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Abstract. Most software developers today rely on only a small number of
techniques to check their code for defects: peer review, code walkthroughs, and
testing. Despite a rich literature on these subjects, the results often leave much
to be desired. The current software testing process consumes a significant frac-
tion of the overall resources in industrial software development, yet it cannot
promise zero-defect code. There is reason to hope that the process can be
improved. A range of tools and techniques has become available in the last few
years that can asses the quality of code with considerably more rigor than
before, and often also with more ease. Many of the new tools can be under-
stood as applications of automata theory, and can readily be combined with
logic model checking techniques.

1 Introduction
Humans occasionally make mistakes, even programmers do. Even though mistakes
are generally unpredictable, within fixed domain we can often predict fairly accurately
just how many mistakes will be made. For programmers in industrial software devel-
opment, the residual software defect ratio (the number of latent faults that remain in
the code at the end of the development process) is normally somewhere between 0.5
and 5 defects per one thousand lines of non-comment source code [H01]. Curiously,
this ratio is not unique to programming.

The New York Times appears seven times a week, with an average of 138,000 words
per weekday issue, and 317,000 per Sunday issue [AM02]. Despite great care in fact
checking, proof reading and spell checking, inevitably seven times a week a list
appears of the most important mistakes that made it into print on the previous day.
On average, the list of corrections contains 10 entries per day. At an average of ten
words per sentence, this gives a fairly predictable residual defect density of one defect
per one thousand sentences written.

So without knowing anything about the particulars of a given industrially produced
software product, one thing is generally safe to assume: it has bugs. The same is of
course true for all industrial products, but what makes the problem unique in software
is that the effects of even very minor programming mistakes can cause major system
failures. It is very hard to contain the potential effects of a software defect, especially
in distributed systems software.

We will not argue in this paper that traditional software testing, peer reviews and code
walkthroughs can or should be replaced wholesale. Most studies agree that this com-
bination of techniques effectively catches the majority of design and coding errors.
Yet, undeniably at the end of this process the residual software defect density ratio is
not zero. Even at a low residual defect density of 0.1 defect per one thousand lines of
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do {
lock( &devExt->writeListLock );
nPacketsOld = nPackets;
request = devExt->WriteListHeadVa;
if (request && request->status)
{ devExt->WriteListHeadVa = request->nxt;

unlock(&devExt->writeListLock);
/* ... */
nPackets++;

}
} while (nPackets != nPacketsOld);
unlock(&devExt->writeListLock);

Fig. 1. Sample Device Driver Code from [BR01]

code, a ten million line source package will have an expected 103 latent defects. To
reduce this number, we need to devise complementary analysis and testing techniques.
It should also be noted that no-one really knows how many latent defects there really
are in any given software product. All we can tell is how many of these defects even-
tually lead to customer complaints, in the years following product delivery. The
industry average of 0.5 to 5 defects per one thousands lines of code is based on a
count of the typical numbers of those customer complaints. We can suspect that the
true number of latent defects is at least an order of magnitude higher, more likely in
the range of 0.5 to 5 defects per one hundred lines of source code. Looking for latent
software defects, then, is not quite like looking for needles in a haystack. Almost any
new technique that differs sufficiently from traditional testing should be expected to
intercept enough extra defects to justify its application. How could we devise such
alternate techniques?

In this paper we will look at three such techniques that have proven to be effective in
the software development process, and we will try to show that these techniques have
interesting new applications that can be understood in terms of automata theory. The
three techniques we will discuss are:

Static Analysis,
Runtime monitoring, and
Logic Model Checking.

2 Static Analysis
Static analysis is the art of making predictions about a program’s runtime behavior
based on a direct analysis of its source code. Much of the work in this area is based on
the foundational work in abstract interpretation by Cousot and Cousot, e.g. [CC76].

