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Abstract. RoboCup simulated soccer presents many challenges to ma-
chine learning (ML) methods, including a large state space, hidden and
uncertain state, multiple agents, and long and variable delays in the ef-
fects of actions. While there have been many successful ML applications
to portions of the robotic soccer task, it appears to be still beyond the
capabilities of modern machine learning techniques to enable a team of
11 agents to successfully learn the full robotic soccer task from sensors to
actuators. Because the successful applications to portions of the task have
been embedded in different teams and have often addressed different sub-
tasks, they have been difficult to compare. We put forth keepaway soccer
as a domain suitable for directly comparing different machine learning
approaches to robotic soccer. It is complex enough that it can’t be solved
trivially, yet simple enough that complete machine learning approaches
are feasible. In keepaway, one team, “the keepers,” tries to keep control
of the ball for as long as possible despite the efforts of “the takers.” The
keepers learn individually when to hold the ball and when to pass to
a teammate, while the takers learn when to charge the ball-holder and
when to cover possible passing lanes. We fully specify the domain and
summarize some initial, successful learning results.

1 Introduction

RoboCup simulated soccer has been used as the basis for successful international
competitions and research challenges [4]. It is a fully distributed, multiagent do-
main with both teammates and adversaries. There is hidden state, meaning that
each agent has only a partial world view at any given moment. The agents also
have noisy sensors and actuators, meaning that they do not perceive the world
exactly as it is, nor can they affect the world exactly as intended. In addition,
the perception and action cycles are asynchronous, prohibiting the traditional
AI paradigm of using perceptual input to trigger actions. Communication op-
portunities are limited, and the agents must make their decisions in real-time.
These italicized domain characteristics combine to make simulated robotic soccer
a realistic and challenging domain [10].

In principle, modern machine learning methods are reasonably well suited to
meeting the challenges of RoboCup simulated soccer. For example, reinforcement
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learning is all about sequential decision making, achieving delayed goals, and
handling noise and stochasticity. However, RoboCup soccer is a large and difficult
instance of many of the issues which have been addressed in small, isolated cases
in previous reinforcement learning research. Despite substantial previous work
(e.g., [1, 13, 15, 9]), the extent to which modern reinforcement learning methods
can meet these challenges remains an open question.

Similarly, evolutionary learning methods are promising candidates for learn-
ing complex behaviors. Indeed, there have been two previous attempts to learn
the entire simulated RoboCup task via genetic programming (GP) [5, 2]. While
both efforts were initially intended to test the ability of GP to scale to the full, co-
operative robotic soccer task, the first system ended up evolving over hand-coded
low-level behaviors, and the second achieved some successful individual behav-
iors but was unable to generate many collaborative team behaviors. Whether
this approach can be scaled up to produce more successful teams remains to be
seen.

One frustration with these and other machine learning approaches to Robo-
Cup is that they are all embedded within disparate systems, and often address
different subtasks of the full soccer problem. Therefore, they are difficult to
compare in any meaningful way.

In this paper, we put forth keepaway soccer as a subtask of robotic soccer
that is suitable for directly comparing different machine learning methods. The
remainder of the paper is organized as follows. In Section 2 we describe keepaway
and specify the sensors and actuators for this task. In Section 3 we summarize
the successful results of our reinforcement learning approach to this task [12].
Section 4 concludes.

2 Keepaway Soccer

We consider a subtask of RoboCup soccer, keepaway, in which one team, the
keepers, is trying to maintain possession of the ball within a limited region, while
another team, the takers, is trying to gain possession. Whenever the takers take
possession or the ball leaves the region, the episode ends and the players are
reset for another episode (with the keepers being given possession of the ball
again).

Parameters of the task include the size of the region, the number of keepers,
and the number of takers. Figure 1 shows a screen shot of 3 keepers and 2 takers
(called 3 vs. 2, or 3v2 for short) playing in a 20m x 20m region.

All of our work uses version 5.25 of the standard RoboCup soccer simulator [6]
but is directly applicable to more recent versions. An omniscient coach agent
manages the play, ending episodes when a taker gains possession of the ball
for a set period of time or when the ball goes outside of the region. At the
beginning of each episode, the coach resets the location of the ball and of the
players semi-randomly within the region of play. The takers all start in one corner
(bottom left). Three randomly chosen keepers are placed one in each of the three
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Fig. 1. A screen shot from a 3 vs. 2 keepaway episode in a 20m x 20m region.

remaining corners, and any keepers beyond three are placed in the center of the
region. The ball is initially placed next to the keeper in the top left corner.

