
A Modular Hierarchical

Behavior-Based Architecture�

Scott Lenser, James Bruce, and Manuela Veloso

Computer Science Department
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213

{slenser,jbruce,mmv}@cs.cmu.edu

Abstract. This paper describes a highly modular hierarchical behavior-
based control system for robots. Key features of the architecture include:
easy addition/removal of behaviors, easy addition of specialized behav-
iors, easy to program hierarchical structure, and ability to execute non-
conflicting behaviors in parallel. The architecture uses a unique reward
based combinator to arbitrate amongst competing behaviors such as to
maximize reward. This behavior system was successfully used in our Sony
Legged League entry in RoboCup 2000 where we came in third losing
only a single game.

1 Introduction and Related Work

Briefly, our behavior system is a modular hierarchical behavior-based system
with a unique behavior combinator. By modular, we mean that behaviors can be
added, removed, or replaced without affecting other behaviors. By hierarchical,
we mean that the system consists of many levels which operate at different
levels of detail and/or time scales. Behaviors form the basic modular blocks
upon which the architecture is built. Behavior modules can be swapped with
similar behavior modules that accomplish similar goals (possibly by very different
means). By behavior combinator, we mean a method for selecting which of a set
of behaviors should be run together (or combined) to control the robot. We use
a unique method of choosing which behaviors to run which allows behaviors to
run in parallel while closely approximating the optimal policy (maximal reward)
assuming the behavior reward values are calculable.

This behavior system was successfully used in the Sony Legged League of
RoboCup 2000 [7] where we came in third losing only a single game. The
quadruped robots for this league are generously provided by Sony [4]. The robots
are fully autonomous, and have onboard cameras. See our paper in Agents [8]
for a description of the overall team.
� This research was sponsored by Grants Nos. DABT63-99-1-0013, F30602-98-2-0135
and F30602-97-2-0250. The information in this publication does not necessarily re-
flect the position of the funding agencies and no official endorsement should be
inferred.

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 423–428, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

424 Scott Lenser, James Bruce, and Manuela Veloso

Much work has been done on architectures for behaviors in general and
behavior-based architectures in particular. Rodney Brooks has investigated be-
havior-based architectures in his subsumption architecture [3]. Ron Arkin has
produced a thorough examination of behavior-based systems [1]. SRI has cre-
ated a more deliberative form of behavior-based system in PRS [5]. We build
upon the architecture used by the FU-Fighters small size RoboCup team [2].
This architecture is based upon the Dual Dynamics architecture [6].

We make several significant modifications to the architecture that together
are the major contribution of this paper:

– We decouple the parts the system as much as possible while maintaining
a hierarchical system. Our system can be viewed as a hierarchical analog
of the subsumption architecture. We decouple behavior activations from the
behavior level above them by introducing intermediate goals which allow the
behaviors to calculate their own activation. The intermediate goals (or con-
trol sets) act as the only interface between behavior levels. We decouple the
selection of behavior level from sensor level by allowing each behavior access
to all of the sensors. This avoids unnecessarily restricting the information
available to a behavior.

– We introduce a special combinator to select multiple non-conflicting behav-
iors to be run simultaneously. By non-conflicting, we mean behaviors that
do not require the same resource. This means separate parts of the robot
can be controlled by separate pieces of code when desired and by a single
piece of code when needed.

2 Behavior Architecture

Our behavior architecture is a hierarchical behavior-based system. The archi-
tecture is primarily reactive, but some behaviors have internal state to enable
sequencing of behaviors and hysteresis. The input to the system is information
about the objects seen (from the vision) and an estimate of the robots location
(from the localization). Output from the behavior system consists of choosing
between walking, kicking, getting up, looking at objects, etc. and selecting appro-
priate parameters for the motion chosen. Note that looking at objects requires
the use of the head and can be run in parallel with walking but kicking (the
robot actually heads the ball) and getting up require the use of the whole body.
Our system intelligently makes trade-offs between walking/looking and kicking.
The behavior architecture consists of three interconnected hierarchies for sen-
sors, behaviors, and control (see Figure 1). The sensor hierarchy represents all
that is known about the world. The behavior hierarchy makes all of the robot’s
choices. The control hierarchy encodes everything the robot can do.

The sensor hierarchy represents the knowledge that the robot has about the
world. The lowest level of the sensor hierarchy are real sensors that are filled in
from hardware sensors or from the other modules (vision, localization, motion).
The other levels are virtual sensors for convenience that are computed based
upon the real sensors. All behaviors have access to all of the sensors.