As a motivating example we will take a look at a snippet of C device driver code,
reproduced in Figure 1. The code is slightly abbreviated from the original that
appeared in [BR01]. We have highlighted three procedure calls: one call on lock and
two on unlock. As in [BR01] we want to check if this piece of code respects the
normal locking discipline that says that it would be an error if a single thread could:

Attempt to lock the resource when it already holds that lock,
Attempt to unlock the resource when it does not currently hold the lock,
Terminate execution with the lock still in effect.
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Fig. 2. Control Flow Graph for Figure 1 (left)
and Test Automaton for Locking Property (right)

These types of problems can be found frequently in device driver code, as demon-
strated convincingly in [E00].

The first step in the formalization of this code is to generate the control flow graph, as
shown in abstract form on the left in Figure 2. The control flow graph can be defined
as a labeled transition system: an annotated automaton. Since we are only interested
in the occurrences of the calls to lock and unlock, we have marked all other actions as
other. These actions can be considered skip statements for the purpose of the initial
analysis we will do.

The property we want to check for, the faithful observance of a locking discipline, can
also be formalized as an automaton, as illustrated on the right in Figure 2. This prop-
erty automaton has three states, p 0, p 1, and p 2. The initial state, p 0, is also marked as
an accepting state, by which we express that all finite runs that start in p 0 should ter-
minate in p 0. State p 2 is really an error state. Any transition into that state may
immediately be flagged as an error.
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Fig. 3. Product of Test Automaton and CFG Automaton

We will not use this automaton to monitor executions of the program, but to analyze
the source code directly. To do so, we in effect try to match the test automaton
against the abstracted control flow graph. The formal mechanism for this is to com-
pute the synchronous product of two automata: the automaton that corresponds to an
abstracted version of the control flow graph and the automaton for the property.

The product automaton, illustrated in Figure 3, can be defined in a standard way as a
synchronization on labels, where other is treated as a silent τ move that requires no
synchronization. It can be computed without ever attempting to really execute the
program from Figure 1.

There are two end-states in this product automaton: p 2 s 4 and p 0 s 4, but only p 0 s 4 is
accepting. There are also two strongly connected components: C1 = { p 0 s 0, p 1 s 1,
p 1 s 2, p 0 s 3 }, and C2 = { p 2 s 1, p 2 s 2, p 2 s 3, p 2 s 0 }, only one of which contains
accepting states (C1). Any feasible finite path that starts in p 0 s 0 and that ends in
p 2 s 4 would correspond to a violation of the locking property. Similarly, any feasible
infinite path that reaches p 2 s 1 corresponds to a violation.

By computing the product automaton we can narrow down the search for potential
violations of the locking discipline to the analysis of just two types of paths:
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[ p 0 s 0 →p 1 s 1 →p 1 s 2 →p 0 s 3 ] + →p 2 s 4, and
p 0 s 0 →p 1 s 1 →p 1 s 3 →p 1 s 0 →p 2 s 1 → . . .

where the superfix + indicates a repetition of one or more times of the immediately
preceding execution fragment enclosed in square brackets. Mapped onto executions
through just the control flow graph from Figure 2, this reduces to:

[ s 0 →s 1 →s 2 →s 3 ] + →s 4, and
s 0 →s 1 →s 3 →s 0 →s 1 → . . .

The shortest example of the first path corresponds in source form to:

s0: lock( &devExt->writeListLock );
nPacketsOld = nPackets;
request = devExt->WriteListHeadVa;

s1: if (request && request->status) /* true */
devExt->WriteListHeadVa = request->nxt;

s2: unlock(&devExt->writeListLock);
/* ... */
nPackets++;

s3: if (nPackets != nPacketsOld); /* false */
unlock(&devExt->writeListLock);

s4: end

Similarly, the second path reads in source form:

s0: lock( &devExt->writeListLock );
nPacketsOld = nPackets;
request = devExt->WriteListHeadVa;

s1: if (request && request->status) /* false */
s3: if (nPackets != nPacketsOld); /* true */
s0: lock( &devExt->writeListLock );

. . .

The analysis problem now reduces to determining whether or not these two path frag-
ments are feasible, i.e., whether or not they could occur in a real execution. The feasi-
bility of the two paths is determined by the conditionals that are evaluated along the
path. For the first path this means that we should check if the conditionals at s1 and s3
can evaluate to true and false respectively, given the history of steps that precede
them.

