
G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 201-212, 2000
© Springer-Verlag Berlin Heidelberg 2000

Membership-Insensitive Totally Ordered Multicast:
Properties and Performance

Jerzy Konorski1

1Technical University of Gdansk
ul. Narutowicza 11/12, 80-952 Gdansk, Poland

jekon@pg.gda.pl

Abstract. Membership-insensitive group transport protocols are particularly
desirable for large groups of fast-varying membership where the distributed
application being served insists on collective output and survivability rather than
producing a consistent record of successive group views. An overview of such a
protocol, able to maintain agreed delivery order of multicast messages across
the group except for scenarios that can be made arbitrarily improbable, is
presented along with a proposed specification of the so-called ’1C network
service with ContiguityDetector’ it is built upon. Key properties of the protocol
are expressed through some graph-theoretic observations. LAN implementation
experience and performance measurements are described to conclude that the
group throughput remains high under constant group membership and, there
being virtually no group reconfiguration overhead, varies gracefully in step with
the number of active group members.

1  Group Communication Model

Group communication models extend the familiar point-to-point (unicast) paradigm
by introducing
• a family of patterns of message transfer, involving a group of member sites rather

than just two, of which multipoint-to-multipoint is the closest to the intuitive notion
of group communication (the related multicast protocols [5] are focused on
typically best-effort multicast routing and switching within the underlying
communication network),

• a wider choice of QoS options that include, besides performance-oriented ones,
group-wide consistency constraints like reliability, message ordering and
membership control (the related group transport protocols [13] focus on
implementation of these constraints, typically through multiple point-to-multipoint
message transfers with coupled control); when referring to a group communication
protocol (GCP) we shall understand a group transport protocol, the multicast
protocol functionality being left to the underlying network service.



202      J. Konorski

Fig. 1.  Logical placement of a GCP instance

Logically, as Fig. 1 shows, a GCP instance at a member site is situated between the
local instance of the distributed application it serves and the network service it uses.1

We will carefully distinguish between message admission and delivery, and message
multicast and reception, actions occurring across the application-to-GCP and GCP-to-
network interfaces, respectively. With regard to the elements of the model in Fig. 1 we
state the following assumptions and non-assumptions:

• application instances: generate messages at will, as determined by the (arbitrary)
course of application execution; each message is destined for the whole of the
group consisting of N member sites (we consider one group only),

• GCP instance: multicasts messages it has admitted, receives messages as they
arrive from the network and delivers them to the application instance subject to
prescribed group-wide consistency constraints.

• network service: employs any best-effort multicast protocol thus constituting an
asynchronous environment with arbitrary message delays and losses.

• sites: may exhibit intermittent presence i.e., undergo alternate presence and absence
spells (e.g., due to outages or switching to other tasks), thus constituting a
potentially fast-varying membership with non-Byzantine site faults permitted.

The rest of the paper is organised as follows. In Sec. 2 the relevant consistency
constraints are specified and a case is made for membership-insensitive GCPs. A
suitable network service model, called 1C with ContiguityDetector, is introduced in
Sec. 3 along with a few exemplary network settings. A membership-insensitive GCP
is proposed in Sec. 4 and some key properties thereof stated in Sec. 5. Finally, Sec. 6
describes a LAN implementation experience with the proposed protocol and concludes
with a brief discussion of its measured performance.

                                                     
1 Fig. 1 need not map directly onto the ISO-OSI layering e.g., ’GCP instance’ may be either part

of the transport or application layer or split between the two; accordingly, ’network’ may or
may not encompass transport layer functionality.

application instance

admission delivery

network

multicast reception

GCP   instance
member
 site



Membership-Insensitive Totally Ordered Multicast: Properties and Performance      203

2  Consistency Constraints

The group-wide consistency constraints a GCP has to meet, Agreed Delivery Order
(ADO) and Membership Control, are very different in nature, which gives rise to
splitting a GCP into separate subprotocols. Although group communication need not
be connection-oriented, we may use the term group connection to designate a self-
contained exchange of a set M of  multicast messages. Let the member sites be
numbered 1 through N and let Rn and Dn be the sequences of messages respectively
received and delivered at site n throughout the group connection. ADO states that,
regardless of the Rn’s, the following holds for the Dn’s:

• Atomicity: for any m∈M, m∈Dn* at some site n* implies that m∈Dn for all n,
• Total Order: a total order '→' on M can be produced such that for any site n and

m,m’ ∈ M,  (m,m’ ∈ Dn and m→m’) implies that m precedes m’ in Dn.

