Comparison of Several Machine Learning
Techniques in Pursuit-Evasion Games

Jacky Baltes and Yongjoo Park

Centre for Image Technology and Robotics
University of Auckland,Auckland
New Zealand
j.baltes@auckland.ac.nz
http://www.citr.auckland.ac.nz/~jacky

Abstract. This paper describes the results of an empirical evaluation
comparing the performance of five different algorithms in a pursuit and
evasion game. The pursuit and evasion game was played using two robots.
The task of the pursuer was to catch the other robot (the evader). The al-
gorithms tested were a random player, the optimal player, a genetic algo-
rithm learner, a k-nearest neighbor learner, and a reinforcement learner.
The k-nearest neighbor learner performed best overall, but a closer anal-
ysis of the results showed that the genetic algorithm suffered from an
exploration-exploitation problem.

1 Introduction

This paper describes the results of an empirical evaluation comparing the per-
formance of three different machine learning algorithms in a pursuit and evasion
game.

Because of the inherent difficulty of writing control programs for robots,
many researchers have used machine learning techniques to find efficient meth-
ods for controlling a robot in the real world. Many of these approaches use
machine learning techniques as function optimization. In [1], we describe the
use of reinforcement learning to learn the control function of a mobile robot for
path tracking. Most of this and similar other approaches focus on acquisition of
efficient implementation for low level reasoning.

More recently, there have also been attempts in the RoboCup community to
use machine learning to acquire higher level reasoning methods. For example,
Stone describes the use of reinforcement learning to learn a subset of three
against two keep away soccer [6].

Miller and Cliff argue that pursuit and evasion games are the next logical
step in the investigation of robust, intelligent, adaptive behavior. The first step
is the avoidance of static obstacles and the achievement of static goals [5].

The quality of the learned solution can often not easily be judged, since the
optimal solution for a given problem is often not known. One reason for choosing
a pursuit and evasion game in this work is the fact that the optimal strategy is

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 269-Z74] 2002.
© Springer-Verlag Berlin Heidelberg 2002

270 Jacky Baltes and Yongjoo Park

known for games in an infinitely sized playing field. The quality of the machine

learning methods can thus be compared to the optimal performance possible.
The sizes and kinematics of the game were based on the physical robots

available in our lab. Those robots are based on remote controlled cars with a

length of 18 cm and a width of 10cm. The maximum turn rate of the pursuer

was limited to 15cm and its maximum speed to 20cm/s. The maximum turn

rate of the evader was limited to 25cm and its maximum speed to 10cm/s.
Figure[Il shows a small example of a game in progress.

&
T E

Fig. 1. Example of the Pursuit Evasion Game. The time history is shown on the
left, the final state on the right. In this game, the pursuer was successful, since
it managed to move within lethal range of the evader.

Section Rl gives a brief introduction into the theory of differential games and
leads to the description of the optimal strategy for infinite playing fields in
section Bl The machine learning techniques used (Genetic algorithms, k-nearest
neighbor, and reinforcement learning) are described briefly in section @ The
empirical evalution of the learned strategies is shown in section Bl The paper
concludes with looking at future work (Section [6).

2 Related Work

In this work, we focus our attention on a pursuit and evasion game, the so-called
“homicidal chauffeur game” [4].This game takes place on a parking lot. In this
game, both pursuer and evader are seen as non-holonomic cars. The pursuer has
a higher speed, but a larger turn radius. The evader is more maneuverable, that
is, it has a smaller turn radius, but is slower.

The kinematic equations for the pursuer and the evader are shown in Fig. 2
The equations model a unicycle with a limit on the maximum turn cycle.

The control inputs ¢, and ¢. are normalized from —1... 4+ 1. For example,
when 6, = —1, the pursuer executes a full left turn and for ., = +1, the evader
executes a full right turn.