In general, this problem is undecidable, so we have no hope of building a general
algorithm that can reliably come up with the correct answer in each case. In many
practical cases though even partial knowledge of the semantics of C suffices to
resolve the question. There is insufficient information to determine if the conditional
at s1 could be true or false, since we do not know the value of the variable
request, which is derived from devExt->WriteListHeadVa. We can, how-
ever, tell that the condition at s3 could not possibly evaluate to false in this path,
given the only two preceding manipulations of the variables involved. If we reduce
the path to just the access to the two variables that appear in the condition this
becomes clear:
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nPacketsOld = nPackets;
nPackets++;

s3: if (nPackets != nPacketsOld); /* false */

Clearly, the condition must evaluate to true, not false, in this context.

For the second path we can come to a similar conclusion. Reducing it to the manipu-
lations of the variables from the second condition we get:

nPacketsOld = nPackets;
s3: if (nPackets != nPacketsOld); /* true */

which again is infeasible in any context. The resolution to these two cases can be
done quickly with a theorem prover, or with decision procedures for Pressburger
arithmetic, such as the Omega tool from [K96] or the Newton tool described in
[BR01]. In the Bell Labs tool UNO, a simple builtin decision procedure is used for
the most commonly occurring cases [H02]. Since quick responses from the analyzer
are as important as the generation of definitive results for all cases that are in principle
decidable, UNO errs on the side of caution and restricts itself to the analysis of only
the cases that can be decided most efficiently.

2.1 User-Definable Properties
The UNO tool, defined more fully in [H02], is an attempt to construct a static analyzer
that can accept a range of user-defined properties, within the bounds of what is
expressible in its property specification language. The basic propositions that can be
expressed in this language can refer to data-flow tags that are computed by the tool
and attached to the nodes in the control flow graphs of each function. Automata spec-
ifications are constructed from these propositions with the normal control-flow syntax
of ANSI-C. The locking discipline, for instance as defined by the automaton from
Figure 2, is easily expressible by this language, but much richer sets of properties can
also be defined. The algorithms used in UNO are relatively straightforward. The tool
computes product automata (cf. Figure 3) and performs basic path analysis. It has
three basic properties built-in that allow the tool to hunt down what are often said to
be the most commonly occurring types of defects in C programs: use of uninitialized
variables, nil-pointer dereferencing errors, and oout-of-bound array indexing errors.

The notion that one can allow the user to freely define program specific properties as
automata, and perhaps even derive such automata from logic formulae, to perform
static analysis is in itself not new. As far as we can tell the first to propose the use of
finite state machines to specify properties for static analysis was W.E. Howden [H87].
A version of this idea was used more recently in Engler’s work [E00]. In [BR01] the
idea of user-defined properties is also used in a clever way that makes it possible to
connect static analysis to an approach that is based on logic model checking.

All approaches we discuss here have strengths and weaknesses. If we have to pick a
weakness for the approaches based on static analysis it would have to be the decid-
ability problem: determining whether or not paths are feasible. Significant progress
has been made on tackling this problem, as noted starting with the work of Cousot and
Cousot. The work in this area is already exploited in some very effective commercial
tools, such as Polyspace in France, and KLOCwork accelerator in the US.
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3 Runtime Monitoring
There are two ways in which we can attempt to side-step the decidability issue that
has to be confronted in approaches based on static analysis. One way is to execute the
code directly for specific input values, and then monitor the execution for compliance
with the requirements. The second way is to execute the code not directly, but sym-
bolically, in abstract form. Admittedly, these approaches too have their weaknesses.
For the first approach it is the inability to secure proper coverage, and for the second
approach it is computational complexity. We will come back to these issues below. In
this section we will discuss direct execution methods based on runtime monitoring,
and in the next section we will discuss abstraction methods. Our aim again is to see if
these methods can be linked to a standard automata theoretic framework.

The basic idea in runtime monitoring is again simple. We define a test automaton for
a property of interest and run it along with an executing system. To be able to check
for compliance of the system execution with the test automaton we now instrument
the source code to emit signals of all events of interest (i.e., all events that appear in
the property to be tested). The monitor can run as a separate process, perhaps even
remotely, and tracks the system execution with the help of the signals emitted by the
running program. It updates the state of the property automaton, and flags errors as
soon as they can be detected.

