Skip to main content

Isothermal spherical Couette flow

  • Conference paper
  • First Online:
Physics of Rotating Fluids

Part of the book series: Lecture Notes in Physics ((LNP,volume 549))

Abstract

We summarise different types of instabilities and flow patterns in isothermal spherical Couette flows as a function of the aspect ratio. The flow of a viscous incompressible fluid in the gap between two concentric spheres was investigated for the case, that only the inner sphere rotates and the outer one is stationary. Flow visualisation studies were carried out for a wide range of Reynolds numbers and aspect ratios to determine the instabilities during the laminar-turbulent transition and the corresponding critical Reynolds numbers as a function of the aspect ratio. It was found, that the laminar basic flow loses its stability at the stability threshold in different ways. The instabilities occurring depend strongly on the aspect ratio and the initial conditions. For small and medium aspect ratios (β ≤ 0.25), experiments were carried out as a function of Reynolds number to determine the regions of existence for basic flow, Taylor vortex flow, supercritical basic flow. For wide gaps, however, Taylor vortices could not be detected by quasistationary increase of the Reynolds number. The first instability manifests itself as a break of the spatial symmetry and non-axisymmetric secondary waves with spiral arms appear depending on the Reynolds number. For β = 0.33, spiral waves with an azimuthal wave number m = 6, 5and 4 were found, while in the gap with an aspect ratio of β = 0.5spiral waves with m = 5, 4 and 3 spiral arms exist. For β = 1.0, we could detect spiral waves with m = 4, 3 and 2 arms. We compare the experimental results for the critical Reynolds numbers and wave numbers with those obtained by numerical calculations. The flow modes occurring at the poles look very similar to those found in the flow between two rotating disks. Effects of non-uniqueness and hysteresis are observed in this regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Andereck, S.S. Liu, H.L. Swinney: Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155–183 (1986)

    Article  ADS  Google Scholar 

  2. K. Araki, J. Mizushima, S. Yanase: The nonaxisymmetric instability of the widegap spherical Couette flow. Phys. Fluids 9, 1197–1199 (1997)

    Article  ADS  Google Scholar 

  3. N.M. Astafyeva: Nonlinear shear flow in rotating spherical layers and global atmosphere motion modelling (in Russian). Izv. Vusov PND 5, 3–30 (1997)

    Google Scholar 

  4. F. Bartels: Taylor vortices between two concentric rotating spheres. J. Fluid Mech. 119, 1–25 (1982)

    Article  MATH  ADS  Google Scholar 

  5. P. Bar-Yoseph, A. Solan, R. Hillen, K.G. Roesner: Taylor vortex flow between eccentric coaxial rotating spheres. Phys. Fluids A 2, 1564–1573 (1990)

    Article  ADS  Google Scholar 

  6. P. Bar-Yoseph, K.G. Roesner, A. Solan: Vortex breakdown in the polar region between rotating spheres. Phys. Fluids A 4, 1677–1686 (1992)

    Article  ADS  Google Scholar 

  7. Yu.N. Belyaev, A.A. Monakhov, I.M. Yavorskaya: Stability of spherical Couette flow in thick layers when the inner sphere revolves. Fluid Dyn. 13, 162–163 (1978)

    Article  ADS  Google Scholar 

  8. Yu.N. Belyaev, A.A. Monakhov, G.N. Khlebutin, I.M. Yavorskaya: Investigation of stability and nonuniqueness of the flow between rotating spheres (in Russian). Rep. No. 567, Space Research Institute of the Academy of Sciences, Moscow, USSR (1980)

    Google Scholar 

  9. Yu.N. Belyaev, A.A. Monakhov, S.A. Scherbakov, I.M. Yavorskaya: Some routes to turbulence in spherical Couette Flow. in: V.V. Kozlov (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, Springer (1984)

    Google Scholar 

  10. J.P. Bonnet, T. Alziary de Roquefort: Ecoulement entre deux spheres concentriques en rotation. J. Mec. 13, 373 (1976)

    ADS  Google Scholar 

  11. Yu.K. Bratukhin: On the evaluation of the critical Reynolds number for the flow of fluid between two rotating spherical surfaces. PMM 25, 858–866 (1990)

