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Abstract. A new method is presented to calculate the Minkowski sum
of two convex polyhedra A and B in 3D. The method works as follows.
The slope diagrams of A and B are considered as graphs. These graphs
are given edge attributes. From these attributed graphs the attributed
graph of the Minkowski sum is constructed. This graph is then trans-
formed into the Minkowski sum of A and B. The running time of the
algorithm is linear in the number of edges of the Minkowski sum.

1 Introduction: The Minkowski Sum and the Slope
Diagram

The Minkowski sum of two sets A, B ⊆ R3 is defined as

A ⊕ B = {a + b|a ∈ A, b ∈ B}. (1)

In this article A and B are convex polyhedra in R3, and we represent their
Minkowski sum by C, so, C = A ⊕ B. It can be easily shown that C is also a
convex polyhedron, but in general C is more complex then A and B. E.g. the faces
of C consist of all the faces of A and B, and some additional faces. See fig. 1a, 1b,
1f, 3b. The Minkowski sum can be defined in a space of any dimension. Amongst
others, it is used in computational geometry, computer vision and imaging, robot
motion planning and in pattern recognition. Our motivation for designing an
efficient Minkowski sum algorithm comes from mathematical morphology. In this
field we are experimenting with a method to compare the shape of two convex
polyhedra, based on Minkowski addition [1, 2]. In this method, to calculate the
similarity of two convex polyhedra, their Minkowski sum has to be calculated
for many relative orientations (hundreds) of the polyhedra.

In 2D space, algorithms are known [4] to compute the Minkowski sum of two
convex polygons A and B in linear time O(nvA + nvB), where nvA, nvB are the
number of vertices of A, B respectively. In R3 two classes of algorithms exist to
compute the Minkowski sum of two convex polyhedra; the ones working in R3,
and the ones working in slope diagram space. We will denote these two classes
by MSR and MSD. In essence, MSD methods work in two dimensional space.
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As we will see later, in MSD methods the polyhedra A and B are transformed
to a 2D space. There the transformed polyhedra A and B are added in some
way, and the result is backtransformed, giving C. In general, MSR algorithms
are simpler to implement than MSD algorithms, but are less efficient.

In the literature much is said about MSR algorithms but hardly any integral
and concrete discussion of MSD algorithms is available. In [3] it is shown that it
is in principle possible to calculate C in linear time (Later we explain the meaning
of linear in more detail). However, no concrete method or algorithm is given. In
this article we discuss briefly three known algorithms, called method1..method3,
and present our own algorithm, method4. Method1 is a simple and expensive
MSR method. Method2 is a mixed MSR-MSD method. It is complex and
not efficient. Method3 is a generic MSD method but we think it has a time
complexity that is worse than the one derived in [3]. Method4 is an MSD method
with a linear time complexity, and is easy to implement. Before discussing these
methods we introduce our representation of polyhedra, and introduce the slope
diagram.

We represent a convex polyhedron, say A, by an attributed graph. Nodes,
edges and faces of this graph represent vertices, edges and faces resp. of A.
Every node of the graph has an attribute representing the position of the cor-
responding vertex. In this paper, a polyhedron and its graph are equivalent, so,
calculating the Minkowski sum of two convex polyhedra A and B is equivalent
to transforming the attributed graphs A and B into an attributed graph C.

The graphs representing polyhedra are so-called polygonal graphs. They have
the property that they are plane, and that every edge bounds two different faces.
(The outer region of the graph is also a face.) A polygonal graph A may be
transformed into another polygonal graph, its dual graph, denoted by dual(A)
or DA. DA is calculated as follows:

– DA has one node for each face f of A, denoted by dual(f).
– DA has one edge for each edge of A. Let e be a common edge of the faces

fi and fj of A. Then in DA the nodes dual(fi) and dual(fj) are connected
by an edge, called the dual of e.

