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Abstract. Various approaches to buffer size and management for output 
buffering in ATM switches supporting delay sensitive traffic are reviewed. 
Discrete worst case arrival and service functions are presented. Using this 
format, bounds are developed for buffer size under zero cell loss for leaky 
bucket constrained sources. Tight bounds are developed for the case of discrete 
arrival functions with fluid servers and fluid arrival functions with discrete 
servers.  A bound on the buffer size is also proposed for the case of discrete 
arrival and service process. While this bound is not exact, the maximum gain 
that could be achieved by a tighter bound is bounded.  In some cases it is 
possible to reduce the buffer size requirements through over allocation of link 
bandwidth.  Feasibility conditions for this scenario are developed. 

1   Introduction 

ATM network support [13] for delay-sensitive QoS requirements requires ATM 
switches to support the QoS guarantees. Low service-latency schedulers, e.g. RRR [4] 
provide a mechanism for supporting delay QoS guarantees if sufficient switch 
resources - including buffer space and bandwidth - are available. The focus of this 
paper is the buffer requirements rather than the scheduler design. The buffer size 
constraints switch performance (e.g. Connection Admission Control) while 
representing a significant fraction of interface costs for wire speed interfaces. This 
paper develops expressions for the buffer size requirements (see equations 
(1),(11),(12)and (13)) that can be used in buffer optimization problems for specific 
schedulers, particularly simple Latency-Rate (LR) schedulers (see [10]) derived from 
Weighted Round Robin. These expressions are used to explore potential buffer 
reductions. In contrast to other buffer studies (see [6],[8],[9]), we provide more 
precise formulations for the buffer requirements due to discrete effects in the arrival 
and service processes as well as considering service-latency. The paper also provides 
quantified examples with a specific WRR scheduler to achieve reductions in buffer 
size requirements. We assume a simple output buffering arrangement such as that used 
for Burstiness-Class based Queuing (B-CBQ, see [14]), where several queues (α,β,χ) 
are serviced by an LR scheduler which provides each queue with a guaranteed 
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bandwidth and (potentially) delay bound guarantees. The buffer size formulations in 
this paper focus on the buffer requirements for an individual queue. Multiple Pt-Pt or 
MPt-Pt ATM connections are allocated to a queue (i.e. connections VCα,1..n are 
directed to queue α). LR Delay bound guarantees require source traffic that is leaky 
bucket (σ, ρ) constrained with a worst case burst of size σ, and arrival rate ρ. In this 
paper, we assume worst-case aggregate leaky-bucket-constrained arrival function at a 
queue, i.e., periodic bursts of size σ.(see e.g. [3]). The buffer is cleared with a period 
T given by the ratio σ/ρ. We are particularly interested in the case where the buffer 
requirements can be reduced from the maximum burst size (σ). Buffer size 
requirements are typically considered at switch design time, however for some switch 
designs buffers may be reallocated between queues while the switch is operational. 
For such situations, the computational complexity of estimating buffer requirements is 
an important issue. The paper is organized as follows. Section 2 places this work in 
the context of prior work. The buffer size, assuming fluid models for arrivals and 
service, and also considering service-latency, is considered in section 3.  The buffer 
size requirements under discrete arrival and/or service functions (again considering 
service- latency) are discussed in section 4. Section 5 explores numerically the 
feasibility and magnitude of buffer size reductions possible by rate over-allocation for 
WRR schedulers. Conclusions are provided in section 6. 

2   Prior Work 

Previous work had focussed largely on ideal fluid arrival and service processes (e.g. 
WFQ) or had simply assumed that the allocated rate matched in the requested rate 
exactly, rather than considering some potential for over allocation of bandwidth in 
order to minimize buffer occupancy. The absolute delay bounds both for the GPS 
schedulers and the more generic version for LR schedulers [10] rely on a maximum 
buffer size and a guaranteed service rate in order to produce the delay bound. The 
tradeoff of additional guaranteed rate for reduced buffer requirements was identified 
by [3] in the context of work on equivalent bandwidth capacity. They developed an 
approach to buffer allocation for ATM networks which reduced the two resource 
allocation problems (buffer & bandwidth) to a single resource allocation (“effective 
bandwidth”) problem. [8] built on the work of [3] and separated the buffer/bandwidth 
tradeoff into two independent resource allocation problems. While work on scheduler 
design (e.g.[4],[10]) has identified several issues related to service-latency, the impact 
on the buffer-bandwidth tradeoff has not been explicitly considered. The theory 
related to fluid models of arrival and service curves has recently been extended into an 
elegant network calculus (e.g., [1], [2], [7]). While these approaches typically are used 
to derive end-to-end network delay bounds, they can also be used to provide 
assertions regarding buffering requirements. In the realm of equipment design, the 
service curves, and network calculus, are an intermediate form and equipment 
optimizations must be recast in terms of scheduler design parameters. In practice, 
ATM switches must deal with discrete data units (cells) and consider the effects of 
service-latency on buffer requirements. Previous work on discrete buffer sizing for 
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WRR has been largely empirical (e.g. [9], [6], [5]) and addressed towards loss based 
QoS parameters, rather than delay-sensitive QoS requirements.  

