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1 Introduction

Nearest neighbor searching is an important and fundamental problem in the
field of geometric data structures. Given a set S of n data points in real d-
dimensional space, Rd, we wish to preprocess these points so that, given any
query point q ∈ Rd, the data point nearest to q can be reported quickly. We
assume that distances are measured using any Minkowski distance metric, in-
cluding the Euclidean, Manhattan, and max metrics. Nearest neighbor searching
has numerous applications in diverse areas of science.

In spite a recent theoretical progress on this problem, the most popular linear-
space data structures for nearest neighbor searching are those based on hierar-
chical decompositions of space. Although these algorithms do not achieve the
best asymptotic performance, they are easy to implement, and can achieve fairly
good performance in moderately high dimensions. Friedman, Bentley, and Finkel
[FBF77] showed that kd-trees achieve O(log n) expected-case search time and
O(n) space, for fixed d, assuming data distributions of bounded density. Arya, et
al. [AMN+98] showed that (1 + ε) approximate nearest neighbor queries can be
answered O((d/ε)d log n) time, assuming O(dn) storage. There have been many
approaches to reduce the exponential dependence on d [IM98,Kle97].

The unpleasant exponential factors of d in the worst-case analyses of some
data structures would lead one to believe that they would be unacceptably slow,
even for moderate dimensional nearest neighbor searching (d < 20). Nonethe-
less, practical experience shows that, if carefully implemented, they can applied
successfully to problems in these and higher dimensions [AMN+98].

The purpose of this paper is to attempt to provide some theoretical explana-
tion for a possible source for this unexpectedly good performance, and to com-
ment on the limitations of this performance. Conventional wisdom holds that
because of dependencies between the dimensions, high dimensional data sets of-
ten consist of many low-dimensional clusters. A great deal of work in multivariate
data analysis deals with the problems of dimension reduction and determining
the intrinsic dimensionality of a data set [CP96]. For example, this may be done
through the use of techniques such as the Karhunen-Loeve transform [Fuk90].

This suggests the question of how well do data structures take advantage of
the presence of low-dimensional clustering in the data set to improve the search?
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Traditional worst-case analysis does not model the behavior of data structures in
the presence of simplifying structure in the data. In fact, it focuses on worst-case
situations, which may be rare in practice. Even expected-case analyses based on
the assumption of uniformly distributed data [FBF77,Cle79] are not dealing with
“easy” instances since the curse of dimensionality is felt in its full force.

We consider the following very simple scenario. Assuming that the data points
and query points are sampled uniformly from a k-dimensional hyperplane (or
k-flat), where k < d, what is the expected-case search time for kd-trees as a
function of n, k and d? In [FBF77] it is shown that when k = d and if boundary
effects (explained in [AMN96]) are ignored, the expected number of leaf cells
in the tree to be visited is at most (G(d)1/d + 1)d, where G(d) is the ratio
of the volumes of a d-dimensional hypercube and a maximal enclosed ball for
the metric inside the hypercube. These results rely on the fact that when data
points are uniformly distributed, the cells of the kd-tree can be approximated
by d-dimensional hypercubes. However this is not the case when data points lie
on a lower dimensional hyperplane.

It is natural to conjecture that if k � d, then search times grow exponen-
tially in k but not in d. Indeed, we show that this is the case, for a suitable
variant of the kd-tree. We introduce a new splitting method, called the canon-
ical sliding-midpoint splitting method. This is a variant of a simpler splitting
method called sliding-midpoint, which is implemented in the ANN approximate
nearest neighbor library [MA97]. (Definitions are given in the next section.)

Our main result is that canonical sliding-midpoint kd-trees can achieve query
times depending exponentially on the intrinsic dimension of data, and not on the
dimension of the space. We show that if the data points are uniformly distributed
on a k-flat, then the expected number of leaf cells that intersect a nearest neigh-
bor ball is O(dk+2). Further, we show that if the points are clustered along a
k-flat that is aligned with the coordinate axes, even better performance is pos-
sible. The expected number of leaf cells intersecting the nearest neighbor ball
decreases to O((d−k +1)ck), where c is the quantity (G(k)1/k +1). The restric-
tions of using the canonical sliding-midpoint splitting method and having points
lie on a flat do not seem to be easy to eliminate. It is not hard to show that
if points are perturbed away from the flat, or if some other splitting method is
used, there exist point configurations for which 2d cells will be visited.