To do so for the locking property we will have to instrument the code in such a way
that not only the basic calls to lock and unlock are recorded, but also the parameters
that are passed to those procedures.

Our automata now become extended automata, and can store some data (i.e., refer-
ences to the locked objects). A clever use of this feature was made in the Eraser algo-
rithm, described in [S97]. The purpose of the algorithm is again to detect locking vio-
lations by runtime monitoring, but this time the analysis is focused on the detection of
potential data races that are not prevented by the use of locking primitives. The
source code is now instrumented not to directly flag calls to lock and unlock, but to
flag read and write accesses to shared objects. Each signal to the runtime monitor
indicates the object that is referenced, whether the event is a read (r) or a write (w),
and the set of locks that is held by the executing process at the moment of access. The
automaton used in the algorithm is shown in Figure 4.

The automaton records the transitions that the monitor will make for a single specific
shared object. (Each object is monitored by a separate automaton.) We have marked
each action in Figure 4 with one or more numbers, with the following meaning.

A zero mark (0) indicates a read (r) or write (w) access by the first thread to
access the shared data object. A write access in initial state s 0 corresponds to
an initialization event. It is an error for a shared object to be read before it is
initialized. To reflect this, we added a transition to an error state e.

Transitions marked with a one (1) indicate the first access to the shared object
by a new thread (i.e., different from the thread that initialized the object).

On all transitions marked with a two (2) the set of locks held by the current
thread is recorded in set L.

On all transitions marked with (3) L is assigned a new value that is equal to the
intersection of the set of locks held by the current thread and the old value of L.

The transition marked with (4) is taken when lockset L becomes empty, causing
an error to be reported by the runtime monitor.
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Fig. 4. Eraser Automaton from [S97] (error state e added.)

Locking violations are only reported in state s 3, which can only be reached if at least
two different threads have attempted to write to the shared object. The reason is clear:
it is not an error if the shared object is only updated by a single thread, while all com-
peting threads restrict themselves to read access.

The Eraser algorithm has the attractive and curious property that a lock violation need
not actually occur for the monitor to be able to detect that it could occur in some
future execution of the code.

Algorithms based on runtime monitoring have been included in successful commer-
cial tools. The Eraser algorithm, for instance, is included in Compaq’s Visual
Threads tool [H00]. None of the widely used runtime monitoring tools appear to
allow for user-defined properties though, an extension that should readily be possible.
We will explore such extensions in a little more detail in the next subsection.

3.1 Liveness
The methods sketched so far use standard finite automata defined over finite strings,
or executions. They can capture safety, but not liveness properties. It is possible to
extend the capability of a runtime monitor to liveness properties, capturing also more
general properties expressed in linear temporal logic.

Consider a system requirement R expressed as an LTL formula. The negation of R,
capturing the possible violations of R, can be converted into a Büchi automaton B
with a standard procedure, e.g. [GP95]. As before, runtime monitor T will track an
execution of the system under test, call it U, with the help of automaton B. This time,
though, the transitions in the automaton are labeled not with events from the execu-
tions in U, but with boolean expressions on an abstract representation of the system
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Fig. 5. Runtime Monitoring Context for Checking Liveness Properties
R: LTL requirement; B: test automaton; T: runtime tester;

state of U itself. This context is illustrated in Figure 5.

The abstract system state of U is computed by an abstraction function F. The abstrac-
tion function must preserve all information that is relevant to the checking of require-
ment R, but no more. In many cases, this abstract representation of the system state
of U can be considerably smaller than the full representation of the system state.

The source code from system U is now instrumented to invoke function F at specific
points in its execution. Each time function F is invoked, it passes its results to the
runtime monitor T, which uses it to update the state of automaton B. After each such
transition T can declare either a pass or a fail result, where the pass results will typi-
cally be silent, and the fail results could lead to an abort.

