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Abstract. Robust and fast computation of the exact Voronoi diagram of circle
set is difficult. Presented in this paper is an edge-flipping algorithm that
computes a circle set Voronoi diagram using a point set Voronoi diagram,
where the points are the centers of circles. Hence, the algorithm is as robust as
its counterpart of point set. Even though the theoretical worst-case time
complexity is quadratic, the actual performance shows a strong linear time
behavior for various test cases. Furthermore, the computation time is
comparable to the algorithm of point set Voronoi diagram itself.

1   Introduction

Let P = {pi | i = 1, 2, …, n}  be the set of the centers pi of circles ci in a plane, and
},...,2,1|{ nii == cC  be the set of circles ci = (pi, ri) where ri is the radius of ci. VD(P)

and VD(C) are the Voronoi diagrams for P and C, respectively. Suppose that we want
to compute the exact VD(C) where the radii of possibly intersecting circles are not
necessarily equal. Several researches exist on this or related problems. Lee and
Drysdale first considered Voronoi diagram for a set of non-intersecting circles [13],
and suggested an O(nlog2n) algorithm. They also reported another algorithm

of )(O lognnc  [1,2]. Sharir reported an algorithm computing VD(C)  in O(nlog2n),
where the circles may intersect [18]. Yap reported an O(nlogn) time algorithm for line
segments and circles [23]. While all of the above algorithms are based on the divide-
and-conquer scheme, Fortune devised an O(nlogn) time algorithm based on line
sweeping [4]. Recently, Gavrilova and Rokne reported an algorithm to maintain the
correct topology data structure of VD(C) when circles are dynamically moving [5].
Sugihara reported an approximation algorithm for VD(C) by sampling several points
on the circles and computing the Voronoi diagram of these points [19].

In this paper, we present an algorithm that computes the Voronoi diagram of circle
set correctly, robustly and efficiently. The robustness issue is the most important
concern in this paper. The principle idea is as the following. Given a correct point set
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Voronoi diagram of the centers of circles, we compute the correct topology of VD(C)
by flipping the edges of VD(P) of the centers. Then, we compute the equations of
Voronoi edges.

It turns out that this approach works quite well. Since our approach is computing
the correct topology of VD(C) by changing the topology of VD(P), our algorithm is
as robust as a point set Voronoi diagram algorithm, provided that the decision can be
made correctly. Note that the theory on the robustness issue for the point set Voronoi
diagram has been well-established. Even though the theoretical worst-case time
complexity is quadratic, the actual performance shows a strong linear time behavior
for various test cases. In addition, the algorithm is quite simple to implement. The
edge and vertex will be used in this paper to mean a Voronoi edge and a Voronoi
vertex.

In this paper, we assume that the degrees of vertices of VD(P) as well as VD(C)
are three, and VD(P) is represented in an efficient data structure such as a winged-
edge data structure [14,17] and available a priori by a robust code such as [20,21,22]
which is based on the exact computation strategy [6,20]. We also assume that the
algorithm to compute the circumcircle(s) of three given circles, which is discussed in
another paper [11], is available.

2   Edge Flipping

When an edge e in Fig. 1(a) is changed to to e¢ in Fig. 1(b), it is called that e is flipped
to e¢. Hence a flipping operation changes the pointers among the vertices, edges and
generators appropriately.

As shown in Fig. 2, there are three possible configurations of an edge of VD(P) for
the flipping test. An edge of VD(P) may have either two circumcircles, only one
circumcircle or no circumcircle at the vertices of the edge. Fig. 2 shows the cases.
When a circumcircle does not exist at a vertex, an inscribing circle actually exists at
the given configuration.

2.1  Case I : Two Circumcircles

In Fig. 3, there are two vertices v1 and v2 on an edge e1. Let CCi be a circumcircle
about three generators corresponding to a vertex vi. When e1 is considered, the
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Fig. 1. Topology configuration after an edge flipping operation
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generator c3 is called a mating generator of CC1 and denoted as M1. When there exist
circumcircles at the both ends of an edge, the circumcircles may or may not intersect
with their mates.

Lemma 1. If both circumcircles do not intersect with their mates, the edge should not
flip.

Proof. (Fig. 3(a)) The edge e1 of VD(P) shown with dotted lines has two vertices v1

and v2. The vertex v1 has three associated generators p1, p2 and p4, and the vertex v2

has three associated generators p3, p4 and p2. Let CC1 be a circumcircle to three circles
c1, c2 and c4. From the definition of vertex v1 of VD(P), it can be determined that CC1

should be computed from c1, c2 and c4. Similarly, CC2 is a circumcircle to c3, c4 and c2.
Note that we call c3 a mating generator of CC1. Since f=˙ 31 cCC  in the figure, any

point inside or on CC1 is closer to c1, c2 and c4 than any point on c3. Similarly,
f=˙ 12 cCC , and any point on CC2 is closer to c2, c3 and c4 than c1. Since same

property holds for the centers of circles, the topology of VD(P) should be identical to
the topology of VD(C). Therefore, the topology of VD(P) can be correctly used for
the topology of VD(C) without any modification.

