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1 Introduction

This paper provides an overview of the robot control system of the UW Huskies, our
entry in the RoboCup-2001 Sony AIBO legged robot league. Our development team
consisted of one faculty member (D. Fox, team leader), one technical support staff
(R. Pitkanen), one undergraduate student (J.K. Burns), and six graduate students. Since
this was our first participation in RoboCup, we relied on the implementation of well-
established techniques for robot control. These techniques include a layered control
system, particle filters for robot localization, and efficient computer vision techniques
for object recognition.

2 Architecture

Flexibility was the overriding design goal for our system. We were especially careful
to make our system as modular as possible. This would permit us to adapt to unantic-
ipated difficulties or novel tactics. Implementation efficiency and maintainability were
important secondary goals. Figure 1 illustrates the control system. The different mod-
ules communicate using the Aperios inter-object message passing facility. When large
data (e.g. world model, camera images) are to be shared between multiple modules,
shared memory is used. The control system consists of the following five modules:

Hardware Interface: This module receives input from the raw sensors and passes it
to the other modules. The most important information consists of time stamped camera
images coupled with the corresponding position of the robot’s head.

Vision: The vision module analyses images on a frame by frame basis. Efficient algo-
rithms are applied to detect objects such as the ball, goals, and markers. Distances to
these objects are extracted from their size. Information about the robot’s head position
is used to transform from camera-relative to robot-relative coordinates. The detected
objects are passed to the state estimator module.

State estimator: This module integrates information over time and stores it in the world
model. Most important information is the position of the robot on the soccer field and
the position of the ball relative to the robot. The robot position is estimated using a par-
ticle filter approach [2]. The position of the ball is based on smoothed estimates of the
vision system. From this information, it is rather straightforward to derive information
such as the absolute position of the ball, or the relative position of the opponent’s goal.
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Fig. 1. System architecture. The arrows indicate the main flow of information (dashed) and com-
mands (solid) between the different modules.

Behavior: Using the most recent information in the world model, this module decides
which actions the robot should perform. Our control system follows a multi-layered
approach (see also [3] and several chapters therein). Behaviors are modeled by hierar-
chical finite state machines (FSMs). Simple skills such as “kick” or “walk” form the
basic skills of the hierarchy. At the top of the hierarchy a “goalie” or “forward” FSM
determines the highest-level actions of the robot depending on a preassigned role.

Motion: We developed gaits and kicks offline by a combination of basic inverse kine-
matics and direct manipulation of the robot’s joints. These gaits are saved on the mem-
ory stick as text files and read in at boot time. The motion module executes commands
at the request of the behavior module. During the competition we relied on the gaits
provided by Sony’s OPEN-R robot control system.

3 Vision

Our basic vision package emphasizes efficiency and interface simplicity to maximize
reuse of the code. The package possesses a memory footprint of less than 2MB and
allows a frame rate of more than 100 frames per second on the robot itself (significantly
faster than the camera update rate), including color clustering, blob identification, ob-
ject recognition, and distance estimation. To achieve this high efficiency in combination
with accurate object estimates, we follow a dual-resolution approach: Object detection
is performed on the low-resolution images which are color-clustered by the robots vi-
sion hardware. Once the different objects are detected, we use the high-resolution image
to get more accurate estimates for the positions and sizes of these objects.

The image processing pipeline begins with the hardware-clustered CDT image. The
clusters are represented by rectangular boxes in YUV-space. These boxes are deter-
mined manually, using an offline tool that reads in images taken from the camera and
allows a trainer to assign groups of pixels to specific color classes. During operation,
the classified image pixels are grouped into blobs. We use a tree-based union find algo-
rithm with path compression and 4-connectedness matching to locate blobs. The blobs
of each color are sorted by size, and very small blobs (likely to be noise) are elimi-
nated. Objects are detected by testing spatial relationships between the individual blobs
(e.g. green blob above yellow blob for green/yellow marker).
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All operations described so far are performed on the low-resolution CDT images.
To get more accurate estimates for object sizes, we use the bounding boxes of the de-
tected objects to focus on regions in a higher-resolution image. Color clustering of the
higher-res images is performed in software using the same color bounding boxes as the
CDT images. We found that the higher-resolution images tend to yield more accurate
distance estimates, while the low-res pass allows reliable and efficient object detection1.
Finally, before sending object information to the state estimator, the object positions are
transformed from camera coordinates to positions relative to the robot.

