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Abstract. The first principle calculations of quantum chaos in the
framework of representation constructed by authors for multi-channel
quantum scattering was made. Based on intrinsic properties of scatter-
ing system the numerical task was divided into independent subtasks
and the parallel algorithm for numerical computations was developed
and tested on massive-parallel systems Parsytec CC/16 and SPP-1600.
This algorithm made it possible to carry out converging computations
for three-body problem for any energy. It was shown, that even in the
simple case of three-body problem the principle of quantum determin-
ism breaks down in general and one has a micro-irreversible quantum
mechanics. The ab initio calculations of the quantum chaos (wave chaos)
were carried out on the example of an elementary chemical reaction
Li + (FH) → (LiFH)∗ → (LiF ) + H.

1 Introduction

At the early stage of quantum mechanics, Albert Einstein wrote the work in
which the question was touched, which became a focus of physicists attention
several decades later. The question was: what will the classic chaotic system
become in terms of quantum mechanics. He has particularly set apart the three-
body problem.

In a trial to understand the influence of chaotic dynamical features on quan-
tum quantities calculation the numerical approach plays an important role. In
this connection one needs to have high performance algorithms, which allow to
make calculations with as small time costs as possible. Numerical results also
give sometimes a heuristic ideas, which may be very useful in theoretical consid-
erations.

For the first time the problem of quantum chaos was studied by the authors on
the example of quantum multi-channel scattering in collinear three-body system
[1,2]. It was shown that this case can be transformed into a problem of a forced
unharmonic oscillator with non-trivial time (internal time).

In the present work we discuss the possibilities of chaotic phenomena calcu-
lations based on our approach.
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2 Formulation of the Problem

The quantum multi-channel scattering in the framework of collinear model is
considered. As it was shown elsewhere [1,2] the problem of quantum evolution
in this case can be strictly formulated as an image point with a mass µ0 moving
over the manifold M , the latter being a stratificated Lagrange surface Sp. At
that the motion is related to the local coordinate system moving over Sp. In our
case there is standard definition of the surface Sp

Sp =
{
x1, x2;P 2 (

x1, x2) > 0
}

, P 2 (
x1, x2) = 2µ0

(
E − V

(
x1, x2)) , (1)

E and V
(
x1, x2

)
being the total energy and interaction potential of the sys-

tem respectively. The metric on the surface Sp in our case is introduced in the
following way: gik = P 2

(
x1, x2

)
δik.

The motion of the local coordinate system, it is determined by the projection
of the image point moving along the extremal ray =ext of the Lagrange manifold
Sp. Note, that for scattering problem under consideration there are two extremal
rays on the surface Sp : the one corresponding to particle rearrangement and the
other corresponding to three free particles. In this paper we study only the first
case, namely the one of rearrangement. The quantum evolution of the system
on the manifold M is described by the equation (see [2]){

h̄2∆(x1(s),x2) + P 2 (
x1 (s) , x2)} Ψ = 0, (2)

with the operator ∆(x1(s),x2) determined in curvilinear coordinates
(
x1, x2

)
in

Euclidean space R2, x1 (s) being the x1-coordinate of image point trajectory.
The metric tensor of the manifold M is presented in [2]. Note, that the main
difference of (2) from Schrödinger equation comes from the fact, that one inde-
pendent coordinate, namely, x1 (s) is derived from the set of nonlinear differential
equations and is not a natural parameter of the problem. In certain situations
it can be a chaotic function.

Our purpose is to find a solution of equation (2) that satisfies the following
asymptotic conditions for the total wave function of the system

lim
(s,x1)→−∞

Ψ (+) (
x1 (s) , x2) = Ψin

(
n;x1, x2) +

∑
m6=n

RmnΨin

(
m;x1, x2) ,

lim
(s,x1)→+∞

Ψ (+) (
x1 (s) , x2) =

∑
m

SmnΨout

(
m;x1, x2) , (3)

where the coefficients Rmn and Smn are the excitation and rearrangement am-
plitudes respectively.

3 Solution of Schrödinger Equation on Manyfold
M (= (u))

Taking into account the fact that scattering wave function is located along the
reaction coordinate = and using the parabolic equation method [3] for such a
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problem, we represent the solution of (2) in a form

Ψ (+) (
x1(s), x2) = exp

ih̄−1

x1(s)∫
0

p(x1)
√

γ0dx1

 A
(
x1(s), x2) , (4)

where p
(
x1

)
= P

(
x1, 0

)
and γ0 depends on metric on Sp. After the coordinate

transformation in equation (2)

τ = (E)−1

x1(s)∫
0

p
(
x1) √

γ0dx1, z = (h̄E)−1/2
p

(
x1(s)

)
x2, (5)

one gets for the total wave function of three-body system in harmonic approxi-
mation [2]

Ψ̃ (+) (n; z, τ) =
[
(Ωin/π)

1
2

2nn! |ξ|
] 1

2

exp
[
ih̄−1Seff (z, τ)

]
Hn

[√
Ωin

|ξ| (z − η)
]

, (6)

where
Seff (z, τ) = Scl (τ) − Ei

v

τ∫
0

|ξ|−2
dτ

′
+

+{η̇ (z − η) + 1
2 ξ̇ξ−1 (z − η)2 − 1

2 ṗp−1z2},

Scl (τ) = Eτ − E
τ∫

−∞
{ 1

2 [(η̇)2 − Ω2(τ
′
)η2] + F (τ

′
)η}dτ ′,

Ei
v = h̄Ωin

(
n + 1

2

)
, Ωin(out) = lim

τ→±∞ Ω(τ).

