
On Parallel Pseudo-Random Number Generation

Chih Jeng Kenneth Tan

School of Computer Science
The Queen’s University of Belfast

Belfast BT7 1NN
Northern Ireland
United Kingdom
cjtan@acm.org

Abstract. Parallel computing has been touted as the pinnacle of high
performance digital computing by many. However, many problems re-
main intractable using deterministic algorithms. Randomized algorithms
which are, in some cases, less efficient than their deterministic counter-
part for smaller problem sizes, can overturn the intractability of various
large scale problems. These algorithms, however, require a source of
randomness. Pseudo-random number generators were created for many
of these purposes. When performing computations on parallel machines,
an additional criterion for randomized algorithms to be worthwhile is
the availability of a parallel pseudo-random number generator. This
paper presents an efficient algorithm for parallel pseudo-random number
generation.

Keywords: Randomized computations, Monte Carlo method, Stochas-
tic methods, Pseudo-random number generators, Parallel computing

1 Introduction

Parallel computing has been touted as the pinnacle of high performance digital
computing by many. However, many problems remain intractable using deter-
ministic algorithms even on large parallel digital machines. Randomized algo-
rithms, which are in some cases less efficient than their deterministic counter-
part, especially when the problem sizes are relatively small, can overturn the
intractability of various large scale problems. In the area of computational fi-
nance, for example, stochastic algorithms have been crucial for the solution of
various problems. Similar examples may be drawn from areas ranging from com-
putational linear algebra, to computational physics, to environmental modeling.

At the heart of the stochastic algorithms, lie a source of randomness. The
question of what can be considered random has often been asked. Various physi-
cal sources of randomness have been suggested as sources of randomness for ran-
domized algorithms. Not only that such sources are often not repeatable, making
it very hard to verify or debug a program written, it has been shown that some
of these physical sources are not “sufficiently random”. Pseudo-random number
generators are often designed to be a source of randomness which can be used
in stochastic computations.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 589–596, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



590 C.J.K. Tan

This paper presents an efficient algorithm for parallel pseudo-random number
generator called PLFG, which is based on lagged Fibonacci generator algorithm.

2 Pseudo-Random Number Generators

Pseudo-random number generators have been an interest of researchers, since
the early days of computing. Putting aside the philosophical issues involved in
the question of what is, or can be, considered random, pseudo-random number
generators have to cater for repeatable simulations, have relatively small storage
space requirements, and have good randomness properties within the sequence
generated.

When performing computations on parallel machines, an additional criterion
that needs to be satisfied is the availability of a parallel pseudo-random number
generator. The streams of pseudo-random numbers used by each processor have
to be independent.

In addition, computational requirements such as coding, initialization time,
running time, memory footprint, portability and efficiency have to be taken
into consideration as well, when designing pseudo-random number generating
algorithms [7].

The pseudo-random number generators used today generally fall into the fol-
lowing categories: linear congruential generators, non-linear congruential genera-
tors, lagged Fibonacci generators, Tausworthe generators and mixed generators.
Regardless of which pseudo-random number generator is used, its algorithm in-
flates an input of a short number of bits into a much longer sequence of random
bits.

2.1 Lagged Fibonacci Generators

Generally, lagged Fibonacci generators are of the form

xi = (xi−p1 � xi−p2) mod M

where xi is the next output pseudo-random number, and � is a binary operation.
The lag values are p1 and p2, p1 > p2. The operations addition (or subtraction),
multiplication or bitwise exclusive OR (XOR) are commonly used in place of �.
M is typically a large integer value or 1 if xi is a floating point number. When
XOR operation is used, mod M is dropped. It is obvious that LFGs require a
lag table of length p1 to store xj , j = i − 1, i − 2, . . . , i − p1.

Although multiple lagged Fibonacci generators using XOR operations can
be combined to provide good quality sequences [4], the individual sequence ob-
tained by using a lagged Fibonacci generator with XOR operations give the
worst pseudo-random numbers, in terms of their randomness properties [5,1,11].
Multiplicative lagged Fibonacci generators have been shown to have superior
properties compared to additive lagged Fibonacci generators [5]. Because mul-
tiplication operations are still being perceived as being slower than addition or



On Parallel Pseudo-Random Number Generation 591

subtraction operations, additive lagged Fibonacci generators have found more
common use than their multiplicative counterpart. However, tests comparing
operation execution times have shown that, with current processors and com-
pilers, multiplication, addition and subtraction operations are of similar speeds.
Thus, the argument favoring additive operations over multiplicative operations
is nulled and multiplicative lagged Fibonacci generators should be preferred.