Note that neither of these statements implies the other; in conjunction they permit a
distributed application to run as if supplied from a central event queue.2

Preserving ADO clearly requires that the member sites perceive themselves as
members. Given that some of them may enter an absence spell at times, one wants to
confine the above ADO specification to the constant membership case. The opposite
case is covered by Membership Control. Let en,i be the ith membership change event
perceived at site n and let V(en,i) be the membership view implied by en,i i.e., the set of
sites perceived by site n as present upon en,i. Then the following is to hold:

• Membership Consensus: all sites n’∈V(en,i) perceive en,i,
• Virtual Synchrony [2]: all sites n’∈V(en,i)∩V(en,i+1) i.e., members of two

consecutive membership views, deliver messages in ADO between perceiving en,i

and en,i+1; Extended Virtual Synchrony [11] enables to resume Virtual Synchrony
when some previously absent sites have entered another presence spell.

ADO is costly in terms of message latencies and overhead, which may behove
designers to consider quasi-ADO protocols instead, where violations of ADO are
possible though materialise arbitrarily rarely. Membership Control, besides the well-
known impossibility result [8], fails in that ultimately it is to unify the perception of
successive group views, which is not a universal motivation. It is for collective
accountancy-oriented applications (banking, reservation systems), but not for
collective output-oriented ones, especially involving large and/or variable groups,
where membership sensitivity is more a burden than a benefit. We illustrate this point
by an example of a generic distributed resource sharing framework.3

                                                     
2 Some authors [16] add another dimension by distinguishing weak and strong Total Order.

Others [9] define Validity and Integrity to ensure eventual delivery of multicast messages and
prevent delivery of fake ones, respectively. The former is covered by the Eventual Receipt
assumption (Sec. 4); the latter is only important for Byzantine site faults.

3 A similar point can be made for some other parallel tasking frameworks e.g., parallel
simulation with rollback.



204      J. Konorski

Suppose that the member sites are to perform successive operations on a countable
reusable resource and that the throughput (total operations per second) determines the
output we get. Temporary exclusive control over resource units is transferred among
the sites via multicast request, allocation and release messages, the former processed
at each site in the FIFO order. To prevent the so-called wait-for condition and the
resulting possibility of deadlock, a site that has not been allocated enough resource
units for its operation is obliged, upon expiry of a time-out, to release the collected
resource units and start requesting anew. Preserving ADO of request and allocation
messages is important as any inconsistency would favour a situation of two or more
sites collecting resource units in parallel and ending up with expired time-outs, which
would reduce the throughput we are interested in maximising. Two observations
emerge from the above example:

• Violation of ADO, although worsens the performance, need not be catastrophic to
the application. Ad-hoc simulation experiments performed for several realistic
WAN settings typically revealed a mere 10% operation throughput drop with as
much as 5% messages violating ADO, which suggests there is a need for quasi-
ADO protocols given the high cost of maintaining strict ADO in large groups.

• The sites are completely uninterested in tracking current membership. In fact, some
of them may get uninterested at all and enter an absence spell; subsequently they
may return and when they do, they are to promptly resume (quasi-)ADO instead of
triggering costly rejoin-group procedures. For the TOTEM GCP [1], an ad-hoc
simulation study shows that a single site out of 20, toggling periodically between
presence and absence, causes reconfiguration overhead that halts the group
connection for about 20% of the time and reduces the group throughput roughly by
half for another 20%. Thus there is a need for membership-insensitive GCPs even if
they are quasi-ADO rather than ADO. Note that membership insensitivity increases
survivability in a non-protective or hostile environment.

3  Network Service Model

GCP design requires specification of the underlying multicast service. Some well-
known ADO protocols are built on top of an unreliable service [1], [15], reliable
service [14] or reliable FIFO service [7]; quite a few rely on causal service [2], [6].4

Single-access broadcast media (e.g., Ethernet, FDDI, Token Ring, single-channel
wireless TDMA) make a favourable environment since their hardware- and MAC-
level broadcast and message ordering naturally define ’→’ as the transmission order.
Some ADO protocols make explicit use of this property [10], [12]. An appropriate
service abstraction goes by the name of 1-channel (1C) service [12] and can be
reformulated analogously to Total Order using the Rn’s rather than Dn’s:

                                                     
4 This does not contradict the standard argument that message ordering should be an application

layer issue [4] since both reliable FIFO and causal multicast services can be emulated within
a GCP as a form of ADO preprocessing.