3   Buffer Size with Fluid Arrival and Fluid Service  
with  Service-Latency 

The main result for the buffer size (b) in the case of fluid arrivals and service 
processes is given in equation (1). Three cases must be considered: 
! if the service-latency (L) is such that service starts after arrivals have reached the 

maximum value (which occurs at t=τσ), then the supremum occurs at t=τσ and 
b=σ, and no reduction in buffer requirements is possible. 

! if the arrival rate (ρa) is less than (or equal to) the service rate (ρs), then the 
supremum occurs at t=L, and b=ρaL. 

! if the arrival rate is greater than the service rate, then the supremum occurs at  
t=τσ and b=σ−ρs(τσ−L). 
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An example of the buffer space requirements is illustrated in Fig. 1 using equation (1). 
In order to reduce the buffer requirements below σ, the service-latency must be less 
than σ/ρa , (10msec in this example). Simply increasing the service rate may not 
reduce the buffer requirements below σ. Even for the cases where L < 10msec, 
increasing the service rate beyond ρa provides no additional benefit which is 
consistent with the results of [8]. If the service rate, ρs, is less than the peak arrival 
rate, ρa, then only smaller reductions from σ are possible. While the potential 
reduction of 10 cells for the connection in this example may not seem significant, we 
recall that there may be several thousand connections on an ATM interface at OC-3 or 
higher rates. Also, the burst size, used in this example is very small for VBR traffic. 

 

 

Fig. 1 Buffer Space Requirements for Fluid Arrivals and Fluid Service with Service-Latency. 
The parameters for the example are: σ = 10 Cells; ρ = 250 Cells/Sec; ρa = 1000 Cells/Sec; 
500≤ ρs ≤ 5000 Cells/Sec; 0≤ L ≤ 40 msec. 



64      S. Wright and Y. Viniotis 

4   Effect of Discrete  Arrivals and Discrete Service  on Buffer Size 

The fluid model ignores discrete effects in the arrival and service functions. 
Significant buffer reductions are still possible, even after allowing for discrete effects 
in the arrival and service functions. In contrast to the fluid arrival functions typically 
based on two (σ, ρ) or three (σ, ρ, ρa) leaky bucket parameters, we use a worst-case 
leaky-bucket discrete arrival function based on four parameters–(σ, ρ, ρa, k); where k 
is the step size in the same data units as σ  (see Fig. 4). Similarly, we need to move 
from the two-parameter (L, ρs) fluid service function of section 0 to a worst-case 
discrete service function based on three parameters (L, ρs, m) where m is the service 
step size in the same data units as σ (see Fig. 2). The main result of this section is the 
formulation for the discrete arrival function in equation (4) and for the discrete service 
function in equation (8). Also presented are a pair of fluid functions that bound each 
of these discrete functions. These are equations (5) and (6) for the bounds on the 
discrete arrival function and equations (9) and (10) for the bounds on the discrete 
service function.  

