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Abstract. The Dirty Dozen team consists of the player agents and an
online coach. The players’ low-level-skills and world-model are based on
the publicly available code of the CMU-99 team [1]. The team behavior
is specified using a new strategy formalization language (SFL), an exten-
sion of the standard coach language. This allows to modify the behavior
easily and makes the whole team coachable, even for online coaches de-
veloped by different teams. We introduce the main concepts of SFL and
one possible system with modules that interprete and run the SFL spec-
ifications. We also give an outline of the online coach.

1 Introduction

Specifying the behavior of agents in multi-agent-systems is often possible only
for domain experts [4]. This paper proposes a new method for specifying a team’s
strategy in a way that makes adjustments by a human designer or an online coach
easy. The Strategy Formalization Language (SFL) is an extension of the standard
coach language (Clang) [2] which enables coaches and players of different teams
to communicate with each other. SFL extends Clang in terms of expressibility,
low-level- and high-level-concepts. The Dirty Dozen team is implemented as an
SFL-System which is described below.

2 Strategy Formalization Language System (SFLS)

In order to easily handle coach-messages, SFL completely subsumes Clang and
thus retains its syntactical structure. There are five main message types of which
we will focus on two in this paper, namely info- and advice- messages. These are
syntactically the same, just the semantics differ in that info-messages contain
knowledge about the behavior of one of the teams, and advice-messages con-
tain directives about how to behave in certain situations. The syntax of these
messages is:

({info‖advice} TOKEN1 TOKEN2 . . . TOKENn)
where TOKENs are
(T CONDITION DIRECTIV E1 DIRECTIV E2 . . . DIRECTIV En)
T denotes the time-to-live or timespan in which the token will be valid.

CONDITION denotes a situation and the DIRECTIVEs denote directives for a
set of players. Basically, these tokens are production rules. In the following some
of the SFL-extensions to CONDITION- and DIRECTIVE-tokens are described.
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2.1 Language Concepts

Clang is not sufficient to implement the behavior of a team. Its concepts are too
general, so SFL contains several concepts that are important for implementing
teams. It also makes many Clang-advices that may be uttered by an online-coach
more elegant and concise.

Due to the extendibility of Clang, SFL was created by adding new concept
primitives with clear semantics. First of all, it introduces abstractions of the con-
stant uniform-numbers used in Clang to denote players: variables and symbols
for situation-specific player denotation (e.g. ClosestPlayerToBall). These extend
the practical expressibility of Clang, because it was not possible to concisely
express ”mark the ballowner”. One would have to list all possible ballowners. In
SFL this becomes ”If opponent X has the ball, mark X.”

A lot more complicated in Clang are advices that refer to different players
in certain situations, e.g. the closest player to the ball. Since there is no concept
for distances in Clang, the advice would have to simulate distance by several in-
creasing circles around the ball. In SFL it’s a short statement using the primitive
symbol ”ClosestPlayerToBall” instead of constant uniform numbers.

Other SFL-concepts extend the set of situation specification primitives, e.g.
by making conditions depend on the stamina of an agent, the ball’s velocity
or the fact that the ball is interceptable. The set of actions was also extended
with new features like ”interceptball” and parameters for existing actions, e.g.
velocities for positioning-actions and modes for passing.

Since Clang was continually extended, some concepts of SFL, like relative
positions, were already included before publishing this paper. For the complete
syntax of SFL see the final documentation [3].

2.2 Implementation

The actual implementation of our team is just one possible implementation about
how to handle the SFL-specification. The Strategy Formalization Language Sys-
tem works as follows.

The behavior of our team is specified by a set of advice-tokens, i.e. rules
with a condition and several effects. In each cycle a module, called matcher,
evaluates the conditions of all rules with the world-model of the agent. Rules
whose conditions are true in the actual cycle and that contain directives for the
agent are labeled as ”active”.