Membership-Insensitive Totally Ordered Multicast: Properties and Performance      205

• 1C: a total order ’→’ on M can be produced such that for any site n and messages
m,m’∈M,  (m,m’∈Rn and m→m’) implies that m precedes m’ in Rn.

1C is not a reliable multicast service: due to possible reception misses (caused by
transmission losses, buffer overflow etc.), Atomicity cannot be guaranteed at the
network level. Nevertheless, a realistic performance-oriented enhancement of the 1C
service is possible. Let ’⇒’ denote contiguity in ’→’ i.e., m⇒m’ means that m→m’ and
there is no m’’ such that m→m’’ and m’’→m’. At each site an inference device called
ContiguityDetector is placed that for any pair of consecutively received messages m
and m’ infers either m→m’ or m⇒m’ as specified below:

• if m⇒m’ is inferred at a site then indeed m⇒m’,
• if m⇒m’ then the inference about m and m’ (m→m’ or m⇒m’) may vary from site

to site depending on local conditions.

We now discuss several realistic settings that virtually provide the above service.

3.1  Single-Access LAN

Messages arriving at a site are stored in a reception buffer whence they are fetched by
the local GCP instance for processing. Slow-fetch and the resulting message overwrite
can be assumed the sole factor behind reception misses; other factors (e.g.,
transmission errors, receiver overruns, software bugs) are marginalised over time by
the advances in LAN technology. The ContiguityDetector at a site reduces to a bit set
whenever an arriving message overwrites a previous one in the reception buffer, and
reset after reception of any message; if the bit is found reset at the instant of message
m’ reception then m⇒m’ is inferred, m being the latest message received.
Alternatively, a timing-based ContiguityDetector infers m⇒m’ if the receptions of
messages m and m’ are less apart in time than what is needed to transmit a message.

3.2  Bounded-Delay WAN

Upper-bounding message delays by a ∆ converts the network into a synchronous
environment suitable for timed ADO multicast service [9]. Assuming that local clocks
at sites run synchronously, messages are delivered in ADO based on increasing
reception timestamps. By adding ∆ to the current time, a sender obtains the reception
timestamp for its message, whose lifetime is limited to ∆. To avoid excessive delivery
latencies, a ∆’ can be used instead (∆’<∆) at the cost of some messages using up their
lifetime before reaching all the member sites. The ContiguityDetector at site n
analyses current network delays to site n and for a received message m’ determines
whether the delays have remained under ∆’ since the latest message m was received. In
that case, m⇒m’ is inferred.



206      J. Konorski

3.3  Tag Sequencer

Messages are tagged with unique identifiers and use a reliable multicast service. A
copy of the tag is unicast to a special sequencer site which numbers arriving tags
sequentially and multicasts them back to the group. At any site, messages whose
numbered tags have been received are delivered in sequence. For security and/or
privacy reasons, tags from different groups should appear indistinguishable to the
sequencer; it must therefore use a broadcast rather than multicast service for numbered
tags e.g., best-effort FIFO broadcast. Now multiple groups share the same tag
sequence, thus when a site has filtered out other groups’ tags then for two consecutive
tags numbered i and j (i<j) corresponding to messages m and m’, it can infer m⇒m’
only if the filtered out tags’ numbers are contiguous between i+1 to j−1.

4  Distributed Precedence Graph Protocol

We now present a survivable membership-insensitive GCP named Distributed
Precedence Graph (DPG) that operates on top of the 1C service with
ContiguityDetector. The network service is also assumed to fulfil Eventual Receipt [3]
i.e., infinitely many message remulticasts result in infinitely many receptions at each
member site. The DPG protocol exhibits quasi-ADO and Extended Virtual Synchrony
in that, except for scenarios that occur arbitrarily rarely, each member site delivers
continuous segments of the ADO sequence in successive presence spells.

A generic DPG instance at site n will be denoted DPG-n for short. The basic data
structures at DPG-n consist of admission and ordering buffers at the application-to-
DPG interface, across which messages are exchanged, as well as a multicast queue, a
reception buffer and the ContiguityDetector at the DPG-to-network interface, across
which PDUs are exchanged. Two PDU types are distinguished:

• ’message’ PDU - contains a new message (multicast for the first time) along with a
unique message tag; the tag is valid only for the message's lifetime and need not
reflect any static site numbering nor message sequencing within a site,

• ’report’ PDU - helps construct ADO, recover lost messages, perform flow control
and local clock rate synchronisation.

