0); 0 (0) 11.57 ; 18 127 (89); 127 (89)
L EXEC 12 ; 421 ; 0 ; 102 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.47 ; 18 433 (200); 433 (200)
L FLUSHn 6 ; 198 ; 0 ; 4 3.7 ; 7 7 ; 6 ; 1 (0) 0 (0); 0 (0) 0.11 ; 12 128 (170); 165 (222)
L INTRo 14 ; 143 ; 12 ; 5 2.9 ; 29 30 ; 24 ; 6 (0) 0 (0); 0 (0) 0.06 ; 12 750 (626); 830 (672)
L LMQo 28 ; 690 0.0 ; 0 16 ; 0 ; 0 (0); 14.01 ; 39 2568 (1512)

4 ; 133 0.0 ; 0 8 (8) 2592 (1512) 14.01 ; 39 5160 (3024)
L LRU 0 ; 142 ; 20 ; 75 0.0 ; 0 12 ; 5 ; 7 (7) 0 (0); 0 (0) 6.27 ; 19 721 (192); 721 (192)
L PFQo 13 ; 1936 ; 1.0 ; 1 67 ; 0 ; 0 (0); 0 (0) 10.99 ; 77 10318 (3036);

18 ; 84 1.0 ; 1 67 (66) 0 (0); 0 (0) 10.99 ; 77 10318 (3036)
L PNTRn 3 ; 228 ; 10 ; 11 2.0 ; 23 31 ; 0 ; 31 (8) 0 (0); 0 (0) 2.92 ; 19 1057 (1023); 1057 (1023)
L PRQn 34 ; 366 ; 106 ; 265 2.0 ; 8 10 ; 0 ; 8 (2) 24 (8); 36 (12) 0.30 ; 19 42 (16); 54 (20)
L SLB 3 ; 135 ; 6 ; 27 1.0 ; 1 3 ; 1 ; 2 (0) 0 (0); 0 (0) 0.16 ; 15 1 (1); 61 (29)
L TBWKn 0 ; 202 ; 117 ; 14 0.0 ; 0 21 ; 1 ; 3 (3) 2 (0); 291 (238) 17.07 ; 26 36 (28); 342 (280)
M CIU 0 ; 343 ; 10 ; 424 0.0 ; 0 6 ; 1 ; 5 (0) 0 (0); 0 (0) 0.24 ; 18 775 (60); 775 (60)
SIDECAR 3 ; 109 ; 32 ; 455 0.0 ; 0 1 ; 0 ; 0 (0) 1 (0); 137 (13) 18.64 ; 27 1 (0); 137 (13)
S SCU1 1 ; 232 ; 4 ; 136 0.0 ; 0 3 ; 2 ; 1 (1) 0 (0); 0 (0) 0.66 ; 24 386 (142); 579 (213)
V CACH 5 ; 94 ; 15 ; 59 0.0 ; 0 1 ; 0 ; 1 (1) 0 (0); 0 (0) 0.61 ; 16 86 (21); 86 (21)
V DIR 6 ; 91 ; 13 ; 68 0.0 ; 0 2 ; 2 ; 0 (0) 0 (0); 0 (0) 0.20 ; 15 33 (16); 33 (16)
V SNPM 65 ; 846 ; 134 ; 376 2.0 ; 1 2 ; 1 ; 1 (0) 0 (0); 0 (0) 1.27 ; 32 905 (266); 905 (266)
W GAR 0 ; 159 ; 0 ; 83 1.0 ; 1 7 ; 6 ; 0 (0) 4 (0); 86 (37) 2.43 ; 20 4 (0); 500 (224)
W SFA 0 ; 22 ; 0 ; 42 0.0 ; 0 8 ; 8 ; 0 (0) 0 (0); 0 (0) 0.08 ; 15 42 (21); 112 (56)

One target of netlist S15850 1 comprises 476 registers, primarily complex,
and 55 primary inputs. MLP-based analysis is infeasible on this cone, even after
optimization [10] plus retiming [9] which yields 397 registers. However, the first
five steps of structural enlargement of this target reduce it to 475, 38, 36, 35, and
finally 24 registers, and to 55, 55, 14, 13, and 13 primary inputs, respectively.
MLP-based forward reachability hits the 5-step-enlarged target in 10 iterations
with a combined effort of 2.5 seconds and 23MB. The only other approach that is
able to hit this target is a 15-step BSAT which requires 7.3 seconds and 14MB.
For an unreachable target BMC would not have been applicable. Traditional
approaches of target enlargement would be ineffective on this netlist since they
do not offer any reduction capability, without which the enlarged target remains
infeasibly complex.