Care should be taken when choosing the parameters p1, p2 and M in order
to obtain a long period and good randomness properties. The value of p1 > 1279
was suggested in [2]. Having a large p1 also improves randomness since smaller
lags lead to higher correlation between numbers in the sequence [5,1,2]. In lagged
Fibonacci generators, the key purpose of M is to ensure that the output is
bounded within the range of the data type.

Initializing the lag table of the lagged Fibonacci generator is also of critical
importance. The initial values have to be independent. To obtain these values,
another pseudo-random number generator is often used.

With M = 2b, where b is the total number of bits in the data type, additive
lagged Fibonacci generator have a maximal period ΠALFG = 2b−1 (2p1 − 1). The
maximal period of multiplicative lagged Fibonacci generator, however, is shorter
than that of additive lagged Fibonacci generator: ΠMLFG = 2b−3 (2p1 − 1). It
is obvious that this shorter period should not pose a problem for multiplicative
lagged Fibonacci generators if p1 is large.

If xi−p1 , xi−p2 , . . . , xi−pn
are used to generate xi, it is said to be an “n-tap

LFG”. Empirical tests have shown that n > 2 may increase the randomness
quality of the sequence generated. In an n-tap additive lagged Fibonacci genera-
tor, M can be chosen to be the largest prime < 2b [3]. It can be proven using the
theory of finite fields that pseudo-random numbers generated in such a manner
will be a good source of random numbers. For a complete discussion, see [3].

3 Parallelizing Schemes

Several pseudo-random number generator parallelizing schemes exist. The well
known ones being leap frog, sequence splitting, independent sequences and shuf-
fling leap frog [2,12]. All these techniques, except the method of independent
sequences, require arbitrary elements of the sequence to be generated efficiently.
While it is technically possible to parallelize lagged Fibonacci generators with
techniques like leap frog, sequence splitting and shuffling leap frog, the amount
of inter-processor communication that would be required makes it impractical to
parallelize lagged Fibonacci generators in such a manner. But lagged Fibonacci
generators can be parallelized very easily with the independent streams method,
and may be very efficient. Pseudo-random number generator parallelization by
independent streams is also a recommended technique [8]. The independent se-
quences are obtained by having multiple generators running on multiple proces-
sors, but seeded independently. It should be stressed that seeding the lag tables
have to be done with care, to ensure independence between the individual lag
tables.



592 C.J.K. Tan

When a parallel pseudo-random number generator with independent se-
quences is used for Monte Carlo simulations, it is analogous to running the
simulation multiple times, each time with a different pseudo-random number
generator. This is highly desirable in Monte Carlo simulations since the variance
can be reduced by O(

√
n) if n independent trials are being carried out.

4 Parallel Implementation

For the reasons of the superiority of lagged Fibonacci generators, and multiplica-
tive lagged Fibonacci generator in particular, as discussed in [9], a multiplicative
lagged Fibonacci generator algorithm was used as a basis for the pseudo-random
number generator implemented. An independent sequences scheme was used for
parallelization.

The length of the bit table of a pseudo-random number generator determines
the number of parameters needed for its initialization. In the case of an linear
congruential generator, where only one past value is used to produce the next
output, the size of the bit table is the size of the data type used, and only one
value is needed for seeding [3]. For a lagged Fibonacci generator however, the bit
table consists of the bits of all xi, i = 1, 2, . . . , p1 in the lag table. This feature
of the lagged Fibonacci generator may have a positive influence on the quality
of the pseudo-random number sequence generated.

A parallel pseudo-random number generator has to generate sequences which
are independent of each other. This translates to independence between all the
bit tables in the parallel pseudo-random number generator, at any point in time.
In parallelizing a pseudo-random number generator by the independent streams,
the initial bits in all the bit tables will have to be independent from each other,
since the bits of subsequent generated elements are pushed onto the bit table.
As such, when parallelizing an lagged Fibonacci generator using independent se-
quences, the stringent requirement for independence between the seed elements,
xi, i = 1, 2, . . . , p1, on each processor cannot be stressed any further.

To initialize the lag tables, most existing lagged Fibonacci generators, se-
quential and parallel, use an linear congruential generator to fill the elements of
the lag tables. However, in PLFG, the lag tables were chosen to be initialized by
a sequential pseudo-random number generator call Mersenne Twister [6]. The
Mersenne Twister used has the Mersenne prime period, ΠMT19937 = 219937 − 1,
thus known as the MT19937. This generator has passed several tests for ran-
domness, including DIEHARD [6]. In addition, MT19937 has been tested to be
very efficient, generating 107 pseudo-random numbers in 1.76 seconds on an Intel
Pentium Pro 200MHz processor.