A pass result means that T has not yet been able to detect a potential violation of
requirement R; a fail result means that a potential violation was found. Once a fail
result has been issued, this result persists throughout the remainder of the execution,
until system U is reinitialized (reset or restarted). It is also possible that T loses track
of the execution, being unable to construe a counter-example to the requirement. In
that case T will move to a state where only pass results are issued for the remainder of
the execution, again until system U is reinitialized.

The cause of a fail result can be the existence of a true implementation error in U, but
it can also be an error in the definition of the requirement, an error in the definition of
the abstraction function F, or an error in the determination of the invocation points for
F. Since a fail always produces an execution trace, the source of a false negative can
be analyzed with the help of that trace and repaired. As in all tests, an absence of fail-
ure does not imply that requirement R cannot be violated by executions of system U.
It means that U did not exhibit any violations of R that were detectable under abstrac-
tion F.

We can be brief about the definition of F here. It is a critical step, but no different
from the problem of defining abstraction functions in more standard applications of
logic model checking. The abstraction function will in general be property sensitive,
to assure that everything that is directly or indirectly visible to the property is pre-
served. F can be derived with the help of static analysis techniques, but it can also be
determined experimentally by a human tester.

A more critical point in the definition of the runtime monitor T is to determine how it
could reasonably conclude Büchi acceptance based on only finite executions of U. To
do so T must be able to detect the occurrence of execution cycles through Büchi
acceptance states in automaton B. We will distinguish two cases. The simple case

U: system under test; F: abstraction function
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Verdict
function d_check (Ustate u) # B is deterministic
{

if ( t == fail ) { return FAIL }
if ( t == pass ) { return PASS }

if Accepting(t)
{

if state u is in set States(t)
{

t = fail
return FAIL

} else
{

States(t) += u
} }

if empty Succ(u,t)
{

t = pass # B is incomplete
} else
{

t = Succ(u,t)
}

return PASS
}

Fig. 6. Checking Liveness with a Deterministic Test Automaton

where B is assumed to be deterministic, and the harder case where B can be non-
deterministic. In neither case do we require B to be completely defined.

For deterministic B, a simple algorithm for T is shown in Figure 6. The notation used
is as follows:

t: the current state of automaton B
u: last observed abstract state of system U
Succ(u,t): function returning the successor state

in B, if any, given current state t and
abstract system state u

States(t): a set of abstract system states associated
with t

Accepting(t): boolean function that returns true if t is
a Büchi acceptance state

x += y: add element (or set) y to set x

Assume that F invokes the function d_check with parameter u encoding the abstract
representation of the current system state of U. Function d_check returns a pass/fail
verdict for each such call. The tester T maintains the automaton state for B in a global
variable t whose value persists across calls. Variable t can have two special values.
The special value fail means that a failure has been detected and the automaton will
now issue only fail results until T is reinitialized. The special value pass means that
the automaton was incomplete, causing T to lose track of the execution. Only pass
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Verdict
function nd_check (Ustate u) # B non-deterministic
{

if ( t == fail ) { return FAIL }
if ( t == pass ) { return PASS }

xt = empty # next state set in B
for each ot in t # current states in B
{

if {u,ot} in Pairs(ot)
{

t = fail
return FAIL

}

if Accepting(ot)
{

Pairs(ot) += {u,ot}
}

for each nt in Succ(u,ot)
{

Pairs(nt) += Pairs(ot)
xt += nt

}
}

if empty xt
{

t = pass # B is incomplete
} else
{

t = xt
}

return PASS
}

Fig. 7. Checking Liveness with a Non-Deterministic Test Automaton

results will be issued now, again until T is reinitialized.

The essence of the algorithm is that for every visit to a Büchi acceptance state in B the
tester remembers the encoding of abstract system state u. A repeat visit to the state
with the same encoding u points at a potential cyclic execution of U that violates the
requirement (by satisfying its negation in B).