The problem of how hierarchical decomposition methods perform when given
data with low intrinsic dimensionality has been studied before. Faloutsos and
Kamel [FK94] have shown that under certain assumptions, the query time of
range queries in an R-tree depends on the fractal dimension of the data set.
Their results do not apply to nearest neighbor queries, because their analysis
holds in the limit for a fixed query range as the data size tends to infinity.

We also present empirical results that support our results. Furthermore, we
consider its robustness to violations in our assumptions. We consider the cases
where there is more than just a single cluster of points, but a number of clusters of
points lying on different hyperplanes, and where the points do not lie exactly on
the hyperplane, but are subject to small perturbations. These empirical results
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bear out the fact that the query times are much more strongly dependent on k
than on d.

2 Background

First we recall the basic facts about kd-trees [Ben75]. Consider a set S of n data
points in Rd. A kd-tree is a binary tree that represents a hierarchical subdivi-
sion of space, using splitting planes that are orthogonal to the coordinate axes.
Each node of the kd-tree is associated with a closed rectangular region, called
a cell. The root’s cell is associated with a bounding hypercube that contains
all the points of S. Information about splitting dimension and splitting value is
associated with each cell. These define an axis-orthogonal splitting hyperplane.
The points of the cell are partitioned to one side or the other of this hyperplane.
The resulting subcells are the children of the original cell. This process contin-
ues until the number of points is at most one. There are a number of ways of
selecting the splitting hyperplane, which we outline below.

Standard split: Proposed in [FBF77], it selected the splitting dimension to be
the one for which point set has the maximum spread (difference between
the maximum and minimum values). The splitting value is chosen to be the
median in that dimension. This method is well-known and widely used.

Midpoint split: The splitting hyperplane passes through the center of the cell
and bisects the longest side of the cell. If there are many sides of equal length,
any may be chosen first, say, the one with the lowest coordinate index. This is
just a binary version of the well-known quadtree and octree decompositions.

Observe that the standard splitting rule produces balanced kd-trees with
O(log n) depth. The midpoint tree has the feature that for all cells, the ratio of
the longest to shortest side (the aspect ratio) is at most 2. (We will sometimes
use the term box to mean a cell of bounded aspect ratio.) This is not necessarily
true for the standard splitting method. As shown in [AMN+98], bounded aspect
ratio is important to the efficiency of approximate nearest neighbor searching.
Unfortunately, if the data are clustered, it is possible to have many empty cells
that contain no data points. This is not uncommon in practice, and may result
in trees that have many more than O(n) nodes.

Note that the set of possible splitting planes in midpoint split is determined
by the position of the initial bounding hypercube. For example, suppose that the
initial bounding box is affinely mapped to a unit hypercube [0, 1]d. The splitting
values are all of the form k/2i, for some odd integer k, 1 ≤ k < 2i. We call any
cell which could result from the application of this method a midpoint box. The
concept of such a canonical set of splitting planes will be considered later.

Unfortunately, there does not seem to be a single simple splitting rule that
provides us with all the properties one might wish for (linear size, logarithmic
depth, bounded aspect ratio, convexity, constant cell complexity). In [AMN+98]
the BBD-tree was introduced. This tree uses a combination of two operations,
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splitting and shrinking to provide for all of these properties (except for convex-
ity). The BAR-tree [DGK99] provides all of these properties, by using nonorthog-
onal splitting planes, but the cells may have as many as 2d bounding faces.

We now discuss two other splitting methods, the sliding-midpoint and the
canonical sliding-midpoint methods. The sliding-midpoint method was first in-
troduced in [MA97] and was subsequently analyzed empirically in [MM99a]. This
method produces no empty nodes. Although cells may not have bounded aspect
ratio, observe that every skinny cell that is produced by sliding is adjacent to a
fat leaf cell. In [MM99b] we show that this is sufficient to satisfy the necessary
packing constraint that fat subdivisions possess. The canonical sliding-midpoint
method is introduced primarily for technical reasons. The proof of the main the-
orem of Section 3 relies on the presence of having a canonical set of splitting
planes, while retaining the property that no empty cells are produced.

Sliding-midpoint: It first attempts to perform a midpoint split, by considering
a hyperplane passing through the center of the cell and bisecting the cell’s
longest side. If the data points lie on both sides of the splitting plane then
the splitting plane remains here. However, if a trivial split were to result
(in which all the data points lie to one side of the splitting plane), then it
“slides” the splitting plane towards the data points until it encounters the
first such point. One child is a leaf cell containing this single point, and the
algorithm recurses on the remaining points.

Canonical sliding-midpoint: Define the enclosure for a cell to be the smallest
midpoint box that encloses the cell. During the construction phase, each node
of the tree is associated both with its cell and the cell’s enclosure. We first
try to split the cell using a hyperplane that bisects the longest side of this
enclosure (rather than the cell itself). Again, if this results in a trivial split,
then it slides the splitting plane towards the data points until it encounters
the first such point.

Sliding-midpoint Canonical sliding-midpoint

Fig. 1. Sliding-midpoint and canonical sliding-midpoint.

The differences between these two splitting methods is illustrated in Fig. 1.
Notice that in the sliding-midpoint method the slides originate from a line that
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bisects the cell (shown in dashed lines), whereas in the canonical sliding-midpoint
method, the slides originate from the midpoint cuts of the enclosing midpoint
cell (shown in dashed lines).

Because of prior sliding operations, the initial split used in the canonical
sliding-midpoint method may not pass through the midpoint of the cell. After
splitting, the enclosures for the two child cells must also be computed. This can
be done in O(d) time [BET93]. Thus, this tree can be constructed in O(dn log n)
time, and has O(n) nodes. just like the sliding-midpoint split kd-tree.

3 Points Clustered on Arbitrarily Oriented Flats

Let F be an arbitrary k-dimensional hyperplane (or k-flat, for short) in Rd. We
assume that F is in general position, and in particular that F is not parallel to
any of the coordinate axes. Let S denote a set of data points sampled from a
closed convex, sampling region of F according to some probability distribution
function. We assume that the distribution function satisfies the following bounded
density assumption [BWY80]. There exist constants 0 < c1 ≤ c2, such that for
any convex open subregion of the sampling region with k-dimensional volume
V , the probability that a given sampled point lies within this region is in the
interval [c1V, c2V ]. (This is just a generalization of a uniform distribution but
allows some variation in the probability density.)

To avoid having to deal with boundary effects, we will assume that there are
sufficiently many data points sampled, and that the query points are chosen from
a sufficiently central region, such that with high probability the nearest neighbor
ball for any query point lies entirely within the sampling region. More formally,
fix any compact convex region on F , called the query region, from which query
points will be sampled. Let w denote the diameter of this region. Now, take the
data points to be sampled from a hypercube of side length w′ > w centered
around this region, such that the local density of the distribution is independent
of w′. Our results hold in the limit as w′ tends to infinity. In [AMN96], it is shown
that consideration of boundary effects for kd-trees with uniformly distributed
points only tends to decrease the number of cells of the tree visited.

Let B(r) denote a ball of radius r. Let VF (q, r) denote the k-dimensional
volume of intersection of F and ball B(r) centered at point q. If we restrict q
to lying on F , then VF (q, r) is a constant for all q, which we denote as VF (r).
Following the approach taken in [AMN96], let us first scale space so that the
lower density bound becomes c1 = 1/Vk(1). After this scaling, a ball of unit
radius is expected to contain at least one point of the sample. As observed in
[AMN96], as k increases, a ball of unit radius is a very good approximation to
the expected nearest neighbor ball. The reason is that VF (r) is growing as rk,
and so for large k, the probability that a data point lies in B((1 − δ)r) drops
rapidly with δ, and the probability that there is at least one point in B((1+δ)r)
increases rapidly with δ.

Consider a kd-tree built for such a distribution, assuming the canonical
sliding-midpoint splitting method. Our analysis will focus on the number of leaf
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cells of the kd-tree that are visited in the search. The running time of nearest
neighbor search (assuming priority search [AMN+98]) is more aptly bounded by
the product of the depth of the tree and the time to access these nodes. This
access time can be assumed to be O(log n) either because the tree is balanced,
or auxiliary data structures are used. We focus just on the number of leaf cells
primarily because in higher dimensions this seems to be the more important
factor influencing the running time.

The main result of this section is that the expected number of cells of a
canonical sliding-midpoint kd-tree that intersect a unit ball centered on F is
exponential in k, but not in d. To see that the proof is nontrivial, suppose that
we had stored the points in a regular grid instead. If the nearest neighbor ball
contained even a single vertex of the grid, then it would overlap at least 2d cells.
The proof shows that in the canonical midpoint-split kd-tree, it is not possible
to generate a vertex that is incident to such a large number of cells when the
points lie on a lower dimensional flat. This feature seems to be an important
reason that these trees adapt well to the intrinsic dimensionality of the point
set. Although it is not clear how to establish this property for other splitting
methods in the worst case, we believe that something analogous to this holds in
the expected case.

Theorem 1. Let S be a set of points from Rd sampled independently from a k-
flat F by a distribution satisfying the bounded density assumptions and scaled as
described above. Let T be a kd-tree built for S using the canonical sliding-midpoint
splitting method. Then, the expected number of leaf cells of T that intersect a unit
ball centered on F is O(dk+2).

For the complete proof, see [MM01]. Using Theorem 1 and the observation
made earlier that a ball of unit radius is good approximation to (or larger than)
the nearest neighbor ball, we have the following bound.

Corollary 1. The expected number of leaf cells of T encountered in nearest
neighbor searching is O(dk+2).

4 Points Clustered on Axis-Aligned Flats

We now consider the case where the set S of data points in Rd sampled inde-
pendently from a distribution of bounded density along an axis-aligned k-flat.
If in the kd-tree construction we split orthogonal to any of the d − k coordi-
nate axes that are orthogonally to the flat, the points will all lie to one side of
this splitting hyperplane. The splitting hyperplane will slide until it lies on the
flat. After any sequence of 2(d − k) such slides, the flat will be tightly enclosed
within a cell. Splits along other axes will be orthogonal to the flat, and so will
behave essentially the same a sliding-midpoint decomposition in k-space. The
main complication is that the algorithm does not know the location of the flat,
and hence these two types of splits may occur in an unpredictable order.
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Let G(k) denote the dimension dependent ratio of the volumes of a k-
dimensional hypercube and a maximal enclosed k-ball for the metric inside the
hypercube. Let c(k) = (G(k)1/k + 1). For example, for the L∞ (max) metric
the metric ball is a hypercube, and c(k) = 2. For the L2 (Euclidean) metric
G(k) = kΓ (k/2)/(2k+1πk/2). The proof is presented in [MM01].

Theorem 2. Let S be a set of points from Rd sampled independently from an
axis-aligned k-flat F by a distribution satisfying the bounded density assumptions
described in Section 3. Let T be a kd-tree built for S using the canonical sliding-
midpoint splitting method. Then, the expected number of leaf cells of T that
intersect a unit ball centered on F is O((d − k + 1)c(k)k).

5 Empirical Results

We conducted experiments on the query performance of the kd-tree for data sets
lying on a lower dimensional flat. We used the ANN library [MA97] to implement
the kd-tree. We used priority search to answer queries. We present the total
number of nodes, and the number of leaf nodes in our grades, because these
parameters are machine-independent and closely correlated with CPU time.

5.1 Distributions Tested

Before discussing what we did in the experiments, we briefly describe the distri-
butions used.

Uniform-on-orthogonal-flat: The dimension of the flat, k, is provided, and
k dimensions are chosen at random. Among these dimensions, the points
are distributed uniformly over [−1, 1]. For the other (d − k) dimensions, we
generate a uniform random coordinate that is common to all the points.

Uniform-on-rotated-flat: This distribution is the result of applying r random
rotation transformations to the points in uniform-on-orthogonal-flat distri-
bution. In the experiments, r is fixed at d2/2. The flat is therefore rotated in
a random direction. Each rotation is through a uniformly distributed angle
in the range [−π/2, π/2] with respect to two randomly chosen dimensions.