A Modular Hierarchical Behavior-Based Architecture 425

e.g. GetBehindBall,
 FindBall, ...

e.g. WalkToPoint,
 LookForMarkers, ...

e.g. ActivateWalk,
 SetHeadAngles, ...

Behavior hierarchy Control hierarchy

Virtual Sensor 3

Virtual Sensor 1 Virtual Sensor 2

Sensor 1 Sensor 2 Sensor 3

Behavior Level 2

Behavior Level 1

Controls/Goals

Behavior Level 0

Controls/Goals

Controls/Motor commands

Sensor Hierarchy

Fig. 1. Overview of the behavior system.

The behavior hierarchy controls what the robot does. Each level k of the
behavior hierarchy, which we call a behavior set, is a subsumption architecture.
The inputs of the level are the sensors and the control set at level k + 1. The
outputs of the level are fed into behavior level k − 1 via the control set at level
k. Together, the controls sets form the control hierarchy. The control set at level
0 then becomes the action(s) executed by the robot.

Each behavior set takes an abstract description of the task to be performed
and creates a more concrete description of actions to be performed. The control
hierarchy defines the interface between the various behavior levels. Each control
set describes everything the robot can do at some level of detail. Each control
set acts as a virtual actuator to the behavior level above it and as a goal set to
the behavior level below it.

Behaviors have functions for calculating activation levels and outputs given
the sensors and higher level controls. Each behavior looks at the sensors and the
goals from higher levels and computes an activation value for the behavior (see
middle of Figure 2). These activation values represent predictions of the future
reward that will result if this behavior is run. These activations are used by
the behavior set (via the combinator) to decide which behavior(s) to run. The
processing function for each chosen behavior converts the sensors and control
inputs into control outputs.

Each behavior drives a set of control outputs. Some behaviors within the be-
havior set will drive the same actuator/control, and thus conflict, while some will
drive different actuators and can be run in parallel. Both cases occur frequently
in our domain, walking/kicking vs. full body kicking motions. Conflicting be-

426 Scott Lenser, James Bruce, and Manuela Veloso

Controls/Goals

Sensor hierarchy

Behavior 0

Activation

Behavior 1 Behavior 2 Behavior 3

1 2

30

Combinator

Controls/Goals/Motor commands out

Behavior Level k ...

Fig. 2. Detail of a level in the behavior hierarchy.

haviors are mutually exclusive. We represent this constraint as a graph where
behaviors are nodes and edges connect behaviors that conflict (see upper right
part of Figure 2). We use a special combinator (described below) to choose a set
of non-conflicting behaviors with near maximal total expected reward. For the
example in the figure, the combinator has chosen behaviors 2 and 3 since this
has more reward than executing behavior 0 alone. The chosen behaviors are run
and use the sensors, the control set from above, and their memory of what they
were doing to choose the controls to write directly into the goals of the next
lower level.

3 Selection of Action(s)

The goal of the combinator is to find a set of non-conflicting behaviors that re-
sult in the maximal reward. This maximal reward set is the optimal policy under
the assumption that the behavior activations are accurate estimates of future re-
ward. Since the reward estimates(activations) and conflict net are given, this is
the problem of finding maximal weight cliques in the dual of the conflict graph.
Since this problem is NP-complete, we use an approximation algorithm. The
basic idea is to find a suitably good approximation iteratively by suppressing
weakly activated behaviors with many conflicts and reinforcing strongly acti-
vated behaviors with few conflicts.

To do this, we first produce an optimistic estimate for the total reward that
can be achieved while running behavior k by assuming that all behaviors that are
not in direct conflict with behavior k can be run in parallel. This is calculated

A Modular Hierarchical Behavior-Based Architecture 427

by finding the total activation of all behaviors and subtracting the activation
of all behaviors in direct conflict. We then treat this estimate as a gradient to
change the activation of the kth behavior. Behaviors that might be runnable
with more reward than the behaviors they conflict with are reinforced while
other behaviors are suppressed. Usually, at least one of the behaviors will have
a negative gradient. We follow this gradient over all behavior activations until
the activation of one of the behaviors becomes 0. Any behavior whose activation
becomes 0 is removed from consideration. This process is repeated until the set
of behaviors with non-zero activation contains no conflicts.