The same type of algorithm could be used for a non-deterministic automaton B, but it
may lead to more false negatives than necessary. The algorithm in Figure 7, due to
Mihalis Yannakakis, is more precise. The following notation differs from the one
used in Figure 6:
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t: the set of current states of automaton B
Pairs(t): a set of pairs {u,b} associated with automaton

state t of previously seen combinations of
abstract system state u and accepting automaton
state b

Pairs of abstract system states and accepting automaton states that have been encoun-
tered in the current execution are now propagated forward in the execution, until a
repeat is seen. The algorithms in Figures 6 and 7 are claimed to have the following
properties.

If system U cannot violate requirement R, then in any execution of U the tester
T will report pass at every step.

If any monitored execution of system U violates requirement R, then the tester
will report fail at the earliest point in the execution where the violation can be
conclusively detected under abstraction F.

If system U can violate requirement R, but the monitored executions of U do
not demonstrate this, then tester T may or may not report a fail.

4 Logic Model Checking
The best known example of an automata based approach to software verification is
logic model checking. In applications of model checking to software verification,
there are some flies in the ointment again that often prevent us from claiming more
than best effort results. For fundamental reasons, model checking techniques cannot
be applied blindly to arbitrary program code written in the currently popular program-
ming languages (cf. [S65]). To apply a model checking algorithm we need to create
an abstract, finitary, representation of the source code: a verification model. The veri-
fication model is traditionally constructed by hand, and is therefore subject to human
error. Human error can introduce both defects that the real system does not have and
it can hide defects that the real system does have. Errors of the first type are mostly
harmless, since they will trigger false negatives that can be repaired after an analysis
of an error trace. Errors of the second type, however, can lead to false positives,
which are much harder to diagnose.

Another, often forgotten, potential source of error is in the definition of the properties.
Defining properties is unavoidably a human effort, and it is therefore quite predictable
that they will in some cases be incorrect. Again, it is easily repaired if a bad property
leads to a false negative, but we should also consider the possibility of false positives.

To reduce one source of potential error we can try to extract automata models
mechanically from source code. There have been several promising attempts to do so.
For Java, this includes the Bandera toolset [CD00] from Kansas State University, and
the Pathfinder tools from NASA Ames Research Center [HP00,VP00,VH00]. For C
this includes the Bebop toolset from Microsoft [BR01], and our own FeaVer tool,
e.g. [HS00], [HS02]. The judicious application of abstraction techniques is key to the
success of these techniques. One can use property based slicing [T95,HD00], predi-
cate abstraction techniques [VP00], static analysis, and theorem proving techniques to
justify the abstractions.

In the application of FeaVer, abstraction functions are recorded in a lookup table that
acts as a filter for the source code. Abstraction is only applied to basic statements and
conditionals; the control-flow structure of the source code is preserved. To apply the
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abstraction and generate the system model, the source code is first parsed, with a stan-
dard compiler front-end. FeaVer uses a simple ANSI-C parser to perform this step.
The parse tree for each function in the source code is converted into a control-flow
graph, which becomes the basis for model extraction, as illustrated in Figure 8. The
edges in the control-flow graph correspond to the basic statements in the source lan-
guage (e.g., assignments and function calls). Most nodes will have a single outgoing
edge, encoding normal sequential control flow. Nodes without any outgoing edges
correspond to function termination points. Nodes with more than one outgoing edge
correspond to decision points, and are labeled with the criterion that is to be used for
the selection of an outgoing edge. For a standard if-then-else construct, the condition
is an expression, and there are two outgoing edges: one labeled true and the other
labeled false. For C-style switch statements, there can be more outgoing edges, each
labeled with a different numeric value for the switch expression.

The abstraction function in FeaVer is applied only to the labels on the edges in the
control-flow graph. The abstraction can result in certain operations to be hidden com-
pletely (as if they are sliced away from the program text), others to be modified in
accordance with the coarsening of selected data types, and still others may be pre-
served as is. Conditions can similarly be removed completely, and replaced with
non-deterministic selections, they may be modified in accordance with data type map-
pings, or they can be preserved as is.