A local clock controls the multicast interval (for flow control), remulticast time-outs
(for recovery of lost messages), as well as deadlines for message incorporation into
ADO (to implicitly eliminate absent sites).

4.1 Construction of Quasi-ADO

DPG-n maintains an acyclic directed precedence graph G whose vertices map onto
message tags (written symbolically X, Y, Z etc.) and arcs reflect the order '→'. X∈G
implies that DPG-n has received message X or has been notified of its reception at
some other site via a ’report’ PDU. (X,Y)∈G means that messages X and Y have been



Membership-Insensitive Totally Ordered Multicast: Properties and Performance      207

consecutively received at some site, implying X→Y though not necessarily X⇒Y.
Reception of message Z causes the inclusion into G of vertex Z and arcs (X,Z) for all X
having no successor in G (while the message body is stored in an ordering buffer).
Moreover, DPG-n maintains the tag (L_REC) of the latest received message and
marks arc (L_REC,Z) if L_REC⇒Z is inferred at the instant of message Z reception.
DPG-n includes in ’report’ PDUs it issues a subgraph of G corresponding to messages
not yet delivered locally. Supposing DPG-n has received graph G’ in a ’report’ PDU,
first it computes G:=G∪G’ and marks each arc that was marked in G or G’. Next, G
is linearised so as to take advantage of the newly acquired knowledge of ’→’.
Linearisation continues as long as, for any arc (X,Y),

− there exists a vertex Z∈G such that either (X,Z)∈G and (X,Z) is marked or (Z,Y)∈G
and (Z,Y) is marked; (X,Y) is then replaced by (Z,Y) or (X,Z) respectively;

− there exists a directed path from X to Y in G consisting of more than one arc; (X,Y)
is then removed from G.

4.2  Message Incorporation into Quasi-ADO

Two vertices of G, E_DELIV and L_DELIV, correspond to the earliest and latest
deliverable messages (already incorporated into quasi-ADO). Message X becomes
deliverable when the arc (L_DELIV,X) is marked; when all immediate successors of
L_DELIV have been included in G for at least Deliv_Cycle seconds, they become
deliverable in any static order e.g., of decreasing tags. Local delivery of E_DELIV
follows when either the corresponding message body is found in the ordering buffers
or Deliv_Cycle seconds have elapsed since it became deliverable (in the latter case a
’dummy’ message is delivered with the understanding that all protocol instances that
have the original message are currently absent).

4.3  Lost Message Recovery

DPG-n appends a list LM of lost message tags to issued ’report’ PDUs as well as a list
RM of messages (tags and bodies) remulticast in response to earlier received ’report’
PDUs. Message X loss is detected upon: (1) reception of a ’report’ PDU with graph G’
containing a vertex X∉G and/or a remulticast message X not found in the ordering
buffers, which cannot be stored because of overflow, or (2) reception of a ’message’
PDU while the ordering buffers overflow. In case (2), all the ordering buffers might be
occupied by successors of message X. To prevent such a deadlock, message X is
permitted to seize the ordering buffer occupied by any successor Y, and the latter is
lost instead of message X. Accordingly, X or Y is put on LM in the next issued ’report’
PDU to act as a remulticast request. If necessary, remulticast requests are repeated
every Retr_Cycle seconds.

X



208      J. Konorski

4.4  ’Report’ PDU Heartbeat

The protocol attempts to maintain a uniform ’report’ PDU cycle throughout the group.
To do that, upon reception of some other protocol instance’s ’report’ PDU, DPG-n
delays the multicast of its own for Report_Cycle seconds. However, DPG-n can waive
this delay if graph G’ in the received ’report’ PDU (say issued by DPG-n’) contains an
arc that would be replaced or removed in G∪G’. In that case DPG-n views the current
knowledge of ’→’ at DPG-n’ as incomplete regardless of the fact that some messages
recently received by DPG-n may not have been received and accounted for at DPG-n’
at the instant it issued the ’report' PDU.