    Google Scholar 

  12. K. Bühler: Strömungsmechanische Instabilitäten zäher Medien im Kugelspalt. VDI-Berichte, Reihe7: Strömungstechnik Nr.96 (1985)

    Google Scholar 

  13. K. Bühler: Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mechanica 81, 3–38 (1990)

    Article  MathSciNet  Google Scholar 

  14. K. Bühler, J. Zierep: New secondary instabilities for high Re-number flow between two rotating spheres. in: Kozlov, V.V. (ed.): Laminar-Turbulent Transition. IUTAM-Symp. Novosibirsk/USSR, Springer (1984)

    Google Scholar 

  15. K. Bühler, J. Zierep: Dynamical instabilities and transition to turbulence in spherical gap flows. in: G. Comte-Bellot, J. Mathieu: Advances in turbulence. Proc. 1st Europ. Turb. Conf., Lyon, France, Springer (1986)

    Google Scholar 

  16. S.C.R. Dennis, L. Quartapelle: Finite difference solution to the flow between two rotating spheres. Comp. Fluids. 12, 77–92 (1984)

    Article  MATH  ADS  Google Scholar 

  17. G. Dumas: The spherical Couette flow and its large-gap stability by spectral simulations. Proceedings of CFD 94, Canadian Society of CFD, Toronto, Canada, 67–75 (1994)

    Google Scholar 

  18. G. Dumas, A. Leonard: A divergence-free spectral expansions method for threedimensional flows in spherical-gap geometries. J. Comput. Phys. 111, 205–219 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. C. Egbers: Zur Stabilität der Strömung im konzentrischen Kugelspalt. Dissertation, Universität Bremen (1994)

    Google Scholar 

  20. C. Egbers, H.J. Rath: The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 125–140 (1995)

    Article  Google Scholar 

  21. C. Egbers, H.J. Rath: LDV-measurements on wide-gap instabilities in spherical Couette flow. Developments in Laser Techniques and Applications to Fluid Mechanics (Eds.: R.J. Adrian, D.F.G. Durao, F. Durst, M.V. Heitor, M. Maeda, J.H. Whitelaw, Springer, 45–66 (1996)

    Google Scholar 

  22. R. Hollerbach: Time-dependent Taylor vortices in wide-gap spherical Couette flow. Phys. Rev. Lett. 81, 3132–3135 (1998)

    Article  ADS  Google Scholar 

  23. R. Hollerbach: A spectral solution of the magnetoconvection equations in spherical geometry. Int. J. Num. Meth. Fluids 32, 773–797 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. G.N. Khlebutin: Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dyn. 3, 31–32 (1968)

    Article  ADS  Google Scholar 

  25. M. Liu, C. Blohm, C. Egbers, P. Wulf, H.J. Rath: Taylor vortices in wide spherical shells. Phys. Rev. Lett. 77, 286–289 (1996)

    Article  ADS  Google Scholar 

  26. C.K. Mamun, L. Tuckerman: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 2, 1564–1573 (1995)

    MathSciNet  Google Scholar 

  27. P. Marcus, L. Tuckerman: Simulation of the flow between concentric rotating spheres. J. Fluid Mech. 185, 1–65 (1987)

    Article  MATH  ADS  Google Scholar 

  28. A.A. Monakhov: Limit of main flow stability in spherical layers. Fluid Dynamics 31, 535–538 (1996)

    Article  ADS  Google Scholar 

  29. B.R. Munson, M. Menguturk: Viscous incompressible flow between concentric rotating spheres. Part 3: Linear stability and experiments. J. Fluid Mech. 69, 705–719 (1975)

    Article  MATH  ADS  Google Scholar 

  30. K. Nakabayashi: Transition of Taylor-Görtler vortex flow in spherical Couette flow. J. Fluid Mech. 132, 209–230 (1983)

    Article  ADS  Google Scholar 

  31. K. Nakabayashi, Y. Tsuchida: Spectral study of the laminar-turbulent transition in spherical Couette flow. J. Fluid Mech., 194, 101–132 (1988)