Most of the time several rules are active. Thus, another module, called selec-
tor, has to decide which rule should be executed. The basic idea is that rules are
heuristically evaluated on each of the three Clang levels (actions, directives and
conditions), being assigned three fitness values that are summed up. So, certain
actions seem more promising, e.g. interceptball has a higher fitness than mark-
ing on the action-level. Directives refer to different sets of players and the more
specific a player set, the higher the directive’s fitness on the directives level. E.g.
the fitness of a directive that refers to the whole team has less fitness than a
subset, which again has less fitness than a situation-specific player-symbol.
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Since the rules specified in the team-implementation are fixed, the fitness-
assignment is done manually, but automated assignment will be straight-forward.

The third level is based on the conditions and is basically a way to save world
knowledge from the rules and incorporate them into the selector. So it is not
necessary to specify in a rule that the agent should only mark an opponent if no
teammate is already there. Certain common sense heuristics can be used on this
level to assign a fitness value to each rule. This has not yet been implemented,
so the SFL-rules in our team contain certain amounts of this common sense
knowledge explicitly.

The selector will then execute the rule with the highest fitness, unless one of
the rules contains the ”force”-flag which denotes that this rule should always be
executed if its condition is true.

The action is then handed over to the effector-module which encapsulates
the strategic actions and executes the appropriate low-level-skills. In the case of
a pass-action for example, the effector has to take care that the agent gets close
enough to the ball or is turned in the proper direction.

Coach advices are added to the rulebase as they arrive via the communication
channel and will be evaluated in the following cycles like the other rules. As of
now, the assigned fitness is high, yet fixed. So it is possible for the team designer
to specify rules that will not be overwritten by coach advices by assigning a
higher fitness than the coach advice fitness.

3 The Online Coach

One of the main concerns of designing the Dirty Dozen online coach was to
make it compatible with foreign teams. This was made possible by Clang at
RoboCup 2001 for the first time. We use the coach to contribute in two ways: a)
opponent/team modelling and subsequentally advising the agents to change their
behaviour appropriately and b) facilitating coordination thanks to the coach’s
central role in communication and the global and noiseless information that it
receives.

The coach looks for repeting patterns in the setplay[1] of the opponent, e.g.
player positions during goalie-kickoffs. This information is sent to the agents so
that they can position themselves strategically in the next setplay. Unfortunately,
this requires a lot of inference on the agents’ side and one can not rely on the
team’s designers having incorporated this mechanism into their players.

So a more promising way is to send not only information, but explicit advice
about how to behave in certain situations. This encapsulates the inference about
tactics and formations on the team level within the coach. E.g. our coach assigns
tasks as to which agent should mark which opponent in defense situations. Since
the coach does not know a priori which players are defenders, it has to model
both teams in order to identify opponent forwards and its own team’s defenders.
The assignment of defenders to forwards is based on their spatial distribution
on the field, so that each player is assigned an opponent that tends to be closeby
in most defensive situations. Experiments showed that it is not wise to change
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only parts of the tactics, because most teams use well-tuned tactics that the
coach might not be able to detect in the first place. In the marking assignment
the coach therefore also advices new formation positions for the defenders based
on the most likely position of the assigned opponent players. So the defensive
formation is tuned to work with the marking assignments. Note that this would
be hard to achieve in a distributed way if each agent had to decide for itself
which player to mark, because the agents have only incomplete and noisy visual
information and would have to communicate in order to avoid marking opponents
twice or not at all.

4 Future Work

Considering the rather small set of primitive features in both Clang and SFL
it seems that playing soccer successfully is not about having the best concepts,
but about the domain knowledge regarding how to handle the existing con-
cepts in given situations. So we will elaborate on the selector module to choose
between rules more dynamically. This will also lead to a better integration of
coach advices which are handled with fixed fitness values now. Because the rule-
conditions typically formulated in SFL are more detailed and specific than Clang
can express, the rule-selection needs more work.

Until now the players can only handle explicit advices from the coach and
ignore opponent modelling information. An inference mechanism that also uses
this information, i.e. can infer how to behave given certain information about
the opponent’s tactics, could also be useful for implementing the coach itself.

Additionally, as the coach contest showed, the coach needs to observe how
its own messages influence the team’s behavior and react appropriately. The
opponent modelling has to be supported by modelling its own team. This year,
all coaches kept on sending messages throughout the whole game, although it
was obvious that the information only confused the foreign coached team. The
online coach and the standard coach language are rather new concepts in the
RoboCup domain and need more experiments and evaluation.
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