3 Optimal Strategy

The kinematic equations of the pursuer and evader need to be simplified to
develop optimal strategies for the pursuer and evader. We establish a relative
frame of reference, which puts the pursuer at the origin and the evader’s position
relative to the pursuer is determined. Furthermore, the velocity of the evader and

Comparison of Several Machine Learning Techniques 271

Up 1 P's speed

8, P's orientation

fp : P's minimum radius of curvature
v, E's speed

6, E's orientation

p, E's minitnum radius of curvature

By

Fig. 2. Kinematic Equations in the Pursuit Evasion Game

the minimum radius of curvature are expressed relative to that of the pursuer.
This results in the following coordinate system:

x = (ze — xp)costy — (Ye — yp)sinb,
y = (ze — xp)sinby — (Ye — Yp)cosb,
T = Vesinbe — Yoy

Y = vecos. — 1 + xoyp

The game terminates when the evader is within the lethal range of the pur-
suer, where the lethal range is defined as z2 + 32 < 3.

The optimal strategy for the pursuer can be derived mathematically, by re-
alizing that it is the action that will center the evader in the UP. The pursuer
should turn towards the evader and move randomly if it is already lined up with
the evader.

é _{Sgns ifs#0
p=

else move in a random direction

The optimal control for the evader when E is on the BUP (the circle 2% +y? =
0, where [is the lethal range) is to steer towards the NUP and normal to the
BUP. If such a move is not possible because it would exceed the maximum turn
radius, it should steer as close to the desired direction as possible.

¢ = cos™ /1 — v

If the evader is either in UP or NUP, the closest point to the BUP needs to
be found. Then E should move towards the direction normal to the BUP and
closer to the NUP.

272 Jacky Baltes and Yongjoo Park
4 Learned Strategies

The following subsection provides detail of the three selected machine learning
techniques that were used in this research: genetic algorithms, k-nearest neighbor
learner, and reinforcement learning.

4.1 Genetic Algorithm

To reduce the implementation time needed for this, we used the Samuel system
[B]. Samuel has been used previously to learn successfully the rules for evading
a missile with a fighter jet.

The behavior of an agent was determined by a set of a maximum of 40 rules.
Each rule consisted of a condition part and an action part.

We used the following three conditions in the rules:range: the distance be-
tween the pursuer and evader, bearing: the direction from the pursuer to the
evader, and heading: the direction of the evader relative to the pursuer. Each
conditional part of a rule includes values for upper and lower bounds for these
three conditions.

The action part of the rules contain one of nine control values (—1, —0.75,
—0.50,...,0.00, 0.25,...,41) corresponding to different steering angles ¢.

Given a set of rules, a policy needs to be established to select which rules
to execute if no rules satisfy the conditions or if more than one rule satisfies all
conditions. This problem is solved by associating a rule strength to each rule
and by executing the action suggested by the strongest rule. The rule strength
is determined by how well the current state matches the conditions of the rule
and how successful the rule has been in the past.

If a rule has been selected, all three condition parts are updated by moving
the bounds closer to the current conditions. The strength of a rule is updated
using the profit sharing plan as described in [2].

We used the following four genetic operators to “stir the gene pool:” rule
mutation, rule crossover, rule merging, and plan crossover.

4.2 k-nearest Neighbor Learner

In this work, we used a simple case-based reasoning approach, the 1-nearest
neighbor algorithm. The basic idea is that a database of previous situations (so
called cases) is maintained by the agent. Anytime the agent is asked to make a
decision, the entry in the database that is most similar to the current situation
is retrieved and the action that is suggested by this case is executed.

Each state is defined by the same conditions as were used in the genetic
algorithm learner: range, bearing, and heading. The similarity measure is the
sum over the normalized distances between features as shown below:

|Ozk Jk|
Sim(Ci, C5) Z Max. Disty,

Comparison of Several Machine Learning Techniques 273

During learning the agent would execute random actions. All situations that
were encountered during this exploratory phase were recorded. If the game was
successful, that is the evader was not caught, or the pursuer was able to catch the
evader, it is considered as a possible case candidate to be added to the database.

Case-based maintenance is a problem in most case-based reasoning sys-
tems. There are processing and memory constraints which limit the size of
the database. In this work, we used a simple scheme to control the size of the
database. The maximum number of cases for each suggested action was limited
to 100 cases. This limited the maximum size of the database to 900 cases.

After a learning episode, a new case would be added to the database, if it
was not already subsumed by an existing case in the database. If the maximum
size of the case base for a specific action was exceeded by the addition of this
case, a randomly selected case was removed from the case base.

4.3 Reinforcement Learner

We also implemented a standard Q learner. Both learners used the standard Q
learning update rule shown below. However, since the goal of the pursuer and
evader are different, different reward formulas were used for the two players.