4.1   Arrival Functions 

The incoming arrivals are not eligible for service until the time, τa , given by equation 
(2). Equation (3) illustrates the time, τσ, at which the maximum arrival burst, σ, is 
reached. The worst-case discrete arrival function is then defined by equation (4). We 
can consider the discrete arrival function as bounded by two fluid functions: Amax(t) 
(refer Equation (5)) and Amin(t) (refer equation (6)). The maximum error in the 
bounding functions is one step, k. As k→0, the discrete model is less relevant and A(t) 
converges towards the Amin(t) function.  
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4.2   Service Functions 

The generalized worst case discrete service function is shown in Fig. 2, where service 
proceeds in discrete steps up until the maximum buffer occupancy has been served. 
Many link schedulers offer rate guarantees over a longer time-scale than one cell 
transmission time, and service some quanta (m>1 cell) of data at a step [11]. The 
period, τs, associated with a service step is given by equation (7). We chose to 
separate the effects and leave L to reflect service-latency associated with the start of 
the service function beyond the scheduling rate granularity. This formulation reflects 
that buffers are freed at the end of the service time-scale. A discrete version of the 
service function is then given by equation (8).  The worst case discrete service 
function is bounded by two fluid service functions: Smax(t) (refer equation (9)) and 
Smin(t) (refer equation (10)). The maximum difference between in the bounds is m. As 

m→0, 0→sτ  and the discrete model becomes less relevant as it converges towards 

Smax(t). 
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4.3   Fluid Arrivals and Discrete Service  

Consider the fluid arrival process and discrete service process with service-latency in 
Fig. 2(a). Using the discrete service function may provide an improved result (a 
potential reduction up to m) if we can evaluate the supremum. The main result is 
presented in equation (11) (refer to [12] for the proof).  In brief, the intuition on 
locating the supremum from the fluid case is extended by whether the supremum 
occurs at the first step in the service function after t=L, i.e. t=τ2, or at the last step in 
the service function prior to t=τσ i.e t=τ5 . An example of the per-connection buffer 
requirements for the case of m=3 is shown in Fig. 2(b), where the supremum occurs at 
τ2 (~6msec). The arrival function used was a fluid arrival with parameters {σ =10 
Cells; ρ =250 Cells/Sec; ρa =1,000 Cells/Sec}. 
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(a) General Case Nomenclature  b) Buffer Occupancy with L=5msec, 

ρρρρs=1,000 Cells/Sec 

At low latencies, when the service rate exceeds the peak arrival rate, the buffer 
requirements can be significantly reduced. With ρs=ρa= 1000 cells/sec in Fig. 3, the 
buffer requirements are reduced to 3-8 cells depending on the latency of 0-5mS. This 
is a reduction of 20-70% from a buffer size based on the peak burst size, σ (=10 cells 
in this example). When the service rate is below the peak arrival rate, the effects of 
increasing service-latency are impacted by the service step (m=3) as illustrated by the 
series of plateaus in Fig. 3. These are not seen in the fluid arrival and service model 
shown in the example of Fig. 1. 

Fig. 2 Fluid Arrivals and Discrete Service 

 
Fig. 3 Buffer Size as a Function of L and ρs for Worst-Case Fluid Arrivals and Discrete Service 
with service-latency 

4.4   Discrete Arrivals and Fluid Service  

The main result in this section is equation (12) (refer to [12] for the proof), which 
presents a formula for the worst case buffer requirements when there is a discrete 
arrival function and a fluid service function. In brief, the intuition on locating the 
supremum from the fluid case is extended by whether the supremum occurs at the first 
step in the arrival function after t=L, i.e. t=τ1, or at the last step in the arrival function 
prior to t=τσ , i.e., t=τ4 . The formulation is made more complex by consideration of 
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the arrival step size, k, in relation to the maximum burst size σ. Fig. 4 (a) illustrates 
the general case. In  Fig. 4(b), a discrete arrival function is considered that has the 
following characteristics: σ =10 Cells; ρ =400 Cells/Sec; ρa =7 Cells/Sec; k ,=3 Cells. 
In Fig. 4(b) time is shown on the x-axis, and A(t) is shown as a solid line. S(t) is shown 
as alternating dash-dot line, and the maximum buffer occupancy is shown as a dotted 
line.  In Fig. 4(b) the last step is less than k. The maximum buffer occupancy occurs at 
τ4 (~9msec). 

