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Abstract. REGTET, a Fortran 77 program for computing a regular
tetrahedralization for a finite set of weighted points in 3−dimensional
space, is discussed. REGTET is based on an algorithm by Edelsbrunner
and Shah for constructing regular tetrahedralizations with incremental
topological flipping. At the start of the execution of REGTET a regular
tetrahedralization for the vertices of an artificial cube that contains the
weighted points is constructed. Throughout the execution the vertices of
this cube are treated in the proper lexicographical manner so that the
final tetrahedralization is correct.

1 Introduction

Let S be a finite set of points in 3−dimensional space (R3). By a tetrahedraliza-
tion T for S we mean a a finite collection of tetrahedra (3-dimensional triangles)
with vertices in S, that satisfies the following two conditions.

1. Two distinct tetrahedra in T that are not disjoint, intersect at a common
facet, a common edge, or a common vertex.

2. The union of the tetrahedra in T equals the convex hull of S.

For each point p in S let wp be a real-valued weight assigned to p. Given p
in S and a point x in R3, the power distance of x from p, denoted by πp(x), is
defined by

πp(x) ≡ |xp|2 − wp,

where |xp| is the Euclidean distance between x and p. Given a tetrahedron t
with vertices in S, a point, denoted by z(t), exists in R3 with the same power
distance, denoted by w(t), from all vertices of t. Point z(t) is called the orthogonal
center of t. Given a tetrahedralization T for S, we then say that T is a regular
tetrahedralization for S if for each tetrahedron t in T and each point p in S,
πp(z(t)) ≥ w(t). We observe that T is unique if for each tetrahedron t in T and
each point p in S that is not a vertex of t, πp(z(t)) > w(t). If T is unique then the
power diagram of S [1] is the dual of T . Finally, we observe that if the weights
of the points in S are all equal then the power diagram of S is identical to the
Voronoi diagram of S [10], and the regular and Delaunay [4] tetrahedralizations
for S coincide.
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In this paper we discuss REGTET, a Fortran 77 program for computing
regular tetrahedralizations (or Delaunay tetrahedralizations in the absence of
weights) with incremental topological flipping [6] and lexicographical manipula-
tions [3]. A copy of program REGTET that includes instructions for its execution
can be obtained from http://math.nist.gov/˜JBernal

2 Incremental Topological Flipping

Let T be a tetrahedralization for S, let t be a tetrahedron in T , and let p be a
point in S that is not a vertex of t. Denote the vertices of t by q1, q2, q3, q4, and
let T1 and T2 be the only two possible tetrahedralizations for {q1, q2, q3, q4, p} [9].
Assume t is in T1, and T1 is contained in T . A topological flip or simply a flip on
T1 is an operation that replaces T1 with T2 in T .

Program REGTET which is based on an algorithm by Edelsbrunner and
Shah [6] constructs a regular tetrahedralization for the set S by adding the
points in S one at a time into a regular tetrahedralization for the set of previously
added points. A point is added by REGTET through a finite number of steps,
each step involving a decision about whether a certain flip should take place
and if so applying the flip. This technique is a generalization of a result for
computing incrementally Delaunay triangulations in R2 [7]. By extending results
for Delaunay triangulations and tetrahedralizations [8], [9], Edelsbrunner and
Shah [6] justify their algorithm.

3 Lexicographical Manipulations

The incremental nature of Edelsbrunner and Shah’s algorithm [6] implies that
before any points in S are added a regular tetrahedralization must be first con-
structed by program REGTET with vertices close to infinity and underlying
space equal to R3. The vertices of this initial tetrahedralization are said to be
artificial. Throughout the execution of the program artificial points must be
treated in the proper lexicographical manner so that the final tetrahedraliza-
tion does contain a tetrahedralization for S, and this tetrahedralization for S
is indeed regular (since the coordinates of the artificial points can be extremely
large in absolute value, it is inadvisable to identify them, thus the need to treat
artificial points in a lexicographical manner).

Lexicographical manipulations that are employed in program REGTET are
described and justified in [3]. At the start of the execution of the implementation
a 3−dimensional cube with vertices close to infinity that contains S in its interior
is identified, and a regular tetrahedralization for the set of vertices of the cube
(weights set to the same number) is computed. The execution then proceeds with
the incremental insertion of points in S as suggested by Edelsbrunner and Shah.
However, at all times, because of the lexicographical manipulations employed in
the presence of artificial points (the vertices of the cube), the artificial points
are assumed to be as close to infinity as the manipulations require.
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4 Flipping History

At all times during its execution, program REGTET maintains a list of all
tetrahedra in the current and previous tetrahedralizations. This list is in the
form of a directed acyclic graph that represents the history of the flips REGTET
has performed [6], and it is used by REGTET for identifying a tetrahedron in the
current tetrahedralization that contains a new point. Identifying a tetrahedron
that contains a point this way is a generalization of a technique used in [7] for
2−dimensional triangulations.

5 Running Time

Program REGTET has the capability of adding the points in S in a random
sequence. For some positive integer n, let n be number of points in S. Using
an analysis similar to the one in [7] for 2−dimensional Delaunay triangulations,
Edelsbrunner and Shah [6] show that if the points in S are added in a random
sequence then the expected running time of their algorithm for computing a
regular tetrahedralization for S is O(n log n + n2). As pointed out in [6], the
actual expected time could be much less, i. e. the second term (n2) in the above
expectation could be much less, depending on the distribution of the points in S.
Accordingly this should be the case for sets of uniformly distributed points in
a cube or a sphere. As proven for a cube in [2] and for a sphere in [5], the
complexity of the Voronoi diagram, and therefore of the Delaunay tetrahedral-
ization, for such sets is expected linear. Indeed we have obtained good running
times when computing with REGTET regular tetrahedralizations for sets of
uniformly distributed points in cubes: on the SGI ONYX2 (300 Mhz R12000
CPU) the running time is about 25 CPU minutes for a set of 512,000 points
with random weights. A similar time was obtained for the same set without
weights. Finally, REGTET has also been executed successfully and efficiently to
compute Delaunay tetrahedralizations for non-uniformly distributed point sets
representing sea floors and cave walls.
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