
Design and Implementation of

Cognitive Soccer Robots

C. Castelpietra, A. Guidotti, L. Iocchi, D. Nardi, and R. Rosati

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198, Roma, Italy

{castelp,guidotti,iocchi,nardi,rosati}@dis.uniroma1.it

1 Introduction

One of the major challenges in the design of robots that can act autonomously in
unstructured, dynamic and unpredictable environments is the ability to achieve
desired goals by executing complex high-level plans, while promptly reacting to
unpredicted situations and adjusting the behavior based on new knowledge ac-
quired through the sensors during task execution. Several years of research have
focussed on the software architecture by exploiting the sense-plan-act (or delib-
erative) approach [9], the behavior-based (or reactive) one [1], as well as hybrid
architectures [3] which combine advantages of both reactivity and deliberation.
However, for an effective application of hybrid approaches a crucial role is played
by the organization of information among the layers, which is heavily influenced
both by the features of the robotic platform and by the problem at hand.

In this paper we present a hybrid approach that has been used in the im-
plementation of both the players of our University that contributed to the ART
team [8] (now competing in the SPQR-Wheeled team) and the players of the
SPQR-Legged team [7]. The main features of the approach are: a hybrid ar-
chitecture that is heterogeneous and asynchronous allowing for an effective in-
tegration of reasoning and reactive capabilities; a high level representation of
the plans executed by the player; a formal account of the system for generating
and verifying the plans. Specifically, we present a novel approach towards the
realization of a system that is able to execute the plans that are generated from
a formal specification. In this respect the approach is in line with the work on
Cognitive Robotics [10,6,2], which aims at the realization of a system based on a
specification given in a formal language, such as for example the Situation Cal-
culus. The use of a high-level specification has provided significant advantages
also from a practical viewpoint. A significant outcome of the approach is that
we were able to implement the players of the SPQR-Legged team (that had a
good performance in the Sony Legged League of RoboCup 2000) in a very short
time.

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 312–318, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Design and Implementation of Cognitive Soccer Robots 313

 Generation
 Plan Graphic

 Tool

 Plan
 Verification

 Perception
 Actions

 Primitive

 Plan
 Execution

World
Model

Library
Plan

KB

Conditions
High-level

ActuatorsSensors

Operative Level

On-line

Deliberative Level

Deliberative Level

Off-line

Fig. 1. Layered architecture for our robots

2 Software Architecture

In this section we describe a layered hybrid robot architecture (see also [5])
that has been implemented on different kinds of robotic platforms, namely Sony
AIBOs, Pioneer, and home-made wheeled robots. The software architecture for
all our robots follows a common schema (Fig. (1)) presenting two layers:

1. An Operative Level based on a numeric representation of the information
acquired by the robot sensors and of the data concerning the current task;

2. A Deliberative Level based on a symbolic representation of the information
about the state/situation and of the data concerning the task to be accom-
plished: the On-Line Deliberative SubLevel is in charge of evaluating data
during the execution of the task, while the Off-line Deliberative SubLevel is
executed off-line before the actual task execution.

This layered architecture is based on a different representation of the infor-
mation. In fact knowing the exact position of the objects on the field is often not
necessary in the high-level and therefore a symbolic representation is more ap-
propriate, while the low-level numerical representation is based upon the exact
coordinates of the various objects. For instance the high level representation of
the position of the ball with respect to the robot could be given by a predicate
such as BallOnTheLeft, while at the operative level we have the (x, y) position of

314 C. Castelpietra et al.

the ball with respect to the robot. The robot control is also different in the two
layers: the deliberative level makes use of action plans representing high-level de-
cisions about the execution of primitive actions; in the operative level instead we
have the implementation of primitive actions, that are specific to each platform.

The main features of our architecture for integrating reasoning and reactivity
are heterogeneity and asynchronism. Heterogeneity is important in order to make
use of different techniques, for example a fuzzy reactive controller, a logic-based
knowledge representation system, and low-level image processing routines. The
use of a single representation system, as proposed in [4], for both the reasoning
and the reactive system introduces a limitation in the technologies that can be
used. With a heterogeneous architecture instead, we provide the designer with all
the flexibility required by the complexity of the development process. Asynchro-
nism is also very relevant for an effective integration of reasoning and reactivity.
Indeed, asynchronous architectures, unlike synchronous ones [9,10], allow time-
critical modules to have processing time available when needed. Moreover, the
division of these layers has been designed in such a way that the deliberative
level is the same for all our robotic platforms, while the operative level depends
on the robotic platform. In fact, all our robots share the same deliberative level,
while the implementation of primitive actions and numeric world representations
are different for our different platforms (AIBO, Pioneer, home-made base).

The operative level is heavily dependent on the robot platform: Saphira con-
troller is used for the Pioneer wheeled robots, and Sony OPEN-R for the AIBO
robots. The perceptual module processes sensor data in order to reconstruct a
geometrical view of the environment around the robot (e.g. ball, robots, and
marker position). The main sensor for all our robots is a color camera, there-
fore image processing includes color segmentation, feature extraction and world
reconstruction, that are very similar for all our robotic platforms. The control
module in the operative level implements a set of primitive actions, that are con-
sidered atomic at the higher level, but that correspond to a sequence of control
commands to send to the robot’s actuators. This module is again dependent on
the different robots.

The deliberative level is mainly concerned with an explicit symbolic repre-
sentation of the robot’s knowledge about the environment. This knowledge is
formed by both a general description of the environment provided by the robot’s
designer and the information acquired during task execution. The world model
in this level contains a set of symbolic information corresponding to the data
in the geometric world model of the operative level. The deliberative level is
formed by two main components: 1) a plan execution module that is executed
on-line during the accomplishment of the robot’s task and is responsible for co-
ordinating the primitive actions of a single robot; 2) a reasoning module, that
is executed off-line before the beginning of the robot’s mission, and generates
a set of plans to be used to deal with some specific situations. The reasoning
system processes a knowledge base containing information on the world for mak-
ing decisions about actions to be performed for goals achievement. In addition
to an automatic plan generation module, the user can also manually design (or

Design and Implementation of Cognitive Soccer Robots 315

modify) a plan by using a graphic tool or validate a plan with respect to the
knowledge base by using a plan verification module based on model checking.

3 Representation and Execution of Plans

A plan is represented as a transition graph, where each node denotes a state, and
is labeled with a set of properties, and each arc denotes a state transition and
is labeled with the action that causes the transition.

Actions are represented using preconditions and effects. Preconditions are
the conditions that are necessary for activating the action and indicate what
must be true before and during the action execution. Effects are the conditions
that must hold after the execution of the action and characterize how the state
changes after the execution of the action: they specify direct effects of an action
if executed under given circumstances. A description indicating the overall be-
havior of the action is associated with each action, and is only concerned with
the execution of the action in that particular context. The actions in the graph
can be classified into ordinary (i.e. movement) actions and sensing actions. The
former cause changes in the environment, while the latter are used for acquisi-
tion of information, in order to let the robot take better decisions. In Section 4
we present a more general characterization of actions used for plan generation.

A Plan Execution Monitor is in charge of the correct execution of the ac-
tions composing the plans. In the monitor’s implementation, a plan is stored as
a graph data structure. The monitor’s task is that of visiting the graph, calling
and suspending the actions as necessary. In the formal framework that we have
adopted, a number of assumptions are made both to limit the complexity of
the language and to enable for automatic reasoning. Consequently, for an effec-
tive execution of the plans, additional information concerning the verification of
preconditions and effects is needed. In particular, both the duration of actions
and the failures of action execution must be taken into account. For example,
some preconditions must be constantly verified during the entire execution of
the action, while others need to be checked only for the action’s activation. In
the first case, the action is carried out as long as the condition is true. If the
condition becomes false during the execution of the action, the action fails and
a recovery action is needed. For instance, in a PushBall action (the robot pushes
the ball towards the goal) the condition NearBall (the robot has the ball next
to itself) has to be true during the entire execution of the action. In other cases,
the condition is checked only once at the activation and, once the action has
been activated, it is carried out, independently of the condition’s value during
the action. For example, NearBall can be considered as an activation condition
of a Kicking action, that is thus checked only before the action starts.

Following the considerations above, the plan must be marked with additional
information, that is external to the formalism, but necessary to the monitor for
interpreting and executing the plan. Specifically, the monitor has to know which
preconditions have to be verified during the entire execution of the action and
which effects determine the state transition.

316 C. Castelpietra et al.

4 Plan Generation and Verification

We now briefly present the formalism used for the high-level specification of
dynamic scenarios (we refer the interested reader to [2] for further details). We
have adopted a logic-based formalism, and have exploited both its formal se-
mantics and algorithms for automated reasoning in order to address both plan
generation and plan verification in our system. More specifically, the formalism,
which is called ALCKNF , is a description logic that has been used for modeling
dynamic systems. The representation is based on the use of concepts, i.e., unary
relations (predicates). Each state of the world is labeled by a set of concepts,
corresponding to the properties that hold in that state. Moreover, the execution
of actions is modeled through roles, i.e., binary relations between states.

We represent the robot’s knowledge about the environment by means of a
logical theory (ALCKNF knowledge base) Σ = ΓS ∪ ΓI ∪ ΓP ∪ ΓE ∪ ΓDFR,
where each Γx is defined below. In the following, we assume to deal with a set of
primitive actions, partitioned into a set of ordinary actions, which are assumed to
be deterministic actions with (possibly) context-dependent effects, and sensing
actions, which are assumed to be actions able to sense boolean properties of
the environment. We represent primitive actions in ALCKNF through a set of
atomic role symbols, which we call action-roles.

State constraints (ΓS) State constraints are used for representing background
knowledge, which is invariant with respect to the execution of actions. We for-
malize state constraints as general ALCKNF axioms, not involving action-roles.

Initial state (ΓI) The specification of the initial state in our formalization is
given in terms of a formula of the form C(init), where C is a concept, and init
is the constant denoting the initial state. This axiom can be read as: C holds in
the state init in every possible interpretation.

Precondition axioms for primitive actions (ΓP) Precondition axioms specify suf-
ficient conditions for the execution of primitive actions in a state. Precondition
axioms are expressed as C ⇒ (Exists R), where C is a concept representing the
precondition and R is a primitive (either an ordinary or a sensing) action. This
axiom can be read as: if C holds in the current state s, then there exists a state
s′ which is the R-successor of s.

Effect axioms (ΓE) Effect axioms specify the effects of executing an action in a
given state. We distinguish between ordinary actions and sensing actions. In our
framework, for ordinary actions we specify an axiom C ⇒ Effect (R, D), meaning
that if in the current state the property C holds, then, after the execution of the
action R, the property D holds. Moreover, effect axioms for sensing axioms are
of the form True ⇒ (Effect (RS , D) ∨ (Effect (RS ,¬D)), and specify the fact
that, after the execution of the sensing action RS , the robot knows whether the
property D is true or false.

Design and Implementation of Cognitive Soccer Robots 317

Frame axioms (ΓDFR) In ALCKNF it is possible to enforce different forms of
inertia laws, including default frame axioms which state that, if in the current
state the property C holds, then, after the execution of the actionR, the property
C holds, if it is consistent with the effects of R. Such a rule can be represented
in our framework by the axiom C ⇒ Effect (R,¬(Consistent C) ∨ C), and call
the set of default frame axioms in our specification.

Given a dynamic system specification in ALCKNF and a goal expressed in
terms of a set of concepts, we are able to express the plan generation problem
in terms of a reasoning problem in ALCKNF [5,2]. and implemented a plan
generation/plan verification module based on such an automated reasoner.

5 Discussion

The main goal of the present work is the attempt to provide a new, effective way
to drive the behaviour of the system based on a high-level specification of the
actions that the agent is able to perform. In fact, a weakness of systems imple-
menting similar approaches [10,6], is that the plans that are derived according to
the formal specification are very loosely connected to the underlying execution
layer. In this respect we have enriched the plan representation with additional
information that can partly be extracted from the plan generation process and
partly needs to be given as an additional specification. We have thus been able to
implement a plan execution mechanism that relies on this richer representation
and can take into account some of the aspects that cannot be adequately treated
at the formal level, but are necessary in order to make the implementation effec-
tive. One consequence of the approach taken is that, in the design process, it is
possible to interleave both the use of automatic plan generation and the direct
specification of plans through a graphical interface.

The approach has been successful in two respects. First of all the system has
been successfully implemented in our RoboCup teams both in the Legged and
in the Middle-size League of RoboCup 1999 and 2000 and it performs well in a
task (soccer playing) where the environment is much more dynamic as compared
with other experiments described in the literature of Cognitive Robotics Systems
(see for example [10,6]). The design of a system based on a formal high level
specification has lead us to speed up the software development, when we have
been able to port the system developed on a wheeled mobile base to the Sony
legged platform.

References

1. Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1), 1986.

2. G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. A theory and implementation
of cognitive mobile robots. Journal of Logic and Computation, 5(9):759–785, 1999.

3. Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. 1992.

318 C. Castelpietra et al.

4. S. Hanks and R. J. Firby. Issues and architectures for planning and execution. In
Proc. of Workshop on Innovative Approaches to Planning, Scheduling, and Control,
1990.

5. Luca Iocchi. Design and Development of Cognitive Robots. PhD thesis, Univ. ”La
Sapienza”, Roma, Italy, 1999.

6. Y. Lesperance, K. Tam, M. Jenkin. Reactivity in a logic-based robot programming
framework. In Proc. of AAAI98 Fall Symposium on Cognitive Robotics, 1998.

7. D. Nardi, C. Castelpietra, A. Guidotti, M. Salerno, and C. Sanitati. S.P.Q.R. In
RoboCup-2000: Robot Soccer World Cup IV. Springer-Verlag, 2000.

8. D. Nardi et al. ART-99: Azzurra Robot Team. In RoboCup-99: Robot Soccer World
Cup III, pages 695–698. Springer-Verlag, 1999.

9. N. J. Nilsson. Shakey the robot. Technical Report 323, SRI AI Center, 1984.
10. M. Shanahan. Reinventing Shakey. In Proc. of AAAI98 Fall Symposium on Cog-

nitive Robotics, 1998.

	Introduction
	Software Architecture
	Representation and Execution of Plans
	Plan Generation and Verification
	Discussion