4 State Estimation and World Model

The task of this module is to keep track of the dynamics of the environment. In our cur-
rent system, each robot estimates its own position and the relative positions of the ball
and the goals. The relative position of the goals is either determined by direct observa-
tion or extracted from the robot’s location on the field. We estimate the robot position
using particle filters, a highly efficient and robust approach to localization [2]. The key
idea of this probabilistic approach is to represent the robot’s position by sets of random
samples. Position estimates are refined whenever the vision module detects a marker or
a goal. Detections contain information about the distance and orientation of the objects
relative to the robot. From these detections we can derive probabilities for the different
robot positions on the field. Whenever the robot moves, the samples are shifted ac-
cording to a model of robot motion. The noise parameters of this motion model were
determined offline by measuring velocities for the different motion commands. Similar
to [4], recovery from localization failures is achieved by adding random samples drawn
according to the observation likelihoods.

Efficiency was one of the key goals of our implementation of particle filters. Using
several approximations (such as pre-computing random samples and replacing Gaus-
sian distributions by triangular distributions), one update cycle of our approach can be
done in less than 0.05 seconds on average (400 samples).

5 Behaviors

This module receives world model updates from the state estimator, processes the infor-
mation, and outputs commands to the motion module. The behavior module is imple-
mented as a hierarchy of finite state machines. We have two top-level state machines,
each corresponds to a different type of player, the Forward and the Goalie. A simplified
Forward state machine is shown in Figure 5(a). Each state has a list of transitions and
conditions associated with these transitions. Typical conditions test whether something
holds true in the world model, for example, whether the ball is close to the robot. If
true, the associated transition is made, during which motion commands may be issued.
Each state in the state machine implements an abstraction called SKILL. Basic SKILLs

1 To achieve more accurate estimates of the distance to the ball, we additionally use information
from the IR sensor when the ball is already judged by the vision system to be relatively close
and straight ahead.
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Fig. 2. Hierarchical finite state machines for robot control: a) Simplified version of the FSM
implementing the Forward robot. Note shown are transitions from each state to the “Localize”
state. The “Go to Ball” state is implemented by a docking motion field to guide the robot to
the ball so that it can kick it toward the opponent’s goal. b) The Find Ball skill of the Forward
is implemented as a lower level FSM. When the exit state of this FSM is reached, control is
transferred back to the main state machine.

are motion commands such as move head or walk. More complicated SKILLs are built
out of state machines themselves, each state again corresponds to a SKILL.
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6 Conclusions and Future Work

Our software system for RoboCup-2001 relied on well-established techniques from the
robotics and vision community. Due to the lack of preparation time, our team was not
competitive against the senior teams of our league. Our major problem was the fact that
we were not able to develop fast and stable motion patterns within the given time. Since
fast motion is of utmost importance for success in robot soccer, our next efforts will
focus on the development of motion patterns. Another thread of our research will ex-
plore issues in multi-robot collaboration and the combination of information collected
by different robot platforms (communication will be available in RoboCup-2002). Fur-
ther research will involve reinforcement learning and efficient state estimation in the
context of real-time robot control (see e.g. [1]).

References

1. D. Fox. KLD-sampling: Adaptive particle filters and mobile robot localization. In Advances
in Neural Information Processing Systems (NIPS), 2002. To appear.

2. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization: Efficient position
estimation for mobile robots. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 1999.

3. D. Kortenkamp, R. P. Bonasso, and R. Murphy, editors. Artificial Intelligence and Mobile
Robots: Case Studies of Successful Robot Systems. MIT/AAAI Press, Cambridge, MA, 1998.

4. S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In
Proc. of the IEEE International Conference on Robotics & Automation (ICRA), 2000.


	Introduction
	Architecture
	Vision
	State Estimation and World Model
	Behaviors
	Conclusions and Future Work