In the RoboCup soccer simulator, agents typically have limited and noisy
sensors: each player can see objects within a 90o view cone, and the precision of
an object’s sensed location degrades with distance. To simplify the problem, we
gave our agents (both keepers and takers) a full 360o of vision. We have not yet
determined whether this simplification was necessary or helpful.

Keepaway is a subproblem of robotic soccer. The principal simplifications
are that there are fewer players involved; they are playing in a smaller area; and
the players are always focused on the same high-level goal—they don’t need to
balance offensive and defensive considerations. Nevertheless, the skills needed
to play keepaway well are also very useful in the full problem of robotic soccer.
Indeed, ATT-CMUnited-2000—the 3rd-place finishing team in the RoboCup-
2000 simulator league—incorporated a successful hand-coded solution to an 11
vs. 11 keepaway task [11].

Keepaway is a complex enough task that simple, hand-coded solutions are
not likely to yield the best behaviors. However, it is also simple enough that
complete machine learning approaches are feasible. These complete approaches
can then be directly compared. In order to do so, it is necessary that the different
systems work with similar action and feature spaces. In the remainder of this
section, we specify the actions and state variables in our formulation of the task.

2.1 State Variables and Actions

In this learning problem, the learners choose from among mid-level actions con-
structed from skills. Those skills include
HoldBall(): Remain stationary while keeping possession of the ball in a
position that is as far away from the opponents as possible.

PassBall(k): Kick the ball directly towards keeper k.
GetOpen(): Move to a position that is free from opponents and open for
a pass from the ball’s current position (using SPAR [16]).

GoToBall(): Intercept a moving ball or move directly towards a stationary
ball.
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BlockPass(k): Move to a position between the keeper with the ball and
keeper k.

All of these skills except PassBall(k) are simple functions from state to a cor-
responding action; an invocation of one of these normally controls behavior
for a single time step. PassBall(k), however, requires an extended sequence of
actions—getting the ball into position for kicking, and then a sequence of kicks
in the desired direction [10]; a single invocation of PassBall(k) influences behav-
ior for several time steps. Moreover, even the simpler skills may last more than
one time step because the player occasionally misses the step following them;
the simulator occasionally misses commands; or the player may find itself in a
situation requiring it to take a specific action, for instance to self-localize. In
these cases there is no new opportunity for decision making until two or more
steps after invoking the skill.

Such possibilities may present problems for machine learning approaches.
One candidate for dealing with them is to treat the problem as a semi-Markov
decision process, or SMDP [7, 3]. An SMDP evolves in a sequence of jumps from
the initiation of each SMDP action to its termination one or more time steps
later, at which time the next SMDP action is initiated. SMDP actions that
consist of a subpolicy and termination condition over an underlying decision
process, as here, have been termed options [14].

2.2 Keeper State Variables

Our task specification involves learning by the keepers when in possession1 of
the ball. Keepers not in possession of the ball are required to select the Receive
option:
Receive: If a teammate possesses the ball, or can get to the ball faster
than this keeper can, invoke GetOpen() for one step; otherwise, invoke
GoToBall() for one step. Repeat until a keeper has possession of the ball
or the episode ends.
A keeper in possession, on the other hand, is faced with a genuine choice.

It may hold the ball, or it may pass to one of its teammates. That is, it
chooses an option from {Holdball, PassK2ThenReceive, PassK3ThenReceive,
. . . , PassKnThenReceive} where the Holdball option simply executes HoldBall()
for one step (or more if, for example, the server misses the next step) and the
PasskThenReceive options involve passes to the other keepers. The keepers are
numbered by their closeness to the keeper with the ball: K1 is the keeper with
the ball, K2 is the closest keeper to it, K3 the next closest, and so on up to Kn,
where n is the number of keepers. Each PasskThenReceive is defined as
PasskThenReceive: Invoke PassBall(k) to kick the ball toward teammate

k. Then behave and terminate as in the Receive option.

1 “Possession” in the soccer simulator is not well-defined because the ball never occu-
pies the same location as a player. One of our agents considers that it has possession
of the ball if the ball is close enough to kick it.
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The keepers’ learning process thus searches a constrained policy space char-
acterized only by the choice of option when in possession of the ball. Examples
of (non-learned) policies within this space include:
Random: Choose randomly among the n options, each with probability

1
n .