 
{ } { }

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( )

















==−

≠






 −>=−

≠






 −≤=








−<=−−−
−≥=−−

≥≥

≥

σ

σ

σ

σ

σ

σ

ττττ

ττ
ρ

τττ

ττ
ρ

τ
τ

ρτστττρτ
ρτστρτσ

στσ

111

1
1

11

1
1

44

4

 if andTRUE  2 if)),(max(

 if andk if andTRUE  2 if

 if andk if and TRUE  2 if

A if andTRUE1 if

A if andTRUE1 if

k ifor L if

cSALA

L
cSA

L
c

L
k

cLA

cL

b

s

sa

aas

as

 (12) 
where { } { }

{ } { }s
s

c

c

ρρτ
ρρτ

σ

σ

≤<=
><=

a

a

 ANDL2

 ANDL 1  

 

Fig. 4 Discrete Arrivals and Fluid Service 
 

Fig. 5 illustrates the buffer size behavior as a function of L and ρs. Note that the 
minimum buffer size in Fig. 5 is not zero, but the k(=3cells) on the vertical axis. When 
ρs > ρa, the buffer size shows discrete steps due to the discrete arrivals.  When ρs < 
ρa, the buffer size is a continuous function. Although this example uses a small value 
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(a)τa<L<τσ , ρs > ρa (b) Buffer Occupancy with L=0 msec,  

ρs=500cells/s The discrete arrival 
function used was: σ  =10 Cells; ρ 
=250 Cells/S; ρa =1000 Cells/S; k =3 
Cells. 
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of σ (~10 cells), for connections with large values of σ, the potential reduction in 
buffer requirements could be significant. This numerical example is also considering 
the effects on one connection. Aggregating the result over the number of connections 
supported at the interface provides for a potentially large reduction in buffer 
requirements. For example, if we can operate with a low latency of ~1msec and a ρs = 
3,000 Cells/sec, a 70% reduction in buffer requirements can still be achieved even 
after considering discrete arrival effects.  

4.5   Combined Discrete Arrival and Departure Effects 

The effect of combining discrete arrivals and service is shown in Fig. 6(a). The 
intuition followed in the fluid cases to locate the supremum is not sufficient here. In 
Fig. 6(b), rather than showing the evolution of discrete A(t) and S(t) functions (as in 
e.g. Fig. 2(b) ) we chose to show only  the detail of the buffer occupancy for an 
example where the supremum does not occur at the location intuitively expected. 
Consider the case where the periods (τa ,τs) of the arrival and service curves are not 
equal. As the phase of the two discrete functions changes, eventually a point is 
reached where one discrete function steps twice between two steps in the other 
discrete function. This results in local maxima or minima in the buffer occupancy. 
This invalidates the previous intuition about where the supremum occurs. 
Where both k and m are small with respect to σ, the bounding model  considering 
discrete effects is appropriate. The fluid model bounding the discrete arrival function 
was derived as equation (5). The worst-case fluid model bounding the discrete service 
function was derived as equation (10). Combining these two leads to equation (13) 
(refer to [12] for the proof). If only one of k, m was small, then a bounding model 
could be derived based on the material in the previous sections. The supremum can be 
evaluated by exhaustively computing the buffer occupancy at each discrete step in the 
arrival or service functions. If neither k nor m is small, then there will be few steps 
making the numerical solution of the buffer supremum faster. 
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Fig. 5 Buffer Occupancy Supremum as function of L and ρs 
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(a) General Nomenclature   (b)Buffer Occupany Behavior Detail 

Fig. 6 Combining Discrete Arrivals and Service 
 
 

Fig. 7 illustrates the bound on buffer size required after considering the discrete 
effects using equation (13). This is very similar in shape to Fig. 1, with the minimum 
possible buffer size now being k (3 Cells in this example) rather than zero as in Fig. 1. 
The position of the knee where buffer reduction below σ occurs is also moved slightly 
(to L~8msec) due to the additional service-latency introduced by discrete service 
effects. Despite the discrete effects, significant buffer reductions are still possible 
where the service- latency can be reduced below this knee. As in Fig. 1, when the 
latency is below the knee point, increasing the service rate to match the peak arrival 
rate provides potential buffer reductions, increasing beyond the peak arrival rate does 
not provide any additional reduction in buffer size. Although reduction in the number 
of cells in this example is small, the potential reduction is significant for bursty 
connections with large values of σ, and when considered aggregated over the 
potentially large numbers of connections on an interface. 