Update:R(z) = R(x) + px (R() + 6(Q(y) — R(x)))
Reward Evader:10 x ¢ if E is caught at time t
Reward Pursuer:R(E) = 10 x (T — t) if P catches E at time t

5 Comparison of Different Strategies

This section discusses the results of evaluating and comparing the performance
of different strategies. In our evaluation, we used a playing field 540cm by 450cm.
Each game consisted of a maximum of 100 steps. We run 1000 games and com-
puted the average evasion success rate as well as the standard deviation in 10
blocks of 100 games. In each game, the pursuer started in the centre of the play-
ing field and the evader started in a random position, at least some distance
away from the pursuer.

Table[l shows the result of these experiments. The entries to a random mover
(R), the optimized strategy (O), the genetic learner (G), the k-nearest neighbor
learner (K), and the reinforcement learner (Q). Sump,p summarize the score for
a particular pursuer and evader respectively. As should be expected, the optimal
evader Fo is the best evader and so is the optimal pursuer Pp. Remember that
the entries in the table correspond to the evasion success rate and thus lower
numbers show a better performance of the pursuer.

6 Conclusion

The evaluation shows that the k-NN learner performed well compared to the
other strategies. Its performance (253) was similar to that of the optimal strategy

274 Jacky Baltes and Yongjoo Park

Pr Po Pa Pk Py SUMp
Er_ |62(4.49)[0(0) |61(6.70)|31(5.21)|60(4.84)|214
Eo |71(4.25)[25(3.22)|78(3.78)[21(1.22)[76(5.43)| 271
Ec |62(3.86)[8(2.19) |79(2.26)[12(4.02)[74(2.41)[235
Ex |67(4.28)[4(0.63) |67(4.64)[37(3.36)|78(4.39)|253
Eq |62(4.20)[0/(0.89)]63(3.79)[42(4.23)[65(4.25)| 232

SUMp|324 37 348 143 353

Table 1. Evasion Success for 1000 Games with 100 Steps/Game. The entry
in each cell is the evasion success rate and the standard deviation is given in
brackets.

(271). The performance of the k-NN pursuer was worse than that of the optimal
strategy, but it was significantly better than that of the other learned strategies.

It is also interesting to note that the genetic algorithm did learn the best
evasion strategy against the optimal pursuer of all the learned strategies. Since
the all learners were trained against the optimal strategy, it shows that the
genetic algorithm did not use enough exploration during the training phase.
Although it outperforms the k-NN by 100% against the optimal pursuer, it
performs much worse than the k-NN learner against other strategies. The k-
NN learner on the other hand uses only randomized moves during training and
therefore is able to more general strategies.

Although the genetic learner and the reinforcement learner learned reason-
able good strategies for the evasion part of the game, they did perform worse
than the randomized mover as pursuers.

References

1. Jacky Baltes and Yuming Lin. Path-tracking control of non-holonomic car-like
robots using reinforcement learning. In Manuela Veloso, Enrico Pagello, and Hiroaki
Kitano, editors, RoboCup-99: Robot Soccer World Cup I, pages 162—-173, New York,
2000. Springer.

2. John F. Grefenstette. Credit assignment in rule discovery systems based on genetic
algorithms. Machine Learning, 3(2/3):225-245, 1988.

3. John F. Grefenstette and Helen G. Cobb. Learning sequential decision rules using
simulation models and competition. Machine Learning, 5:355-381, 1990.

4. Rufus Isaacs. Differential games: A mathematical theory with applications to war-
fare and other topics. Technical Report 1, Center of Naval Analysis, Washington,
D.C., 1963.

5. G. F. Miller and D. Cliff. Co-evolution of pursuit and evasion 2: Simulation methods
and results. Technical report, University of Sussex, Brighton BN1 9QH, U.K., 1994.

6. Peter Stone, Richard Sutton, and Satinder Singh. Towards reinforcement learning
for 3 vs. 2 keepaway. In Proceedings of the Fourth Workshop on RoboCup, Mel-
bourne, August 2000.

	Introduction
	Related Work
	Optimal Strategy
	Learned Strategies
	Genetic Algorithm
	k-nearest Neighbor Learner
	Reinforcement Learner

	Comparison of Different Strategies
	Conclusion