The lag values of PLFG were chosen to be p1 = 23209, p2 = 9739, recom-
mended by Knuth in [3]. There is nothing in its design which prohibits the
extension of the number of taps, n, to n > 2. The memory footprint is kept
small, while maintaining high efficiency, by using a round-robin algorithm for
lag table access.



On Parallel Pseudo-Random Number Generation 593

Table 1. Results of 2D Ising model Monte Carlo simulation test with Metropolis
algorithm; ε denotes error, σ denotes standard deviation, Cv denotes specific heat.

Generator εenergy σenergy εCv σCv
PLFG 0.0005960 0.0085104 0.0193600 0.0448184
SPRNG Multiplicative LFG 0.0091587 0.0269140 0.6682971 0.1442130
SPRNG Additive LFG 0.0188618 0.0193388 0.1587430 0.0911916
SPRNG Combined Multiple Re-
cursive Generator

0.0678726 0.0216546 0.7692472 0.1732936

The output pseudo-random number is of type unsigned long in ANSI Stan-
dard C, which is typically a 32-bit data type on 32-bit architecture machines,
but is a 64-bit data type on some 64-bit architecture machines. This dependence
on machine architecture resulting in the variability in the period of the pseudo-
random number sequence is indeed a feature since its period will automatically
expand from when machine with wider word size becomes available. However,
when used for simulations running on heterogeneous workstation clusters, this
may be a concern.

The total number of independent streams is limited by the period of
MT19937. Since total number of independent streams is 219937−1

23209 , this limita-
tion is moot in practice. Thus, it is practically scalable to as many processors
as needed. With ΠMT19937, ΠMLFG and p1, all large, the probability that the
sequences overlapping is minimal.

Both initialization and generation of the pseudo-random numbers can be
performed in parallel, without any communication needed. The only time when
communication is needed, is to synchronize before shutdown. This coarse-grained
parallelism is highly desirable for Monte Carlo applications, which are themselves
coarse-grained parallel as well.

5 Quality of Sequences Generated

PLFG has been subjected to the test using 2D Ising model Monte Carlo simulation
with both the Metropolis and the Wolff algorithm.1 The results shown in Tables
1 and 2 were obtained using identical test parameters. It is clear that the PLFG
parallel pseudo-random number generator gives superior results compared to
the results obtained by parallel pseudo-random number generators provided in
the Scalable Pseudo-random Number Generator (SPRNG) package developed at
the National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign.2

1 The source code for the tests were ported from the Scalable Pseudo-random Number
Generator (SPRNG) package.

2 At the time of writing, SPRNG Version 2.0 has just been announced. The version
of SPRNG considered here is Version 1.0.



594 C.J.K. Tan

Table 2. Results of 2D Ising model Monte Carlo simulation test with Wolff algorithm;
ε denotes error, σ denotes standard deviation, Cv denotes specific heat.

Generator εenergy σenergy εCv σCv
PLFG 0.0026430 0.0030601 0.0054660 0.0271471
SPRNG Multiplicative LFG 0.0541587 0.0287093 0.5353881 0.1165021
SPRNG Additive LFG 0.0660337 0.0291500 0.4078441 0.1705614
SPRNG Combined Multiple Re-
cursive Generator

0.0130649 0.0105590 0.0444265 0.1105693

PLFG has also been put to test, against the multiplicative lagged Fibnacci
generator from the SPRNG package, using the Relaxed Monte Carlo method for
solving of systems of linear algebraic equations [10]. Comparing the results shown
in Tables 3 and 4, it is clear that PLFG is at least on par with the multiplicative
lagged Fibnacci generator from the SPRNG package, if not a better parallel
pseudo-random number generator. The tests were done on a DEC Alpha XP1000
cluster, with EV67 processors running at 667MHz.

Table 3. Relaxed Monte Carlo method with PLFG, using 10 processors, on a DEC
Alpha XP1000 cluster.

Data set Norm Solution time (sec.) RMS error No. chains
1000-A1 0.5 7.764 1.91422e-02 2274000
1000-A2 0.6 7.973 1.92253e-02 2274000
1000-A3 0.7 7.996 1.93224e-02 2274000
1000-A4 0.8 7.865 1.91973e-02 2274000
1000-A5 0.5 7.743 1.27150e-02 2274000
1000-A6 0.6 7.691 1.27490e-02 2274000
1000-A7 0.7 7.809 1.27353e-02 2274000
1000-A8 0.8 7.701 1.27458e-02 2274000

Timing tests for generating 106 pseudo-random numbers per stream have also
been conducted. Results for tests conducted on both a cluster of DEC Alpha
machines with Alpha 21164 500 MHz processors, connected via Myrinet, and
a dual processor Intel x86 machine with Pentium Pro 200 MHz processors are
shown in Table 5.3 For tests on the DEC Alpha cluster, 20 processors were used.
It can be seen that the speed of PLFG is on par with other parallel pseudo-random
number generators.