(7)

The functions Ω2(τ) and F (τ) are defined on Sp and are known, function Hn(x)
is a Hermitian polynomial. The function ξ (τ) is the solution of classical oscillator
problem with usual scattering asymptotic condition. As to the function η (τ) it
is expressed in terms of ξ(τ) (see [2]).

4 Transition Amplitude for Rearrangement Processes

One can show that transition probabilities for the reaction A + (B, C)n →
(ABC)∗ → (A, B)m + C have the form

Wmn = |Smn|2 =
(1 − θ)1/2

m!n!
|Hmn (b1, b2)|2 exp

[
−ν(1 −

√
θ cos 2ø)

]
, (8)

where the function Hmn (b1, b2) is a complex Hermitian polynomial, and

b1 =
√

ν (1 − θ) exp (iø) , b2 = −√
ν

[
exp (−iø) − √

θ exp (iø)
]
,

ø = 1
2 (δ1 + δ2) − β.

(9)
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Denoting c = (Ωin/Ωout)
1/2 one has for θ , δ1, δ2, β and ν

c1 = eiδ1c (1 − θ)−1/2
, c2 = eiδ2c [θ/ (1 − θ)]1/2

θ = |c2/c1|2 , d = lim
τ→+∞ d (τ) =

√
ν exp (iβ) .

(10)

where d (τ) = (2Ωin)−1/2
τ∫

−∞
dτ

′
ξ(τ

′
)F (τ

′
) and the constants c1 and c2 enter

into an asymptotic expression for ξ(τ) in the limit τ → ±∞ (see [2]).

5 Numerical Calculations

Schematically algorithm of numerical calculations may be described as a se-
quence of stages:

– I - Lagrange surface construction for the system. The curvilinear coordinate
system, within which all further calculations are performed, is introduced on
it;

– II - classical trajectory problem solution. At this stage the set of four ordi-
nary non-linear differential equations of the first order is solved numerically.
Essential initial parameters are collision energy E and oscillator quantum
number n. The set is solved by one-step method of 4th-5th order. This method
is conditionally stable (by deviation of initial data and rhs) [4], therefore the
standard automatic step decreasing method is implied to provide its sta-
bility. It’s worth mentioning that initial set is degenerate in certain points.
To eliminate these the standard σ-procedure with differentiation parameter
replacement is performed.

– III - the results of classical trajectories calculations are used for calculations
of complete quantum wave function in its final state. At this stage, the nu-
merical problem consists in solution of an ordinary non-linear second order
differential equation. Numerical investigation of this equation is a difficult
task due to non-trivial behavior of differentiation parameter. Differentiation
algorithm consists of two stages: 1) construction of differentiation parameter
values grid using the results of classical problem calculation and 2) integra-
tion of initial differential equation on obtained non-uniform grid by means
of multi-step method. Integration stability is provided by selection the in-
tegration step in a classical problem, control being performed by means of
step-by-step truncation error calculation [4]. The obtained solution of dif-
ferential equation is approximated in a final asymptotic state in a form of
incoming and reflected flat waves superposition;

– IV - the results of quantum problem solution are used for obtaining the
values of transition probabilities matrix elements and corresponding cross-
sections. Calculation of matrix elements for initial oscillator quantum num-
ber n and final oscillator quantum number m is performed with the use of
expressions presented in [5]. Let’s note that transition probability matrix
obtained corresponds to one value of collision energy, stipulated at stage II;
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Let us remind that calculations for steps II and III are made for specific
values of collision energy E and oscillator quantum number of initial state n.
Results of these calculations allow to obtain one vector of a reaction cross-section
matrix, which corresponds to n. In order to obtain the entire cross-section matrix,
calculations at stages II and III need to be repeated as many times as dictated
by the size of reaction cross-section matrix. As a result the entire probability
matrix is obtained. The procedure described needs to be repeated for many
values of collision energy E in order to enable further integration and velocity
constants finding.

Algorithm of numerical calculations allows to perform the parallelization and
use the multiprocessor supercomputers with massive parallel architecture for
calculations.

Further we will show how the algorithm presented can be parallelized for
massive parallel supercomputers with distributed and shared memory.