    Article  ADS  Google Scholar 

  32. K. Nakabayashi, W. Sha: Vortical structures and velocity fluctuations of spiral and wavy vortices in the spherical Couette flow. this book (2000)

    Google Scholar 

  33. G. Nicolis: Introduction to nonlinear science. Cambridge University Press (1995)

    Google Scholar 

  34. O. Sawatzki, J. Zierep: Das Stromfeld im Spalt zwischen zwei konzentrischen Kugelflächen, von denen die innere rotiert. Acta Mech. 9, 13–35 (1970)

    Article  Google Scholar 

  35. G. Schrauf: The first instability in spherical Taylor-Couette flow. J. Fluid Mech. 166, 287–303 (1986)

    Article  MATH  ADS  Google Scholar 

  36. M.P. Sorokin, G.N. Khlebutin, G.F. Shaidurov: Study of the motion of a liquid between two rotating spherical surfaces. J. Appl. Mech. Tech. Phys. 6, 73–74 (1966)

    ADS  Google Scholar 

  37. G.I. Taylor: Stability of a viscous liquid contained between two rotating cylinders. Phil.Trans. A 223, 289–293 (1923)

    Article  ADS  Google Scholar 

  38. A.M. Waked, B.R. Munson: Laminar turbulent flow in spherical annulus. J. Fluids Eng. 100, 281–286 (1978)

    Article  Google Scholar 

  39. M. Wimmer: Experiments on a viscous fluid between concentric rotating spheres. J. Fluid Mech. 78, 317–335 (1981)

    Article  ADS  Google Scholar 

  40. M. Wimmer: Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech. 103, 117–131 (1981)

    Article  ADS  Google Scholar 

  41. P. Wulf, C. Egbers. H.J. Rath: Routes to chaos in wide-gap spherical Couette flow. Phys. Fluids 11, 1359–1372 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. V.I. Yakushin: Instability of the motion of a liquid between two rotating spherical surfaces. Fluid Dyn. 5, 660–661 (1970)

    Article  ADS  Google Scholar 

  43. H. Yamaguchi, J. Fujiyoshi, H. Matsui: Spherical Couette flow of a viscoelastic fluid. Part 1: Experimental study of the inner sphere rotation. J. Non-Newtonian Fluid Mech. 69, 29–46 (1997)

    Article  Google Scholar 

  44. H. Yamaguchi, H. Matsui: Spherical Couette flow of a viscoelastic fluid. Part 2: Numerical study for the inner sphere rotation. J. Non-Newtonian Fluid Mech. 69, 47–70 (1997)

    Article  Google Scholar 

  45. H. Yamaguchi, B. Nishiguchi: Spherical Couette flow of a viscoelastic fluid. Part 3: A study of outer sphere rotation. J. Non-Newtonian Fluid Mech. 69, 47–70 (1997)

    Article  Google Scholar 

  46. R.-J. Yang: A numerical procedure for predicting multiple solutions of a spherical Taylor-Couette flow. Int. J. Numer. Methods Fluids 22, 1135–1147 (1996)

    Article  MATH  ADS  Google Scholar 

  47. I.M. Yavorskaya, Yu.N. Belyaev, A.A. Monakhov: Experimental study of a spherical Couette flow. Sov. Phys. Dokl. 20, 256–258 (1975)

    ADS  Google Scholar 

  48. I.M. Yavorskaya, Yu.N. Belyaev, A.A. Monakhov, N.M. Astaf'eva, S.A. Scherbakov, N.D. Vvedenskaya: Stability, non-uniqueness and transition to turbulence in the flow between two rotating spheres. IUTAM-Symposium, Toronto, Canada (1980)

    Google Scholar 

  49. O.Yu. Zikanov: Symmetry breaking bifurcations in spherical Couette flow. J. Fluid Mech. 310, 293–324 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Junk, M., Egbers, C. (2000). Isothermal spherical Couette flow. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids. Lecture Notes in Physics, vol 549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45549-3_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45549-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67514-3

  • Online ISBN: 978-3-540-45549-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics