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Abstract. We present the framework we have adopted to implement
robust sensing in the Milan Robocup F–2000 Team. The main issue con-
cerns the definition of symbolic models both for the single agent and for
the whole multi–agent system. Information about physical objects is col-
lected by intelligent sensors and anchored to symbolic concepts. These
are used both to control the robots through a behavior–based system,
and to improve the global knowledge about the environment.

1 Introduction

We present a framework for robust sensing in a multi–agent system (MAS), based
on the cognitive reference model presented in [1]. We have implemented it in our
F–2000 Robocup team, obtaining a versatile MAS, able to adapt to different
perceptual and communication situations; the team exploit the effectiveness of
knowledge sharing, when possible, and shows graceful degradation when each
agent should operate on its own. We adopt a behavior–based control architecture,
but we feed behaviors with symbolic concepts (implemented by fuzzy predicates)
represented in the environment model we are presenting . In this paper, we
present the reference framework we have defined to implement the world modeler
MAP (Map Anchors Percepts), used to maintain a consistent instance of the
model by anchoring [7] symbolic concepts to physical objects. We have adopted
MAP not only in Robocup, but also in other embodied agents applications.

2 Sensorial Integration in Local Maps

The world model we use in MAP considers not only geometrical features, but
an integrated representation of objects considering their geometrical, dynamical
and perceivable information (e.g., color and odor). The knowledge representation
model we propose is based on the notion of concept and its properties. A property
is a tuple

p ,< label, D , ρ >, (1)

where label denotes the property, D is the set of all the possible values for that
property given a specific representation code (e.g., for the colors we can use the
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set {red, green, blue, . . .} or the RGB space N3
[0,255]) and ρ represents a restriction

of the domain D for that property in the specific concept.
A set of properties describes a concept C, which is used in our model to

represent the knowledge about perceptual images of physical objects. Depend-
ing on the concept and on the specific domain, a property can be classified as
substantial or accidental, respectively S and A in equation 2.

C , {< p, x >} : x ∈ {S, A}. (2)

Substantial properties characterize the immutable part of a concept; for a given
object, their values do not change over time, and they can be used for object
recognition since they define the essence of the object they represent. Accidental
properties are those properties that do not characterize a concept; their values
for the specific instance can vary over time, they cannot be used for object recog-
nition, but are the basis of instance formation, tracking, and model validation.

It is possible to describe the agent knowledge by using concepts. We introduce
the notion of model : given the set of known domains D, a model Md is the set
of all the concepts known by the agent referring to the specific domain d ∈ D,
linked by (structural and domain specific) relationships. A relationship between
concepts may represent:

1. a constraint that must be satisfied by concept instances in order to belong
to the model

2. a function that generates property values for a concept from property values
of another (inference function)

3. a structural constraint to be used when reasoning about classification and
uncertainty

The environment is perceived by a situated agent as a collection of concept
instances. The property values for these instances are sensed by means of in-
telligent sensors, which analyze percepts and give them an interpretation at a
higher level of abstraction, with the aid of basic domain knowledge.

From the instances of concepts Ci and a model Md it is possible to infer
new instances using relationships between concepts representing specific knowl-
edge for the application domain. An instance of the environment model ME is
the set of all concept instances either derived from the classification process or
from inference on concept instances that are compatible with the relationships
contained in the model itself:

ME ≡ {C : C ∈ ME}. (3)

The state of the system represented by the model instance ME is the set of
all values of accidental properties – time variant and not – of concept instances
belonging to the model itself. The tracking phase of anchoring consists of main-
taining in time a coherent state of ME and a correct classification of instances.
In doing this, accidental properties have to be monitored during time, using state
prediction techniques such as linear regression or Kalman filtering.
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The model we are presenting in this section can be considered as the logical
basis for anchoring, but it is also suitable for classical activities that an embodied
agent has to accomplish:

– sensor fusion: features perceived by different sensors can be aggregated if
they refer to the same object in the environment; this is done to collect as
much information as possible about objects before classifying them, to avoid
perceptual aliasing [8], and to reduce noise using redundancy in sensorial
perception

– self–localization: we consider self–localization as the process of instantiating
the environment model, thus obtaining ME . This definition is a generaliza-
tion of the common notion of self–localization [3] since it enables reasoning
about the own position not only in terms of a geometrical model, but also
in terms of more general knowledge (features)

– virtual sensing: the instantiation of a model of the environment can be used
to produce new information applying state estimation techniques to knowl-
edge about the model. This new information can be seen by the agent as new
virtual features produced by sensors looking at the model of the environment
instead than considering the environment itself.

3 Extension to MAS

So far, we have dealt with world modelling processes in a single–agent architec-
ture. It is expected that in a multi–agent context each agent could take advantage
of data perceived by its teammates. Having the opportunity to combine different
local representations, it is possible to build a shared viewpoint of the common
environment, that we call global representation. In doing this, we consider that
each agent shares the same ontology containing global concepts (GC).

The global representation builder receives as input the instances of models
produced by the local processes. Each model instance contains a set of instances
of concepts (e.g., wall, robot, person, etc.). The agent having those instances in
its ME is the owner and specifies a reliability value associated to the anchoring
process, considering reliability of sensors in the operating conditions, pattern
matching, and so on.

The global model building process achieves fusion of concept instances by
a clustering process. We define cluster a set of concept instances related to
concepts whose extensions have a non-null intersection and “similar” values for
the accidental properties, where the meaning of “similar” changes according to
the property.

Two concept instances C1 and C2 can belong to the same cluster if:

1. their accidental properties are similar
2. they have a different owner
3. the respective concepts are not mutually exclusive.

For instance, in RoboCup, robot and opponent are two compatible concepts,
while opponent and teammate cannot belong to the same cluster; moreover,
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instances of concepts like opponent and goalkeeper can belong to the same cluster
since among opponents there is a goalkeeper.

A new global concept instance (GC) is generated for each cluster, and its
accidental properties are deduced from the accidental properties of the cluster
elements by a fusion process that takes into consideration also their reliability
values.

A global representation gives to the MAS some interesting qualities (that
justify the flourishing of several recent works about this topic [4][6][5]):

– robustness : the information coming from several agents that are working
together in a given environment can be referred to the same physical objects

– extensive sensing: a MAS is comparable to a super-agent able to sense and
act at the same time in different places, and the agents of a MAS can be
considered as virtual sensors

– fault tolerance: the global representation can be used to identify and correct
sensorial faults

– cooperation: it is easier to achieve coordination by reasoning on a global
model shared by the agents

It is important to point out that the global representation is not built to
substitute the local representation, but to supplement this by providing for lack-
ing information and by recovering possible errors. Each agent weights its own
way of integrating the information coming from the global representation, just
like it does with information coming from any sensor; for this reason we refer
also to the global representation as a virtual sensor. In this way, we exploit both
the accuracy and the autonomy supplied by the local representation and the
completeness and robustness of the global one.

4 The Robocup Application

We have applied the described framework to our agents operating in the Robocup
F-2000 league, where a team of four robots play soccer against another four. This
domain can be classified as loosely connected since robots cannot always perceive
everything is happening on the field, because of image resolution, and partial
occlusions due to other robots. Each robot maintains its local map, which pro-
vides enough information for reactive behaviors; moreover, it exchanges with
teammates information aimed at the maintenance of a distributed global map.
The behaviors, implemented in our behavior manager BRIAN [1], are activated
by evaluating sets of fuzzy predicates which represent concept instances. When
information is not available for complex activity, possibly because of poor com-
munication, the agents can still operate with the local map. If a global map can
be instantiated, our MAS architecture [2] can assign jobs within schemata to
perform coordinated actions.