It can be easily checked that in this way the nodes of A give faces of DA.
Clearly, by computing dual(A) only the graph structure of DA is defined, not
its attributes. For a polygonal graph A it holds that dual(DA) = A

A drawing of a graph on some surface (e.g. the plane or a sphere) such
that no two edges cross is called an embedding of the graph. We now introduce
the embedding on the unit sphere of the graphs DA and DB. We call these
embeddings SDA and SDB, or the slope diagrams of A and B. To compute
SDA, (and similarly SDB) we have to define where every node and edge of DA
is mapped on the sphere. First consider the nodes. Every node n of DA is the
image of some face f of A. To n is assigned as attribute the outward unit normal
on the face f . The node n is mapped on the sphere to the end point of this unit
vector. Second consider the edges. An edge e connecting in DA the nodes n1 and
n2 is mapped to the arc of the unit circle on the sphere connecting the images
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of n1 and n2. For an example of two polyhedra and their slope diagrams, see fig.
1a, 1b, 1c, 1d.

A few words about designating the elements of the slope diagram. A slope
diagram consists of spherical faces, spherical edges and points on a sphere. In
the rest of this article we omit the word ”spherical”, so we will speak about
the faces, edges and points of a slope diagram. So, a face, edge or point of a
slope diagram is the image of a vertex, edge or face resp. of the corresponding
polyhedron.

From SDA and SDB a new slope diagram may be created by overlaying
SDA and SDB. Overlaying two embedded graphs amounts roughly speaking
to superimposing the two graphs and merging them into one graph [6, 7]. An
important well known property of the Minkowski sum is that the slope diagram
of C is identical to the overlay of the slope diagrams of A and B [2], so,

SDC = overlay(SDA, SDB).

The node positions of SDC consist of (i) the node positions of SDA and SDB,
and (ii) the node positions defined by intersecting edges of SDA and SDB.
The first ones may be copied from SDA and SDB to SDC, the latter ones
are obtained during the overlay calculation. It is important to note that by
calculating the dual of SDC the graph structure of C is obtained, but because
this graph has no node attributes, no complete description of C is available yet.
In a later section we show how in method3 and method4 the attributes of SDC
are calculated.

2 Some Common Methods to Calculate the Minkowski
Sum

Method1 is a pure MSR method; it is simple but time consuming [5]. It is a
two step process. In the first step the position vectors of all the vertices of A are
added to the position vectors of all the vertices of B. This results in a total of
nvAnvB points where nvA and nvB are the number of vertices of A and B resp. In
the second step the convex hull of these points is computed, giving C. Obviously,
the first step has time complexity O(nvAnvB). Using some standard convex hull
algorithm [4] the second step has time complexity O(nvAnvB log(nvAnvB)). This
method of computing C is expensive because it works entirely in R3, whereas
using SDA and SDB implies working in R2. Another disadvantage is that the
result is not a graph but a set of points. Yet, this method is often used when
efficiency is not crucial.

Method2 is a mixed MSR-MSD method. The key idea of this method is
to compute all planes bounding C, i.e. all planes that contain a face of C. By
calculating the intersections of these planes, the edges and vertices of C are
computed. The method works as follows.

1. For every face f of A it is determined in which face of SDB the slope diagram
image of f is located. This face of SDB is the image of some vertex of B,
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say v. Now the plane containing the face f is translated over the position
vector of v. The resulting plane is a bounding plane of C.

2. The same as 1 with A and B interchanged.
3. In the superimposed slope diagrams of A and B it is determined which

edges of SDA intersect edges of SDB. Assume that the edges sei and sej

intersect. Assume that the corresponding edges in A and B are ei and ej .
Now we construct a plane containing ei that is parallel with ej . This plane
is shifted over a vector ending somewhere on ej (say one of its endpoints).
The resulting plane is a bounding plane of C.