Our theoretical results for arbitrary flats apply only to the canonical sliding-
midpoint method. This was largely for technical reasons. A natural question is
how much this method differs from the more natural sliding-midpoint method.
We tested both splitting methods for some other distributions, and discovered
that their performances were quite similar. These results as well as additional
experiments will be presented in the full version of the paper [MM01].

5.2 Points on a k-Flat

To support our theoretical bounds on number of leaf nodes visited when the
point set is on a k-flat, we set up an experiment with both k and d varying,
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while fixing the other parameters. This allows us to observe the dependency of
the query performance (in terms of the number of nodes visited) relative to d
and k. The Uniform-on-orthogonal-flat and Uniform-on-rotated-flat distributions
were used in the experiments. We fixed d at 4, 8, 12, 16, 20, 24, 32, 40 (note
that the scale is nonlinear), and k ranged from 4 to min(d, 16). The number of
points, n ranged from 40 to 163,840. The queries were sampled from the same
distribution. The number of query points was set to min(n, 2560).

Normally, ANN places a tight bounding box around the points. Such a bound-
ing box would tightly wrap itself around the flat reducing the problem to a purely
k-dimensional subdivision. In order to observe the behavior of the scenario con-
sidered in Theorem 2, we modified the library so that the initial bounding box
is the hypercube [−1, 1]d. The results of this modification are showed in Fig. 2.
Note that we plotted the logarithm base 10 of the number of nodes visited. As
predicted, the running shows a strong dependence on k, and very little depen-
dence on d. However, it does not grow as fast as predicted by Theorem 2. This
suggests that the average case is much better than our theoretical bounds.
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Fig. 2. Number of total and leaf nodes visited, n = 163, 840, Uniform-on-orthogonal-
flat distribution with cube initial bounding box

The Uniform-on-rotated-flat distribution is also used in the experiment to
see the effect assuming that data is uniform on an arbitrarily oriented flat. For
this distribution, the canonical sliding-midpoint is a little slower (typically, the
difference is less than 5%) than the sliding-midpoint in few cases. In general, the
number of nodes visited still shows a greater dependence on k than on d, but
the dependence on d has increased, as predicted by Theorem 1. Yet, the growth
rate is still less than what the theorem predicts. We tested the sensitivity of
our result to the presence of multiple clusters. We also ran experiments on the
standard kd-tree. Although we could not prove bounds on the expected query
time, the empirical performance was quite similar to these other methods. This
supports the rule-of-thumb that the standard-split kd-tree tends to perform well
when data and query points are chosen from a common distribution.
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5.3 Comparison with Theoretical Results

In this section, we take a closer look on whether our theoretical bounds can
predict the actual query performance in terms of the number of leaf nodes visited.
From Corollary 1, the expected number of leaf nodes of a kd-tree encountered
in the search is O(dk+2). We model this bound as L = c1(c2d)c3k, where L
is the number of leaf nodes visited and c1, c2, c3 are constants. We set up the
experiment such that the data and query distributions are uniform-on-rotated-
flat. The parameters are slightly different from the previous experiments. The
number of random rotations is d2, and there is no gaussian noise. The number
of data points, n, remains at 163,840. We gathered results for k = 1 to 12 and
d = 10, 20, 40, 80. The results are plotted in Fig 3.
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Fig. 3. Number of leaf nodes visited, n = 163, 840, Uniform-on-rotated-flat distribution

The model suggests that the curves in Fig 3 should be linear. However, the
empirical results show that it is not the case. We conjecture that this is due
to boundary effects, which would presumably diminish as n increases. These
boundary effects are more pronounced for larger values of k [AMN96]. Because
of memory limitation, we cannot scale n exponentially with the value of k.

We observed that for smaller values of k (e.g. k = 1, 2, 3), the number of
leaf nodes visited, L, is almost unchanged when n is increased. It indicates the
boundary effects are minimum. Therefore we use the results from k = 1, 2 to
find values of c1, c2, c3 of our model equation. This yields the following equation,

L = 2.054(1.674 · d)(0.312·k).
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