4.5  Flow Control

The flow control mechanism in DPG-n is supposed to counteract ordering buffers
overflow and premature removal of messages from G. Locally delivered  messages
concluded to have also been delivered at all currently present sites are removed from
G at a limited rate depending on the current throughput bottleneck estimate, called
Message_Cycle, that determines the minimum interval between successive multicasts
of 'message' PDUs. Message_Cycle is contained in 'report' PDUs and incremented by
a fixed amount Delta whenever an ordering buffer at DPG-n overflows; it is set to
max{Message_Cycle, Message_Cycle'} upon reception of a 'report' PDU containing
Message_Cycle', and decremented by Delta periodically every Fc_Cycle seconds
(down to a predetermined lower bound).

5  Protocol Properties

Typically, a message X becomes deliverable upon marking the arc (L_DELIV,X),
which means L_DELIV⇒X was inferred at some member site. The other possibility
i.e., all immediate successors of L_DELIV reaching the limit of Deliv_Cycle, implies
that Deliv_Cycle should be large enough to allow formation of identical successor sets
at each member site. Granted that, the question is whether there is enough inter-site
consistency regarding successors of L_DELIV. Observations 1 through 3 below state
that G remains consistent with ’→’ across a succession of linearisations. Observations
4 and 5 are conjectures based on the protocol specification and simulation, yet to be
proved rigorously. G+(X) and G−(X) denote the subgraphs of successors and
predecessors of X in G, and lin(G) the linearised graph.

Observation 1. Linearisation preserves consistency of G+(L_DELIV) with ’→’ in that
(X,Y)∈G+(L_DELIV) implies X→Y.

Proof: Suppose that (X0,Y0)∈G+(L_DELIV) at DPG-n. Observe that the marking of
the arc (X0,Y0) would mean that at some site, messages X0 and Y0 were received



Membership-Insensitive Totally Ordered Multicast: Properties and Performance      209

consecutively and without an intervening reception miss; consequently X0⇒Y0.
Assume then that arc (X0,Y0) is not marked, which leaves two possibilities:

1) Messages X0 and Y0 were received consecutively at some DPG-n’ which thus
included arc (X0,Y0) into its precedence graph G’ subsequently disseminated in a
’report’ PDU. Then, by virtue of the 1C specification (Sec. 3), X0→Y0.

2) Arc (X0,Y0) was included into G via replacing some arc (X1,Y0) or (X0,Y1).
Consequently, (X1,X0) is marked (i.e., X1⇒X0) or (Y0,Y1) is marked (i.e., Y0⇒Y1).
Considering in turn how each of the two replaced arcs could have been included into
G, we have again two possibilities analogous to 1) and 2). Repeating this reasoning i+j
times we conclude the existence in G of vertices X0, X1, ..., Xi and Y0, Y1, ..., Yj such
that Xi⇒...⇒X1⇒X0 and Y0⇒Y1⇒...⇒Yj and (Xi,Yj)∈G+(L_DELIV). Supposing that
(Xi,Yj) was included into G via possibility 2), one should similarly deduce the
existence of another vertex, either Xi+1 or Yj+1. Yet graph G remains finite within a
group connection, thus eventually for some i, j we will see that (Xi,Yj) was included
into G via possibility 1). Therefore Xi→Yj and so X0→Y0.

Observation 2. Suppose that a reception of a ’message’ PDU results in extending
graph G by a subgraph Ge, then lin(G∪Ge) contains G. (This property guarantees that
the local quasi-ADO stabilises in time despite reception of new messages.)

Proof: Suppose that DPG-n has received message Z. Then arcs of the form (X,Z)
are included into G, where X∈G and G+(X)=∅. This may create a directed path to Z
and so lead to removing some arcs, but only ones of the form (Y,Z) i.e., not in G. If
(L_REC,Z) is marked then some arcs can be replaced, but in this case G+(L_REC)=∅
and thus again only arcs of the form (X,Z) i.e., not in G, are so endangered.

Observation 3. Linearisation is commutative in the sense that lin[lin(G∪G’)∪G’’] =
lin[lin(G∪G’’)∪G’]. (This property guarantees that eventually, a locally obtained
quasi-ADO is independent of the order of reception of ’report’ PDUs.)

Proof: We show that the order of replacing or removing arcs is immaterial i.e., the
arc set of lin(G) is fully determined by that of G. From the proof of Observation 1 we
conclude that (X0,Y0)∈lin(G) iff G+(X0)∩G−(Y0)=∅ and there exist vertices X1,...,Xi and
Y1,...,Yj such that (Xi,Yj)∈G, (Xk,Xk-1) is marked, for all k=1..i and (Yk-1,Yk) is marked, for
all k=1..j. Neither of these conditions has to do with the order of operations performed
during a linearisation.