The intersection of the half spaces defined by the planes described above is
C. The faces of C contained in the planes as constructed in step 1 and 2, have
the same shape and size as the faces of A resp. B, i.e. are shifted instances
of the faces of A resp. B. The faces of C contained in the planes constructed
in 3 are new faces, i.e. are not copies of the faces of A or B. These faces are
parallelograms with edges ei and ej . See figure 1f, 3b for examples. Method2
is more efficient than method1 because it uses slope diagrams. Yet, it contains
much redundant work: C contains many faces identical with faces of A and B,
but this fact is not used in this method. Most faces are completely reconstructed.

Concluding: in both methods too much geometrical computations are done.
The method we propose aims at minimizing these geometrical computations.

3 The Minkowski Sum by Merging Attributed Graphs

Method3 is a straightforward MSD method, but in the literature we could not
find an integral description of it. It consists of the following four steps.

1. Calculate the slope diagram SDA. Besides the earlier mentioned node at-
tributes (unit vectors), the slope diagram is given face attributes. Every face
f of SDA is given an attribute attr(f), namely the position vector of the
corresponding vertex in A. The attributed slope diagram SDB is calculated
similarly.

2. Calculate the overlay of SDA and SDB, that is, calculate the graph of SDC.
This graph has no attributes yet.

3. Calculate the face attributes of SDC. This is done as follows. When SDA,
SDB and SDC are superimposed, every face f of SDC is located in precisely
one face fi of SDA, and in precisely one face fj of SDB. Face f gets as
attribute the sum of the attributes of fi and fj .

4. Calculate the dual graph C of SDC as follows. Copy from SDC the face
attributes to the corresponding nodes of C. The graph C, with its node
attributes, represents the Minkowski sum of A and B.

In the following, the process of determining for every face of SDC in which
face of SDA and SDB it is located (see point 3), will be called face location. It is
instructive to compare method3 with method1. In method1 all vertices of A are
combined with all vertices of B. Afterwards, during the convex hull computation,
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(e)

(f)

Fig. 1. Two polyhedra A and B (a) (b), their slope diagrams SDA and SDB (c),
(d), the overlay of these slope diagrams SDC (e), and the Minkowski sum C of the
polyhedra A and B, (f). It may take some time to see the relation between (b) and
(d). It can be seen that the (f) consists of the faces of (a) and (b), and additional
parallelogram faces (See also figure 3b). MSR methods calculate (f) directly from (a)
and (b). MSD methods use the slope diagrams in (c), (d) and (e) to calculate (f).
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it is decided which of these points are vertices of C. In method3, by face location,
it is decided which vertices of A and B have to be combined to give a vertex of
C.

Using a standard graph method [8], the time complexity of calculating SDA
and SDB is O(neA +neB) where neA and neB are the number of edges of A and
B. In the next section we show that calculating the overlay of SDA and SDB
can be done in time O(neA + neB + k) where k is the number of intersecting
edges of SDA and SDB. Method3 may be summarized as follows. Step 1 and 4
are transformations to and from the slope diagram domain. In step 2 the overlay
is constructed, and in step 3 the face attributes of SDC are calculated. In the
following sections we will take a closer look at calculating the overlay and face
location.

4 Overlaying and Face Location

Overlaying two subdivisions of the plane is a standard problem of computational
geometry. Unfortunately, for our problem, i.e. calculating the overlay of two
subdivision of the sphere, no implementations are available, so we had to develop
our own implementation. For this we adapted an existing implementation in
the plane [6, 7] that runs in linear time O(neA + neB + k), where k is the
number of intersecting edges of SDA and SDB. An additional feature of our
implementation is that the edges in the overlay SDC get an attribute indicating
from which edge of SDA or SDB the edge stems. Let us explain. When SDA,
SDB and SDC are superimposed, every edge e of SDC coincides with part of
or a whole edge of SDA or SDB (that is roughly speaking the definition of
an overlay). During face location, it is necessary to know which edges of SDC
bound a given face of SDA or SDB. Therefore, during the overlay construction,
every edge of SDC is given two attributes, one referring to an edge of SDA
and one referring to an edge of SDB. In general, only one of these references is
non-nil. Only when an edge of SDA (partially) coincides with an edge of SDB,
both references are non-nil. This situation occurs for example in the extreme
case when the Minkowski sum of two identical polyhedra is calculated, i.e. when
C = A ⊕ A.