3 The Alpha 21164 and Pentium Pro 200 processors both have on-chip instruction and
data L1 caches of 8Kb each, and 96Kb and 256 Kb L2 cache respectively.



On Parallel Pseudo-Random Number Generation 595

Table 4. Relaxed Monte Carlo method with SPRNG MLFG, using 10 processors, on
a DEC Alpha XP1000 cluster.

Data set Norm Solution time (sec.) RMS error No. chains
1000-A1 0.5 7.842 4.43195e-02 2274000
1000-A2 0.6 7.842 4.53718e-02 2274000
1000-A3 0.7 8.666 4.78022e-02 2274000
1000-A4 0.8 8.087 4.77088e-02 2274000
1000-A5 0.5 8.138 3.17604e-02 2274000
1000-A6 0.6 7.748 3.17574e-02 2274000
1000-A7 0.7 8.172 3.18349e-02 2274000
1000-A8 0.8 7.392 3.17931e-02 2274000

Table 5. Average time taken for generating 106 pseudo-random numbers.

Generator Average time (sec.)
Intel Pentium Pro DEC Alpha

PLFG 0.614 0.251
SPRNG Multiplicative LFG 0.720 0.187

SPRNG 64-bit LCG 1.510 0.078
SPRNG Additive LFG 0.270 0.260

SPRNG Combined Multiple Recursive Generator 2.910 0.238

6 Conclusion

PLFG is a highly efficient and scalable parallel pseudo-random number genera-
tor. Initialization of the lag tables can be sped up using another highly efficient
pseudo-random number generator with good randomness qualities, while yielding
quality sequences, as seen in the results of empirical tests conducted. In addi-
tion, coarse-grained parallelism employed in parallelizing PLFG and its scalability
makes it extremely suitable for Monte Carlo simulations.

7 Acknowledgment

The author would like to thank J. A. Rod Blais from the Pacific Institute for
the Mathematical Sciences, and Christiane Lemieux from the Department of
Mathematics and Statistics, both at the University of Calgary, Canada, M. Isabel
Casas Villalba from Norkom Technologies, Ireland, and Vassil Alexandrov from
the High Performance Computing Center, University of Reading, UK, for their
support and the fruitful discussions.



596 C.J.K. Tan

References

[1] Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo
Simulation. International Journal of Modern Physics C5 (1994).

[2] Coddington, P. D. Random Number Generators for Parallel Computers. Na-
tional HPCC Software Exchange Review, 1.1 (1997).

[3] Knuth, D. E. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 3 ed. Addison Wesley Longman Higher Education, 1998.

[4] L’Ecuyer, P. Maximally Equidistributed Combined Tausworthe Generators.
Mathematics of Computation 65, 213 (1996), 203 – 213.

[5] Marsaglia, G. A Current View of Random Number Generators. In Computing
Science and Statistics: Proceedings of the XVI Symposium on the Interface (1984).

[6] Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator. ACM Transactions
on Modeling and Computer Simulation 8, 1 (1998), 3 – 30.

[7] Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Meth-
ods. No. 63 in CMBS-NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1992.

[8] Srinivasan, A., Ceperley, D., and Mascagni, M. Testing Parallel Random
Number Generators. In Proceedings of the Third International Conference on
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (1998).

[9] Tan, C. J. K. Efficient Parallel Pseudo-random Number Generation. In Proceed-
ings of the 2000 International Conference on Parallel and Distributed Processing
Techniques and Applications (2000), H. R. Arabnia, et al., Ed., vol. 1, CSREA
Press.

[10] Tan, C. J. K., and Alexandrov, V. N. Relaxed Monte Carlo Method for
Solution of Systems of Linear Algebraic Equations. In Recent Advances in Com-
putational Science (2001), V. N. Alexandrov, J. J. Dongarra, and C. J. K. Tan,
Eds., vol. 2073 of Lecture Notes in Computer Science, Springer-Verlag.

[11] Vattulainen, I., Ala-Nissila, T., and Kankaala, K. Physical Models as
Tests of Randomness. Physics Review E52 (1995).

[12] Williams, K. P., and Williams, S. A. Implementation of an Efficient and
Powerful Parallel Pseudo-random Number Generator. In Proceedings of the Second
European PVM Users’ Group Meeting (1995).


	Introduction
	Pseudo-Random Number Generators
	Lagged Fibonacci Generators

	Parallelizing Schemes
	Parallel Implementation
	Quality of Sequences Generated
	Conclusion
	Acknowledgment