Hold: Always choose HoldBall()
Hand-coded:

If no taker is within 10m, choose HoldBall();
Else If teammate k is in a better location than the keeper with the ball
and the other teammates, and the pass is likely to succeed (using the
CMUnited-99 pass-evaluation function, which is trained off-line using
the C4.5 decision tree training algorithm [8]), then choose PassBall(k);
Else choose HoldBall().
We turn now to the representation of state used by the keepers. Note that in

our formulation the state variables are only needed when one of the keepers is
in possession of the ball (were keepers to learn where to move when they don’t
have the ball, additional state variables would be needed). On these steps the
keeper determines a set of state variables, computed based on the positions of:
the keepers K1–Kn, ordered as above; the takers T1–Tm (m is the number of
takers), ordered by increasing distance from K1; and C, the center of the playing
region (see Figure 2 for an example with 3 keepers and 2 takers). Let dist(a, b)
be the distance between a and b and ang(a, b, c) be the angle between a and
c with vertex at b. For example, ang(K3, K1, T1) is shown in Figure 2. With 3
keepers and 2 takers, we used the following 13 state variables:
• dist(K1, C), dist(K2, C), dist(K3, C)
• dist(T1, C), dist(T2, C)
• dist(K1, K2), dist(K1, K3)
• dist(K1, T1), dist(K1, T2)
• Min(dist(K2, T1), dist(K2, T2))
• Min(dist(K3, T1), dist(K3, T2))
• Min(ang(K2, K1, T1), ang(K2, K1, T2))
• Min(ang(K3, K1, T1), ang(K3, K1, T2))
This list generalizes naturally to additional keepers and takers, leading to a linear
growth in the number of state variables.

2.3 Takers

The takers are relatively simple, choosing only options of minimum duration
(one step, or as few as possible given server misses) that exactly mirror the
available skills. When a taker has the ball, it tries to maintain possession by
invoking HoldBall() for a step. Otherwise, it chooses an option that invokes
one of {GoToBall(), BlockPass(K2), BlockPass(K3), . . . , BlockPass(Kn)} for
one step or as few steps as permitted by the server. In case no keeper has the
ball (e.g., during a pass), K1 is defined here as the keeper predicted to next
gain possession. Examples of (non-learned) policies within the taker policy space
include:



Keepaway Soccer: A Machine Learning Testbed 219

= Ball

C

C = center

K

T
T

K

2

1

3

K1

2

Fig. 2. The state variables used for learning with 3 keepers and 2 takers. Keepers
and takers are numbered by increasing distance from K1, the keeper with the
ball.

Random-T: Choose randomly from the n options, each with probability
1
n .

All-to-ball: Always choose the GoToBall() option.
Hand-coded-T:

If fastest taker to the ball, or closest or second closest taker to the ball:
choose the GoToBall() option;
Else let k be the keeper with the largest angle with vertex at the ball
that is clear of takers: choose the BlockPass(k) option.
The takers’ state variables are similar to those of the keepers. As before, C

is the center of the region. T1 is the taker that is computing the state variables,
and T2–Tm are the other takers ordered by increasing distance from K1. Kimid
is the midpoint of the line segment connectingK1 and Ki for i ∈ [2, n] and where
the Ki are ordered based on increasing distance of Kimid from T1. That is, ∀i, j
s.t. 2 ≤ i < j, dist(T1, Kimid) ≤ dist(T1, Kjmid). With 3 keepers and 3 takers,
we used the following 18 state variables:
• dist(K1, C), dist(K2, C), dist(K3, C)
• dist(T1, C), dist(T2, C), dist(T3, C)
• dist(K1, K2), dist(K1, K3)
• dist(K1, T1), dist(K1, T2), dist(K1, T3)
• dist(T1, K2mid), dist(T1, K3mid)
• Min(dist(K2mid, T2), dist(K2mid, T3))
• Min(dist(K3mid, T2), dist(K3mid, T3))
• Min(ang(K2, K1, T2), ang(K2, K1, T3))
• Min(ang(K3, K1, T2), ang(K3, K1, T3))
• number of takers closer to the ball than T1

Once again, this list generalizes naturally to different numbers of keepers and
takers.