In this environment each robot should recognize at least the ball, other robots
(possibly distinguishing teammates from opponents), goals and walls. The men-
tioned objects may be enough for reactive robots, with limited coordination
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ability, to perform selfish behaviors such as most of those seen till year 2000 in
the F-2000 Robocup league: a robot is able to go to the ball, eventually bring it
towards the opponent’s goal, finally possibly kicking the ball to the goal. This
is an important achievement, but it is possible to improve this behavior. Delib-
erative robots, able to plan complex cooperative behaviors, need to self-localize
in order to share their position and their local maps. We use a global map also
to overcome problems of limited perception. For instance, if a robot cannot see
a relevant object (such as the ball) because it is covered by another robot, it
may be informed about the ball position by a teammate, and act consequently.
This requires that both the robots are self-localized, and that both share the
concept of ball, and its instance. This virtual sensing ability gives to our robots
the possibility to perform interesting operating schemata, such as ball passing or
coordinated blocking. In the first, a robot can go to a suitable position to receive
a passage even if it cannot see the ball; in the second, a robot may intercept an
opponent, even if it cannot see the ball, while another teammate is covering the
defense area, waiting for the incoming opponent.

Fig. 1. The robot in front cannot see the ball that its teammate can see.

Another situation when global anchoring is crucial is when a robot has lost its
sensing capability. We have made experiments where a robot has been purposely
blinded and it is localized by other robots, which inform it about its position and
that of ball, goal and obstacles. Of course, the performance of the blind robot
could not be optimal, but it was able to intercept the ball when playing as a
goal keeper, and to kick the ball in goal when playing as an attacker. This has
been implemented as a failure recovery mechanism, to maintain on the field a
robot with perception problems, but also to face problems temporarily occurring
in specific situations. Our more recent robots can exploit a rotating movement
that in certain conditions is fast enough to make the ball disappearing for some
instants from the omnidirectional image due to the low frame acquisition rate
(PAL standard: 25 frames/sec). They can decide to continue the rotation relying
on information present in their local map, but also to consider relevant the
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information possibly provided by teammates, integrated by global anchoring.
As their speed reduces, they directly anchor the ball again, and may consider
as less relevant the information coming from other, more distant – and thus,
less reliable – virtual sensors of the MAS architecture. Some of the mentioned
applications of our approach to world modelling provide information to agents
that cannot access to it. Most of the functionalities rely on self-localization, and
its improvement is one of the main achievement of our approach. We provide here
some data showing the precision obtained in two characteristic situations: self
localization of one of the robots of the team by considering information coming
from all the others, and ball positioning when the ball is covered by an opponent
(Figure 1).

5 Conclusion

We have discussed as anchoring symbolic concepts to physical objects can give
robustness to the model of the environment where a robot operates. Reasoning
with anchors and established knowledge makes it possible to obtain complex be-
haviors which cannot be implemented by reactive modules only. Finally, sharing
anchors gives the possibility to implement a global map maintained by the MAS
as a system; this map may be considered as a virtual sensor which can support
local deficiencies, rising the fault tolerance capabilities of the single agent and
of the whole system.

References

1. A. Bonarini, G. Invernizzi, T. H. Labella, and M. Matteucci. A fuzzy architecture
to coordinate robot behaviors. Fuzzy Sets and Systems, Submitted.

2. A. Bonarini and M. Restelli. An architecture for multi-agent systems. IEEE Trans-
actions on Robotics and Automation, Submitted.

3. J. Borenstein, H. R. Everett, and L. Feng. Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

4. L. Hugues. Griunded representations for a robots team. In in Proceedings of the
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2248–2253, 2000.

5. D. Jung and A. Zelinsky. Grounded symbolic communication between heterogeneous
cooperating robots. Autonomous Robots, 8(3):269–292, 2000.

6. T. Nakamura, A. Ebina, M. Imai, T. Ogasawara, and H. Ishiguro. Real-time esti-
mating spatial configuration between multiple robots by triangle and enumeration
costraints. In in Proceedings of 2000 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 2048–2054, 2000.

7. A. Saffiotti and K. LeBlanc. Active perceptual anchoring of robot behavior in a
dynamic environment. In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 3796–3802, San Francisco, CA, 2000.

8. S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and error.
Machine Learning, 7:45–83, 1991.


	Introduction
	Sensorial Integration in Local Maps
	Extension to MAS
	The Robocup Application
	Conclusion