Now consider face location. The edge attributes of SDC as described above
make it possible to find in SDC the edges that coincide with the edges of SDA
or SDB, and that bound a given face of SDA or SDB. We call such a set of
edges an A-cycle or a B-cycle. Let us look at some A-cycle a. See fig. 2(c). We
want to find all faces of SDC that are within a. First we collect those nodes
of SDC that are on or within a. Let us call the set of nodes on and inside a,
a.nodes. Nodes on a are found by going through the edges of a. Nodes within
a are found when, starting from every node on a, inward edges are followed
recursively. Using the a.nodes, we collect all faces of SDC that have one or
more nodes of a.nodes as vertex. The faces collected in this way are within or
directly adjacent to a. From these faces those ones are selected that only have
vertices from a.nodes. These faces are inside a, and get an attribute referring to
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the face of SDA corresponding to a. This is done for all A-cycles and B-cycles. In
this way every face of SDC gets two attributes telling in which face of SDA and
SDB it is located. Using these attributes, every face of SDC is given a vector
valued attribute in the following way. If face f of SDC is in face fi of SDA and in
face Fj of SDB then face f gets a vector attribute attr(f) = attr(fi)+attr(fj).
In LEDA [8], the Computational Geometry platform we use, all operations in
the face location algorithm above are available as standard methods.

We will not discuss the time complexity of face location. In the first place
because it is not trivial, and second because in the in the next section we present
our MSD method, i.e. method4, that works without face location. Because the
time complexity of method4 is dominated by calculating the overlay, method4 is
superior to method3, whatever the time complexity of face location in method3
may be.

Fig. 2. The slope diagrams SDA (a) and SDB (b) of two randomly generated polyhe-
dra, and the overlay SDC (c) of these slope diagrams. In SDC an A-cycle a is shown.
The nodes on and inside a are marked.
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5 A Method without Face Location

In method 3 face location was essential for calculating the face attributes of
SDC, i.e. for calculating the vertex positions of C. We now present method4,
which works with edge attributes instead of face attributes, and thus avoids
face location. As a side effect, the absolute position of C is lost. However, in
a final step this position is recovered. To describe and implement method4 we
use bidirected graphs. This means that every edge e of A, B, C, SDA, SDB
and SDC has a source node and a target node, designated by source(e) resp.
target(e). Moreover, for every edge there is a reversal edge, i.e. when there exists
an edge e starting at source(e) and ending at target(e) then there is also an edge
starting at target(e) and ending at source(e).

Method4 is a six step process and works as follows.

1. Switch to relative coordinates of A and B. More precisely, instead of us-
ing node attributes representing absolute node positions, we switch to edge
attributes. Each edge of A and B is attributed with a 3D vector. The
vector is the relative position of the target of the edge w.r.t. the source
of the edge, so, for edge e the attribute attr(e) is given by attr(e) =
position(target(e)) − position(source(e)).

2. Calculate SDA and SDB. Copy the edge attributes described in step 1 to
the corresponding edges of SDA and SDB.

3. This is the crucial step. First compute the overlay SDC. As described in
method3, during the overlay construction, every edge e of SDC gets two
attributes indicating from which edge of SDA or SDB e stems. Using these
attributes, calculate the attributes for every edge e of SDC in the following
way. When e stems from only one edge, so an edge of SDA (exclusive)-or
SDB, e is given the vector attribute of this edge. When e stems from an
edge of SDA and an edge of SDB, e gets as attribute the vector sum of the
attributes of these edges.