Observation 4. On return after an absence period, a protocol instance is free to
resume the local construction of quasi-ADO once it has reset the connection status.
(To minimise the risk of a message tag collision, prior reception of a number of
’report’ PDUs is recommended.)

Observation 5. Given Eventual Receipt and proper DPG configuration, the Dn’s
remain consistent with quasi-ADO for an arbitrarily long period of time with Extended
Virtual Synchrony preserved.



210      J. Konorski

6  Implementation and Performance Measurements

We shall focus on group throughput defined as the average message delivery rate
throughout a group connection. Note that the DPG protocol (in fact, any GCP) largely
reduces the PDU transport potential of the underlying network since construction of
(quasi-)ADO across a large group is a more demanding task than providing a FIFO
point-to-point service.To investigate the group throughput, it was decided to
implement the DPG protocol in an available LAN environment.

DPG-n has been implemented as about 2000 lines of ANSI C code to run on a
Pentium 100..333 MHz workstation under Linux (kernel version 2.0.36). Up to 17
such workstations were configured into a group interconnected by a switched 10 Mb/s
Ethernet. The 1C service specification was found to hold, and the single-access LAN
version of the ContiguityDetector was adopted. Report_Cycle was set so as to keep the
’report’ PDU traffic within 20% of the total message traffic, while the flow control
was optimised towards maximum group throughput.

 The implementation uses standard UDP broadcast interface, as shown in Fig. 2.
One BSD socket is used for multicast and a separate one, configured as an
asynchronous I/O port, for reception. At the top, a message generator/absorber inputs
a stream of messages, thereby assuming the role of an application instance.

Fig. 2. DPG implementation layering

A few lessons (not necessarily applicable to WAN environments) have been learned
regarding the DPG protocol performance in the specific LAN environment:

• Multiple reception buffers are needed instead of just one assumed for argument in
Sec. 3.1 (20 in our implementation), with the ContiguityDetector inference rules
appropriately redefined; the induced miss rate remains then well below 1%, and the
resulting ADO violation rate is on order of one message in many thousands.

• Local clocks sometimes prove not accurate enough for flow control; in a recent
version of our implementation, Message_Cycle, Deliv_Cycle, Retr_Cycle and
Report_Cycle are all expressed in terms of the number of ’message’ PDUs received
since the event that triggered the respective timer.

message generator/absorber

DPG-n
ANSI C
applications

UDP

IP

Ethernet packet driver

IEEE 802.3 MAC

Linux
kernel



Membership-Insensitive Totally Ordered Multicast: Properties and Performance      211

• Standard MAC interfaces do not receive what they are transmitting − each site
behaves as if it misses own messages, which reduces the benefits of the
ContiguityDetector and may lead to the graph G growing too large to be processed
in real time; we have tried a Suspended Delivery option whereby upon multicast of
a message Z, X⇒Y is inferred for all subsequently received messages X, Y, ...
(disregarding the apparent miss of message Z), whose delivery is however
suspended until reception of a ’report’ PDU with a graph G’ containing vertex Z.

Meas
With
pract
mess
mem
and n
[15].
Cont
to on

7  C

GCP
abou
mem
refle
prop

2

3

4

5

 6

Mb/s Suspended Delivery on

Suspended Delivery off

3..76..77

group membership:
Fig

urements for a 
 it, the graphs 
ically limited on
ages are delive
bership, reflecti
ot the reconfigu

 Switching off 
iguityDetector a
e-third of the pr

onclusion

s designed to s
t ADO, but m
bership, such p
cts only the di
osed a membe

1
100
. 3 Group throughput measurem

7-site group reveal the sig
G at sites rarely exceed 30
ly by the PCs’ processing r
red in ADO per second, 
ng only the diminishing c
ration overhead typical of

the Suspended Delivery op
ltogether and typically res
evious value or less.

erve collective output-orien
uch less about Member
rotocols should ideally e
minishing contribution of
rship-insensitive quasi-AD

200 500
message size
ents for the DPG protocol

nificance of the latter option (Fig. 3).
 vertices and the group throughput is
ates. For example, over 740 1000-byte
with a graceful drop under variable

ontribution of the fewer sites present,
 existing ADO protocols [1], [6], [14],
tion was not unlike switching off the

ulted in reducing the group throughput

ted applications should be concerned
ship Control. Under variable group
xhibit a group throughput drop that
 the fewer member sites. We have
O protocol, built on top of the 1C