Small random perturbations are added to the activations to break any ties. In
case all the gradients are positive, we double the amount subtracted for conflicts
until one of the gradients becomes negative. In the worst case, it may take
O(n lg n) iterations for the combinator to converge (where there are n behaviors)
but for most cases it converges in a few iterations. The set of behaviors with non-
zero activation at the end of this process are run completing the execution of
the behavior set.

4 Discussion and Future Directions

The behavior system we developed has some interesting features. The system
tends to be highly reactive. There is nothing in the system, however, that pre-
vents the use of behaviors with internal state. In fact some of our behaviors use
stateful systems internally. The core feature of the system is its modularity. This
has many important consequences which are detailed below:

scalable - Since each behavior level is completely separated from the neigh-
boring behavior levels by the control sets, changes to one behavior level do not
require any changes to any other part of the system. Note that this is different
from the FU-Fighters architecture where higher levels set activations for lower
levels. In the FU-Fighters architecture, changes to one level potentially affect all
behavior levels above that level and always involve at least two levels.

easy to add/remove behaviors - Behaviors can easily be turned on/off from a
configuration file. Because behaviors compete amongst themselves for the right
to run, the robot simply uses the best remaining behavior(s) to replace a be-
havior that has been removed. It is easy to replace a behavior with a different
implementation or leave both implementations accessible and selectively disable
one from a file.

easy to specialize a behavior - The system makes it easy to specialize behav-
iors. For example, a quicker but inaccurate shot behavior can be added without
any other changes. With an appropriate activation function, the robot will then
intelligently decide between quick and accurate shooting. This allows the flexibil-
ity to create several specialized behaviors instead of one general purpose behavior
that has to handle every special case.

separates concerns when possible - Behaviors only interact through their ac-
tivation functions and only with conflicting behaviors. So changes to behaviors
controlling the head of our robot require no changes to behaviors controlling

428 Scott Lenser, James Bruce, and Manuela Veloso

the legs and vice versa. The ability to separate the control of the head and
the legs for most, but not all, behaviors allows the system to be conveniently
decomposed into mostly independent parts, while preserving the ability for co-
ordinated behavior. This same ability would also allow a multirobot team to
work mostly independently except when collaboration, such as passing, requires
working together.

Our behavior architecture is best understood as a step in the right direction.
The architecture enables new capabilities in behaviors but as always we find that
there is room for improvement. The activation functions present an opportunity
for learning the future reward that will result from choosing an action now.
Oscillations could be avoided by reasoning about the uncertainty present in the
activation values and the cost of switching from one behavior to another. The
cost of switching behaviors could also be better represented by each behavior
providing an expected reward over time so that failure to produce the expected
reward could be detected and taken into account.

5 Conclusion

We presented a field tested behavior system aimed at being more modular than
existing systems. Behaviors can be removed, replaced, changed, or added ex-
tremely easily. The architecture also extends existing behavior-based systems to
allow parallel control of multiple parts of a robot in a safe manner without dis-
allowing full robot motions. The system was used on quadruped legged robots
in the Sony Legged League of RoboCup-2000 where our team of robots came in
third place only losing a single game.

References

1. R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, 1998.
2. S. Behnke, B. Frötschl, R. Rojas, et al. Using hierarchical dynamical systems to

control reactive behavior. In Proceedings of IJCAI-99, pages 28–33, 1999.
3. R. Brooks. Elephants don’t play chess. In P. Maes, editor, Designing Autonomous

Agents, pages 3–15. MIT Press, Cambridge, 1990.
4. M. Fujita, M. Veloso, W. Uther, M. Asada, H. Kitano, V. Hugel, P. Bonnin, J.-

C. Bouramoue, and P. Blazevic. Vision, strategy, and localization using the Sony
legged robots at RoboCup-98. AI Magazine, 1999.

5. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In AAAI87,
pages 677–682, Seattle, WA, 1987.

6. H. Jaeger and T. Christaller. Dual dynamics: Designing behavior systems for au-
tonomous robots. In S. Fujimura and M. Sugisaka, editors, Proceedings International
Symposium on Artificial Life and Robotics., 1997.

7. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot
world cup initiative. In Proceedings of the IJCAI-95 Workshop on Entertainment
and AI/ALife, 1995.

8. S. Lenser, J. Bruce, and M. Veloso. CMPack: A complete software system for
autonomous legged soccer robots. In Autonomous Agents, 2001.

	Introduction and Related Work
	Behavior Architecture
	Selection of Action(s)
	Discussion and Future Directions
	Conclusion