  

Fig. 7 Bound on Buffer Space Considering Discrete Effects with k=3, m=2 
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5   Buffer Size Reduction in WRR 

In this section, we provide a numerical illustration of the feasibility and scale of buffer 
size reduction for a specific WRR scheduler. We assume a node with n identical input 
lines of speed C Cells/Sec. The maximum number of simultaneous arrivals is then one 

per link, i.e. k=n (for a MPt-Pt connection). The peak arrival rate is kCa =ρ , and 

the maximum aggregate arrivals are still constrained to σ.  τa is  given by Equation 
(14). The maximum number of arrivals in the worst-case-burst have been received by 
the time given in equation (3). Consider a scheduler that offers a rate guarantee of 
some fraction of the link bandwidth (C ) to a class i. This class is given a integer 
weight φi . A simple interpretation is that the integer weights, φi ,correspond to the 

number of units of service to be provided in one round by the WRR server, where the 
units of the weights are the units of service (e.g. bits, cells, packets). We assume the 
step size for the discrete service is m=φi . Then ρs is given by equation (15), and τs is 

given by equation (16) 
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The worst-case service-latency (L) is the service-latency due to the discrete arrival 
processes. i.e. L=τa. The buffer space requirements (assuming k and m are small with 
respect to σ) corresponding to this can then be derived by substituting in equation 
(13). 

5.1   Feasible Region for Reduced Buffer Size  

We assume k is a positive integer, and for all non-trivial cases sC ρ> and hence 

sa ρρ ≥ . From equation (13), we have the constraint on service starting before τσ. 

This can be developed into a constraint on the maximum frame size as shown in 
equation (17). This constraint is illustrated in Fig. 8 where frame sizes that permit 
buffer reduction are in the region below the surface. The frame size constraint is linear 
in σ, but has an inflexion point as a function of k. In order to have a reasonably large 
frame size to accommodate connections with large σ, we need to keep k small, e.g. 
k<10.  
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Fig. 8 maximum frame size (∑
∀ j

jφ ) as a function of k and σ 

5.2   Reduced Buffer Size 

Equation (13) can be reduced in this region of interest as equation (18). 

 

∑∑
∀

∀






−−

−
−≥

j
j

i

j
j

i
ii k

k
b

φ
φ

φ
σ

σ 1   (18) 

Fig. 9 illustrates the behavior of equation (18). To avoid worst case buffer overruns, 
the buffer should be provisioned above this surface. Significant reductions in buffer 
size are only possible for small values of k e.g. systems with small fan-in. Although 
there is some sensitivity to the burst size, σi, at large values of the burst size σi, even a 
small percentage reduction can represent a large amount of memory. This example 
shows buffer reductions of up to 10% from the burst size σi, but further reductions are 
also possible by considering the effects of the weights used. 

Fig. 9 Buffer Size Requirement per Inequality (18)  

(a) as function of k and σ for the case 

of 100,10 == ∑
∀ j

ji φφ . 

(b) as functions of the 
connection weights for the case 
of k=10 Cells and σi=10,000 
Cells
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Buffer size reductions from σi  are clearly possible. However this appears to only be 
significant when the proportional weight allocated to the over-allocating connection is 

close to 1 and the maximum frame size (∑
∀ j

jφ ) is small. 

6   Buffer Sizing Conclusions 

In this paper, more precise (than fluid model) formulations for buffer size 
requirements have been developed to consider the effects of worst-case discrete 
arrival and discrete service, as well as service latency. When both m and k are small 
compared to σ the formulation for the combined case of discrete arrivals and discrete 
service (see equation (13)) provides a suitably tractable bound on the worst-case. The 
worst-case formulations for discrete arrivals and fluid service (see equation (12)) or 
fluid arrivals and discrete service (see equation (11)) are exact solutions. These 
formulations should be used for buffer size calculations when the discrete nature of 
either the arrival or service function must be considered (i.e. when one of m or k is not 
small compared to σ). When both m and k are not small compared to σ then the 
evolution of the buffer occupancy needs to be evaluated in more detail. The 
computational complexity of determining the supremum of the buffer occupancy 
reduces to evaluating the buffer occupancy at each step in the arrival and service 
functions. With both m and k large, there will be few steps between the onset of 
service and the completion of the arrival burst and an exhaustive evaluation is feasible 
in a reasonable time. The numerical application of equation (13) to the selection of 
weights for a discrete WRR scheduler has been provided as an illustration. In this 
example, buffer size reduction below σ is possible, (up to 10% in Fig. 9 ) but the gains 
are most significant when the sum of all the weights is small, the burst size, σ is large, 
and the fan-in, k, is small. In these cases, even a small percentage reduction (say 10%) 
in the buffer requirements can result in a significant reduction in the number of cells 
that must be stored. For network elements requiring high-speed memory buffers, the 
cost savings can be significant.  
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