Lemma 2. If both circumcircles intersect with their mates, the edge should flip.

Proof. (Fig. 3(b)) The point set is identical to Fig. 3(a) and the radii of the circles are
different. Note that both CC1 and CC2 intersect with mates c3 and c1, respectively. The
fact that CC1 intersects with the mate c3 means that c3 has a point on the circle which
is closer to the vertex v1 than any point on the three associated circles c1, c2 and c4.
This suggests that the topology of vertex v1, as was given in VD(P), cannot exist as a
member of vertex set in VD(C). Similarly, the vertex v2 cannot be a member of vertex
set of VD(C), since CC2 also intersects with c1. Therefore, the edge e1 cannot exist in
VD(C) as the topological structure given in VD(P) because both end vertices of the
edge should disappear simultaneously. On the other hand, c1, c2, and c3 define a valid
new vertex v1¢ and c1, c4, and c3 define another valid vertex v2¢. Topologically
connecting v1¢ and v2¢ with an edge creates a new Voronoi edge e1¢. Therefore, a new
edge e1¢ should be born while the old edge e1 disappears, and this results in an edge
flipping.
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Fig. 2. Edge configurations
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Between two circumcircles, it is possible that only one circumcircle intersects with
its mating generator. Suppose that the circumcircles are CC1 and CC2 corresponding
to v1 and v2, respectively. Let f„˙ 11 MCC  and f=˙ 22 MCC . Since

f„˙ 11 MCC , the topology of vertex v1 should be changed in the topology update

process, while the topology of v2 should remain as it was given since f=˙ 22 MCC .

Because of this small conflict, the current edge cannot be directly flipped. However,
this conflict can be resolved by flipping another edge incident to the vertex v1 in a
later step so that the topological structure of v1 is valid, while the topology of v2

remains at this moment. This observation provides the following lemma.

Lemma 3. If one circumcircles intersects with its mates, the edge should not flip.

2.2  Case II : One Circumcircle

Lemma 4. If one circumcircle exists, and the circumcircle intersects with its mate, the
edge should flip.

Proof. (Fig. 4) As shown in Fig. 4(b) there is a case that no circumcircle,
corresponding to vertex v1, exists to three generators p1, c2, and p3. Note that both
dotted circles, associated to vertex v1, in the figure are not valid circumcircles, but
circles inscribing c2. The fact that there is no circumcircle to three generator circles
means the Voronoi vertex of three generator circles should disappear. In the given
case, on the other hand, a circumcircle corresponding to vertex v2 exists and the
circumcircle intersects with the mating generator c2. When this phenomenon happens
an edge e1 should flip to e1¢.

Even though a circumcircle exists, it is possible that the existing circumcircle does
not intersect with the mating generator circle. Obviously, the edge should not flip in
this case and therefore the following lemma results.
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Fig. 3. Point sets in both figures (a) and (b) are identical, and therefore the point set Voronoi
diagrams (shown with dotted lines) are identical as well. However, the corresponding circle set
Voronoi diagrams (shown with solid curves) differ.
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Lemma 5. Only one circumcircle exists, and the circumcircle does not intersect with
its mate, the edge should not flip.

2.3  Case III : No Circumcircle

It is even possible that an edge does not yield any valid circumcircles. Instead, only
inscribing circles are defined by the circle generators. In this case, the edge does not
flip as stated by the following lemma.

Lemma 6. When no circumcircle exists, the edge should not flip.

3   Special Cases Due to Convex Hull

While the above six lemmas guarantee the robust and correct transformation from the
topology of VD(P) to that of VD(C), there could be a few special cases that need
careful treatment. Let CH(A) be the convex hull of set A.

A flipping operation does not change the cardinality of topology while the
generator stays inside of CH(P). Since it is viewed as a continual process, there could
be an incident that four generators are circumcircular and one edge disappears.
However, it is assumed that this case, which can be handled by extending the
proposed algorithm, does not exist in this paper.

As the radius of a generator increases, a number of interesting and tricky problems
may occur. The edges and vertices of VD(P) may sometimes disappear, and new
edges and vertices, which were not in VD(P), are created when certain conditions are
satisfied. Both cases, which have a direct relationship with the convex hulls of both
generator sets, are elaborated in this section.

Similarly to a Voronoi diagram of a point set, a Voronoi region of ci of VD(C) is
infinite if and only if f„¶˙ )(CH Cc i

. Due to this observation, a Voronoi region

defined by generators interior to CH(C) always defines a bounded region. Since
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Fig. 4. A case that only one circumcircle exists and the existing circumcircle intersects with the
mating generator.
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CH(P) and CH(C) may have different generators in their boundaries, there may be
changes of bounded and unbounded regions in both Voronoi diagrams. This process
involves the changes of the cardinality as well as the structure of the topology of
Voronoi diagrams.

Suppose that a point p was a vertex of CH(P), and located interior to CH(C). Then,
as will be discussed soon, one unbounded region of VD(P) becomes a bounded one in
VD(C). This causes changes in the number of vertices and edges, too. The number of
edges is increased by one, and so is the number of vertices. Similar phenomenon
exists in the opposite case. In other words, when a point p was interior to CH(P) and
the circle c, which corresponds to p, intersects with the boundary of CH(C), a
bounded region now becomes an unbounded infinite region and creates one new
vertex as well as one new edge. If there is no change between the generator sets that
lie on the boundaries of CH(P) and CH(C), the number of edges, and therefore
vertices, of VD(C) is identical to that of VD(P). The details of these cases related to
the convex hulls are not discussed here.

4   Edge Geometry

Once the topology of VD(C) is fixed, it is necessary to compute the edge equations of
VD(C) to complete the construction. The equation of a Voronoi edge of Voronoi
diagram of circles is either a part of line or hyperbola [2,10]. The cases of parabolic
and elliptic arcs do not occur in our problem. Persson and Held represented the edge
equations using a parametric curve obtained by solving the intersection equations of
the offset elements of generators [8,9,16]. In their representation, both line and
hyperbola are represented in different forms. On the other hand, Kim used a rational
quadratic Bézier curve to represent the edges. In this representation, any type of
bisectors, for example, line, parabola, hyperbola, or ellipse, can be represented in a
unified form, and hence used in this paper, too.

It is known that a conic arc can be converted into a rational quadratic Bézier curve
form which is defined as
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where b0, b1 and b2 are the control points, and w0, w1 and w2 are the corresponding
weights. It is known that a rational quadratic Bézier curve b(t) representation of a
conic curve can be computed if two points b0 and b2 on the curve, two tangents of the
curve at b0 and b2, and another passing point p on the curve are known [3]. Among
these five conditions, two points b0 and b2 are already known since the bisector should
pass through two vertices of a Voronoi edge. Another passing point on the bisector
can be obtained trivially as a point on the line segment defined by the centers of two
generator circles and equidistant from two circles. Two last conditions of tangent
vectors can be obtained by the following lemma which can be proved without much
difficulty.
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Lemma 7. Let a bisector b(t) be defined between two circles c1 and c2. Then, the
tangent line of b(t) at a point v is given by an angle bisector of 21vpp— , where p1 and

p2 are the centers of c1 and c2, respectively.

5   Implementation and Experiments

The proposed algorithm has been implemented and tested on MSVC++ on Intel
Celeron 300MHz processor. Fig. 6 and Fig. 7 show two examples. In Fig. 6, 800
random circles are generated and do not intersect each other and have different radii.
And In Fig. 7, the 400 non-intersecting circles with different radii generated on a
large circle. Fig. 6(a) and Fig. 7(a) show results, and Fig. 6(b) and Fig. 7(b) show the
computation time taken by a number of generator sets with varying cardinality. In the
figure, the computation time taken by a code to compute the Voronoi diagram of point
sets is denoted by VD(P), and the time taken by our code to compute the Voronoi
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Fig. 5. A tangent vector on a bisector.
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Fig. 6. (a) Voronoi diagram of 800 random circles. (b) The computation time taken to compute
the Voronoi diagram of point sets, VD(P), and our code to compute the Voronoi diagram of
circle sets, VD(C).
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diagram of circle sets is denoted by VD(C). The point sets are the centers of circles
generated at random, in this example. Note that the time denoted by VD(C) does not
include the time taken by a preprocessing, which is actually the time denoted by
VD(P). Therefore, the actual computation time to compute VD(C) from a given circle
set is the accumulation of both computation times.

Comparing VD(C) with VD(P), it can be deduced that VD(C) is not as big as it
might have been expected. Through experiences, there are cases that VD(C) is even
much smaller than VD(P). Also, note that the correlation coefficient shown in the
figure suggests that the average running behavior is a strong linear one. We have
experimented with many other cases, and all the cases shows similar linear pattern.
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Fig. 7. (a) Voronoi diagram of 400 random circles on a large circle. (b) The computation time
taken by a code to compute the Voronoi diagram of point sets, VD(P), and our code to compute
the Voronoi diagram of circle sets, VD(C).

Fig. 8. An example when the generators intersect each other.
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Based on these experiments we claim that the proposed algorithm is very efficient and
robust. Even though the worst-case scenario, which will given O(n2) time
performance, is theoretically possible, it is difficult to expect to face such a case in
reality. Fig. 9 shows that our algorithm works for the cases that the circles intersect
each other. Fig. 9a shows the result of preprocessing which is the Voronoi diagram of
point set, and 9b shows the Voronoi diagram of circle set.

6   Conclusions

Presented in this paper is an algorithm to compute the exact Voronoi diagram of circle
set from the Voronoi diagram of point set. Even though the time complexity of the
proposed algorithm is O(n2), the algorithm is quite fast, produces exact result, and
robust.

The algorithm uses the point set Voronoi diagram of the centers of circles as an
initial solution, and finds the correct topology of the Voronoi diagram of circle set by
flipping the appropriate edges of the point set Voronoi diagram. Then, the edge
equations are computed. Because our algorithm uses a point set Voronoi diagram,
which has been studied extensively in its robustness as well as performance, the
proposed algorithm is as robust as a point set Voronoi diagram.
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