1000 1500
 [B]



212      J. Konorski

network service complete with a conceptual inference device called
ContiguityDetector, tailored to communication environments where message
sequencing comes as a ’natural’ feature e.g., single-access LANs, bounded-delay or
tag-sequencing WANs. The proposed protocol has been implemented in a 10 Mb/s
LAN environment to verify that it is able to maintain a high group throughput of
messages delivered in quasi-ADO. A challenging issue is running the protocol in a
larger group (50 or more sites); at the moment this is only possible via simulation.

References

1. Amir Y., Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Ciarfella, P.: Fast Message
Ordering and Membership Using a Logical Token-Passing Ring. In: Proc. 14th Int. Conf. on
Distributed Computing Systems (1993) 551-560

2. Birman, K.P., Schiper, A., Stephenson, P.: Lightweight Causal and Atomic Group Multicast.
ACM Trans. on Computer Systems 9 (1991) 272-314

3. Bruck, J., Dolev, D., Ho, C., Orni, R., Strong, R.: PCODE: An Efficient and Reliable
Collective Communication Protocol for Unreliable Broadcast Domains. ftp://cs.huji.
ac.il/pub/TRANSIS (1994)

4. Cheriton, D.R., Skeen, D.: Understanding the Limitations of Causally and Totally Ordered
Communication. In: Proc. 14th ACM Symp. on Operating System Principles (1993) 44-57

5. Diot, C., Dabbous, W., Crowcroft, J.: Multipoint Communication: A Survey of Protocols,
Functions and Mechanisms. IEEE J. on Selected Areas in Comm. 15 (1997) 277-290

6. Dolev D., Kramer, S., Malki, D.: Early Delivery Totally Ordered Multicast in Asynchronous
Environments. In: Proc. 23rd Int. Symp. on Fault-Tolerant Computing (1993) 544-553

7. Ezhilchelvan, P.D., Macedo, R.A., Shrivastava, S.K.: Newtop: A Fault-Tolerant Group
Communication Protocol. In: Proc. 15th Int. Conf. on Distributed Computing Systems
(1995) 336-356

8. Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus with One
Faulty Process. J. of the ACM 32 (1985) 374-382

9. Hadzilacos, V., Toueg, S.: Fault-Tolerant Broadcasts and Related Problems. In: Mullender,
S. (ed.): Distributed Systems, Addison-Wesley, Wokingam Reading (1993) 97-145

10. Melliar-Smith, P.M, Moser, L.E., Agrawala, V.: Broadcast Protocols for Distributed
Systems. IEEE Trans. on Parallel and Distributed Systems 1 (1990) 17-25

11. Moser L.E., Amir, Y., Melliar-Smith, P.M., Agarwal, D.A.: Extended Virtual Synchrony.
In: Proc. 14th Int. Conf. on Distributed Computing Systems (1994) 56-65

12. Nakamura, A., Takizawa, M.: Priority-Based and Semi-total Ordering Broadcast Protocols.
In: Proc. 12th Int. Conf. on Distributed Computing Systems (1992) 178-185

13. Obraczka, K.: Multicast Transport Protocols: A Survey and Taxonomy. IEEE Comm.
Magazine 36 (1998) 94-102

14. Rodrigues, L., Fonseca, H., Verissimo, P.: Totally Ordered Multicast in Large-Scale
Systems. In: Proc. 16th Int. Conf. on Distributed Computing Systems (1996) 503-510.

15. Whetten, B., Montgomery, T., Kaplan, S.: A High-Performance Totally Ordered Multicast
Protocol. In: Theory and Practice in Distributed Systems, Lecture Notes in Computer
Science, Vol. 938, Springer-Verlag, Berlin Heidelberg New York (1994)

16. Wilhelm, U., Schiper, A.: A Hierarchy of Totally Ordered Multicasts. http://www-
uk.research.ec.org/broadcast/ trs/papers/85.ps

ftp://cs.huji.ac.il/pub/TRANSIS
ftp://cs.huji.ac.il/pub/TRANSIS

	1  Group Communication Model
	2  Consistency Constraints
	3  Network Service Model
	4  Distributed Precedence Graph Protocol
	5  Protocol Properties
	6  Implementation and Performance Measurements
	7  Conclusion
	References