4. Calculate the dual of SDC, called C. Of every edge of SDC the edge at-
tribute is copied to the corresponding edge of C.

5. Calculate node attributes of C, representing vertex positions of C as follows.
Choose some node n0 of C and assign to it some freely chosen position
pos(n0), for example (0, 0, 0). Then for every edge e which has n0 as source,
visit the node target(e), and assign to it the attribute pos(n0) + attr(e), i.e.
to all nodes directly connected with n0 are assigned the position of n0 plus
the edge vector of the connecting edge. This process is continued until every
node has been visited.

6. Shift C to the correct position. This is done with three similar operations,
one for the x direction, one for the y direction and one for the z direction.
We explain the x direction shift.
Let A max x be the x position of the most extreme point(s) of A in the
positive x direction, and similarly for B max x and C max x. It can be
easily checked that it should hold that

C max x = A max x + B max x. (2)
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In the previous step C was placed at a provisional position in space. Let
prov C max x be the maximal x position of C at this provisional position.
Then, by shifting C over

A max x + B max x − prov C max x (3)

C gets its correct position in the x direction. By a similar shift in the y and
z direction C gets its correct position.

6 Discussion

Method3 works because a convex polyhedron is defined by its vertices. Method4
works because a polyhedron is defined, up to its absolute position, by its edge
vectors. Method4 works without face location. Instead, edge location is done.
The advantage of method4 over method3 is that edge location has already been
done during the overlay phase without overhead. In terms of the number of
computations, the advantage of not having to do face location outweighs the
need to restore the absolute position of C.

As mentioned before, the overlay may be computed in time O(neA+neB +k).
The time complexity of computing SDA and SDB, of attribute manipulation,
and of shifting C to the correct position, is inferior to the time complexity of
computing the overlay, so, method4 has a time complexity of O(neA +neB +k).
Obviously, this is better than method1 and method2. Probably it is also better
than method3 because we think that the time complexity of face location is
greater than O(neA + neB + k).

Why does method4 work? We can prove that it is correct by using the support
function [9, 10], but because of limited space it can not be given here. We only
make a few remarks which may serve as a starting point of a proof.

As remarked earlier, most faces of C are identical to the faces of A and B,
plus additional paralellogram faces with one edge from A and one edge from B.
So, the edges of C only consist of edges of A and B, and occasionally an edge
that is the sum of an edge of A and an edge of B. The last type of edge occurs
when an edge in SDA (partially) coincides with an edge in SDB. In step 3 of
method4 these three kinds of edges of C are created, that is, every edge of C is
an edge of A or of B or the sum of an edge of A and of B.

Another remark. The edges of SDC (partially) coincide with edges of SDA
or SDB. To cover completely an edge e of say SDB with edges of SDC may
require two or more edges of SDC. In step 3 of method4 each of these edges of
SDC gets the same attribute, indicating that C gets some parallel edge vectors.
More precisely: When an edge of SDB is subdivided in SDC in n edges this
indicates that C will have n parallel edges, parallel to the corresponding edge of
B. See fig. 3.

7 Conclusion

We have shown that the Minkowski sum of two convex polyhedra may be com-
puted almost entirely in the slope diagram domain, and that the usual face
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(a) (b)

Fig. 3. The slope diagram SDC and C from figure 1. In SDC an edge of SDB is
subdivided in three edges of SDC (See three arrows E1..E3). This results in three
parallel edges in C (See three arrows E1..E3) between B1 and B2. In B (see figure 1)
there was only one edge between B1 and B2. In C the faces from A and B are marked
with A1..A3 and B1..B5.

location can be avoided, leading to a more efficient algorithm. The crucial part
of the method is the construction of the attributed overlay of the slope diagrams
of A and B. Further, only simple attribute manipulations and simple geometrical
computations are used. The time complexity of the method is linear in the size
of the input plus output.
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