3 Sample Experiments

We have conducted initial experiments in this keepaway domain using the
SARSA(λ) reinforcement learning algorithm [12]. Our main results to date have
focused on learning by the keepers in 3v2 keepaway in a 20x20 region. For the
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opponents (takers) we used the Hand-coded-T policy (note that with just 2 tak-
ers, this policy is identical to All-to-ball). To benchmark the performance of
the learned keepers, we first ran the three benchmark keeper policies, Random,
Hold, and Hand-coded, as laid out in Section 2.2. Average episode lengths for
these three policies were 5.5, 4.8, and 5.6 seconds respectively. Figure 3 shows
histograms of the lengths of the episodes generated by these policies.
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keeper policies
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Fig. 3. Histograms of episode lengths for the 3 benchmark keeper policies in 3v2
keepaway in a 20x20 region.

We then ran a series of eleven runs with learning by the keepers against
the Hand-coded-T takers. Figure 4 shows learning curves for these runs. The
y-axis is the average time that the keepers are able to keep the ball from the
takers (average episode length); the x-axis is training time (simulated time ≈
real time). The performance levels of the benchmark keeper policies are shown
as horizontal lines.
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Fig. 4. Multiple successful runs under identical characteristics: 3v2 keepaway in
a 20x20 region against hand-coded takers.
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This data shows that we were able to learn policies that were much better
than any of the benchmarks. All learning runs quickly found a much better policy
than any of the benchmark policies, including the hand-coded policy. A better
policy was often found even in the first data point, representing the first 1000
episodes of learning. Qualitatively, the keepers appear to quickly learn roughly
how long to hold the ball, and then gradually learn fine distinctions regarding
when and to which teammate to pass.

Next, we applied the same algorithm to learn policies specialized for different
region sizes. In particular, we trained the takers in 15x15 and 25x25 regions
without changing any of the other parameters, including the representation used
for learning. The results shown in Table 3 indicate that the learned policies again
outperformed all of the benchmarks. In addition, it is apparent that policies
trained in the same size region as they are tested (shown in boldface), performed
better than policies trained in other region sizes. In general it is easier for the
keepers to keep the ball in a larger field since the takers have further to run.
Thus, we observe a general increase in possession time from left to right in the
table. These results indicate that different policies are best on different field sizes.
Thus, were we to take the time to laboriously fine-tune a hand-coded behavior,
we would need to repeat the process on each field size. On the other hand, the
same learning mechanism is able to find successful policies on all three field sizes
without any additional human effort.

Testing Field Size

Keepers 15x15 20x20 25x25

Trained 15x15 11.0 9.8 7.2
on field 20x20 10.7 15.0 12.2
of size 25x25 6.3 10.4 15.0

Hand 4.3 5.6 8.0
Benchmarks Hold 3.9 4.8 5.2

Random 4.2 5.5 6.4

Table 1. Performance (possession times) of keepers trained with various field
sizes (and benchmark keepers) when tested on fields of various sizes.

Finally, we applied our learning algorithm to learn policies for a slightly larger
task, 4 vs. 3 keepaway. Figure 5 shows that the keepers learned a policy that
outperformed all of our benchmarks in 4v3 keepaway in a 30x30 region. In this
case, the learning curves still appear to be rising after 40 hours: more time may
be needed to realize the full potential of learning.

We have also begun exploring taker learning. As noted in Section 2.3, the rep-
resentation used for the keepers may not be suited to taker learning. Nonetheless,
using this representation, takers were able to learn policies that outperformed
the Random and All-to-ball taker policies. The best learned policies discovered
so far perform roughly equivalently to the Hand-coded-T policy.
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Fig. 5. Multiple successful runs under identical characteristics: 4v3 keepaway in
a 30x30 region against hand-coded takers.

Our on-going research is aimed at improving the ability of the takers to learn
by altering their representation and/or learning parameters. One promising line
of inquiry is into the efficacy of alternately training the takers and the keepers
against each other so as to improve both types of policies.

4 Conclusion

Keepaway soccer is a simplification of the full RoboCup soccer task that is
suitable for solution with machine learning methods. Our previous research in
the domain has demonstrated that a machine learning approach can outperform
a reasonable hand-coded solution as well as other benchmark policies.

We put this domain forth as a candidate for use for direct comparisons of
different machine learning techniques on a concrete task. It is complex enough
that it can’t be solved trivially, yet simple enough that complete machine learning
approaches are feasible.

In our formulation, learning is done over a very large state space but with
only a few possible actions at any given time. The domain could be incremen-
tally expanded by introducing more actions. For example, as a first step, the
agents could learn precisely where to move rather than calling functions such as
GetOpen() or BlockPass(). Eventually, the agents could learn directly from the
simulator low-level, parameterized action space.
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