4.1 Functions to Automata
The FeaVer model extraction process targets C functions as the primary focus of
abstractions. As part of a FeaVer test harness setup (not shown in Figure 8), the user
must define the specific C functions that are to be converted into SPIN automata mod-
els, and provide a context for those models. Typically there is one main control func-
tion per thread of execution, and that control function will be targeted for model
extraction. The functions converted into SPIN models will often call subsidiary func-
tions to perform smaller computational chores. Those subsidiary functions are best
left in the code, and invoked as-is as embedded C-code, or abstracted with the help of
a stub-function. The notion used here is that the definition of functions is the main
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vehicle for a programmer to define abstractions in C programs. By linking the model
extraction mechanism to this feature, we can adapt and reflect the programmer chosen
abstractions into the SPIN verification models.

The definition of an abstraction function, or of the FeaVer lookup tables, is one of
three user-defined items in the verification process that remains subject to human
error (cf. Figure 8). The definition of an abstraction function is one step removed
from the code itself, and, in the applications we have performed so far has proven to
be significantly simpler and less time consuming than the manual definition of the
entire automaton model. The opportunity for error in this step should therefore be
reduced, although it is hard to quantify this reduction precisely. Perhaps more impor-
tant than the above is the gain in efficiency that is achieved through the model extrac-
tion process. As indicated in Figure 8, once an abstraction is defined, the remainder
of the model checking process can be automated completely. This automation has the
very noticeable benefit that the verification of evolving source code becomes virtually
push-button, and can be repeated immediately after every source code revision by the
programmers.

4.2 Vacuity Checking
When the model checker returns a pass verdict, it means that it was unable to con-
struct a counter-example to a correctness claim. Since the claim is derived from a
user-defined property this still leaves the possibility that the claim is ill-defined and
vacuously true. In the FeaVer application to the verification of the PathStar® call
processing code [HS00], we supported a simple vacuity check by generating a graphi-
cal version of the ω test automaton, coloring each state in the automaton remained
unreached in all model checking attempts for the property from which it was gener-
ated. We normally expect that all but a few final states in the automaton are reached.
If only the initial state is reached, or a minority of all the remaining states, this most
likely indicates a vacuous result. A more thorough method of vacuity checking can be
found in [KV99].

4.3 Main Benefits
The FeaVer tool grew out of an attempt to come up with a thorough method to check
the call processing software for a commercial switching product, called the PathStar®
Access Server. We pursued this approach over a period of eighteen months, working
with the developers of the target software from the initial design for the code in 1998
to after commercial sales for the product began in 2000. The project was successful
in demonstrating that the approach based on model checking could intercept a signifi-
cantly larger fraction of the design and coding errors in the software than traditional
testing techniques: we measured a difference of approximately one order of magni-
tude in effectiveness, as measured by the number of defects found with each method
[HS00]. We also succeeded in realizing our original goal of automating almost the
entire verification trajectory by driving all our software from a web-browser that gave
access to a database of verification results, and allowed users to enter new properties,
start verification runs, and retrieve the results of such runs. We have also applied
FeaVer in several smaller projects with similar results, e.g. [GH02].

Although the FeaVer approach side-steps the need for the time-consuming construc-
tion of verification models, we have found that some of the remaining tasks can still
be challenging. Once a FeaVer test harness has been defined, the remainder of a
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verification exercise is relatively simple and requires no substantial investments of
time or skill, even if the source code continues to evolve. But the initial construction
of a test harness requires thought, and experimentation [HS02]. The test harness
defines which functions are converted into SPIN process threads, how these threads
are connected (i.e., how internal communication from the C code is lifted into a com-
munication mechanism that is visible to SPIN). Most important in the definition of
the test harness, though, is the definition of abstraction functions that populate the
FeaVer lookup tables, and that determine which state information from the C code
should be tracked in the SPIN models. If we could succeed in simplifying, or even
automating, these tasks, the value of this approach would be increased significantly.

5 Conclusion
The aim of this paper is to show that many of the new approaches to software testing
are based on, or can be understood as applications of, automata theory. User-defined
temporal properties may be checked with approaches based on run-time monitoring,
static analysis, and of course in standard applications of logic model checking. In
logic model checking considerable gains can be made by finding ways to extract
automata models directly from program source code. Not all problems are solved in
this domain, but perhaps we are beginning to see the types of checking capabilities
that might be ahead.
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