7 Conclusion

We have presented an efficient framework for decomposing a verification task
into multiple subtasks. Our techniques are capable of solving or simplifying most
problems, and comprise a useful component of a more general transformation-
based verification toolset. We first calculate the number of time-steps k to use for
bounded search via a novel structural algorithm for diameter overapproximation.
For many practical netlists, this analysis yields a sufficiently small bound on the
diameter to allow bounded model checking to discharge the proof. Otherwise,
we iteratively perform SAT-based forward search and inductive compose-based

164 Jason Baumgartner et al.

backward search for structural target enlargement. If the property is not solved
by the above, we construct a simpler enlarged target and pass it to a subse-
quent verification approach. While inherently performing a temporal decompo-
sition of the verification task, our approach is capable of spatially reducing the
target size and complexity, thus the enlarged target is often significantly sim-
pler to discharge than the original. We use simulation and BMC to complete
any traces obtained on the target-enlarged netlist for undoing the effects of the
transformation. Extensive experimental results demonstrate the effectiveness of
the proposed techniques in solving and simplifying problems.

References

1. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, March 1999. 152, 154, 156

2. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design, 13(4), April 1994. 157

3. H. Cho, G. Hachtel, E. Macii, B. Pleisser, and F. Somenzi. Algorithms for approx-
imate FSM traversal based on state space decomposition. IEEE Transactions on
Computer-Aided Design, 15(12), Dec. 1996. 151, 156

4. O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using
Boolean functional vectors. In IMEC-IFIP International Workshop on Applied
Formal Methods for Correct VLSI Design, Nov. 1989. 157

5. Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Detecting errors
before reaching them. In Computer-Aided Verification, July 2000. 157

6. Thomas Filkorn. Functional extensions of symbolic model checking. In Computer-
Aided Verification, June 1991. 157

7. Malay K. Ganai. Algorithms for Efficient State Space Search. PhD thesis, Univer-
sity of Texas at Austin, May 2001. 159

8. Youpyo Hong, Peter A. Beerel, Jerry R. Burch, and Kenneth L. McMillan. Safe
BDD minimization using don’t cares. In Proc. 34th ACM/IEEE Design Automa-
tion Conference, June 1997. 158, 159

9. Andreas Kuehlmann and Jason Baumgartner. Transformation-based verification
using generalized retiming. In Computer-Aided Verification, July 2001. 160, 162,
163

10. Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. Circuit-based Boolean
reasoning. In Proc. 38th ACM/IEEE Design Automation Conference, June 2001.
160, 161, 162, 163

11. Robert P. Kurshan. Computer-Aided Verification of Coordinating Processes.
Princeton University Press, 1994. 152, 157

12. In-Ho Moon, Gary D. Hachtel, and Fabio Somenzi. Border-block triangular form
and conjunction schedule in image computation. In Formal Methods in Computer-
Aided Design, Nov. 2000. 158, 161

13. Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties
using induction and a SAT-solver. In Formal Methods in Computer-Aided Design,
Nov. 2000. 154

Property Checking via Structural Analysis 165

14. Poul F. Williams, Armin Biere, Edmund M. Clarke, and Anubhav Gupta. Combin-
ing decision diagrams and SAT procedures for efficient symbolic model checking.
In Computer-Aided Verification, July 2000. 159

15. C. Han Yang and David L. Dill. Validation with guided search of the state space.
In Proc. 35th ACM/IEEE Design Automation Conference, June 1998. 157

16. Jun Yuan, Jian Shen, Jacob Abraham, and Adnan Aziz. On combining formal and
informal verification. In Computer-Aided Verification, June 1997. 157

	Property Checking via Structural Analysis
	Introduction
	Netlists: Syntax and Semantics
	Diameter Approximation
	Target Enlargement
	Top-Level Algorithm
	Experimental Results
	Conclusion