– Calculation algorithm for massive parallel systems with distributed memory.
Calculation parallelization procedure is performed by the values of collision
energy. Calculation of classical trajectory problem, quantum calculation and
transition probability matrix calculation are performed in each of the parallel
branches. Let’s note that just as in the case on non-parallelized algorithm
all calculations from stages II and III are performed as many times as it
is dictated by the size of transition probability matrix. Due to the fact that
calculation in each of thee parallel branches represents a separate problem
and does not interact with other branches of calculation, the effectiveness of
this parallelization algorithm using vs. relatively unparallelized algorithm is
nearly proportional to a number of calculation branches, i.e. to the number
of computation nodes.
This algorithm realization was performed on Parsytec CC/16 supercomputer
with massive parallel architecture with distributed memory. As a reaction
on which the algorithm was tested, a well studied bimolecular reaction Li +
(FH) → (LiFH)∗ → (LiF ) + H was taken. The results of testing have
shown the calculation efficiency to be nearly proportional to the number of
computation nodes.

– Calculation algorithm for massive parallel systems with shared memory. Just
as in the previous algorithm, the first level of parallelization represents the
distribution of calculations among the computation nodes in accordance with
the values of collision energy. But, as can be seen from a scheme, in each of
the parallel branches there is one more parallelization by the values of oscil-
lator quantum number of the initial state as well. The second parallelization
is based upon a fact that for classical trajectory problem calculation the
same coefficients, that calculated ”on-line”, are used for different quantum
numbers, thus allowing to make such a parallelization.
This algorithm was realized on SPP-1600 supercomputer with massive par-
allel architecture with shared memory. The results of testing have shown
that just as it was expected, the efficiency of calculations is higher than in
the previous example.
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Fig. 1. Geodesic trajectories and internal time dependence on natural parameter s for:
a) – direct rearrangement process b) – direct reflection process and c) – rearrangement
process going through the resonant state.

Finally we would like to stress one of the important features of parallelization
algorithms demonstrated - their scalability. Due to the fact that integration
of transition probability matrix and rate constants calculation during stage V
requires the values of matrix elements for large number of energy values, one can
hardly find a supercomputer with an excessive number of computation nodes.

6 Investigation of Classical Trajectory Problem

Numerical calculations were made for the reaction Li + (FH) → (LiFH)∗ →
(LiF ) + H. The potential surface for this reaction was reproduced using the
quantum-mechanical calculations carried out in work [6]. Investigation of trajec-
tory problem shows, that, starting from some energy values, internal time τ(s)
from (5), which acts as a chronology parameter in the description of movement
along a trajectory, becomes a nontrivial function, having an intricate depen-
dence Fig.1 on the natural parameter (usual time). However, even if τ(s) is a
natural parameter in some region, its derivative τ̇(s) may have an irregular be-
havior (see Fig.2). The last property provides sufficient evidence for dynamical
chaos existing in the system. As one can see from the Fig.3, the distribution of
passed through into the subspace R2

out and reflected back into the subspace R2
in

geodesic trajectories with respect to x1
0 and E for fixed main quantum number n

has irregular regions. One gets qualitatively the same picture for other values of n
too. Numerical calculations show, that for initial values regions mentioned above
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Fig. 2. a) – Geodesic trajectory characterizing direct reaction, b) – corresponding
internal time, which is a natural parameter in a wide range, i.e. it is in one-to-one
correspondence with parameter s, c) – internal time derivative with respect to s, which
has an irregular behavior, d) and e) – show transverse coordinate and its derivative
with respect to s respectively.

the main Lyapunov exponent is positive and grows fast, the last fact pointing
to exponential divergence of geodesic trajectories. One can see from the results
of calculations that the structure of chaotic behavior region is self-similar with
respect to scale transformation Fig.3. Chaotic behavior in the classical three
body problem disappears when the total energy increases. Note that geometri-
cal analysis of Lagrange manifold for reacting system Li + FH also shows on
the possibility of quasicompact submanifold existence, on which intermixing of
trajectories may take place.

Similar calculations made for reacting system N2 + O, N2 + N, N + O2,
N + O2, O2 + O show the absence of any irregular regions on the map of passed
through and reflected trajectories.

7 Transition Probabilities Calculation for Rearrangement
Process

Let us consider the influence of irregular chaotic behavior of classical problem
on quantum transition probabilities. It may be illustrated by Fig.4a and Fig.4b
which show the dependence of over-barrier transition probabilities in Li + FH
system on collision energy Ei

k for fixed phases and quantum numbers. One can
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Fig. 3. Irregular map of initial values of the total energy E and initial phase x1
0

for passed through (white rectangles) and reflected back (black rectangles) geodesic
trajectories. T denotes a period of x1

0.

see, that a small change in initial phase significantly changes the dependencies.
In this connection the difficult problem arises to find the measure for the space
(map) of passed through and reflected back geodesic trajectories. To calculate

Fig. 4. (a) – Dependencies of transition probabilities W00, W01 and W02 on collision
energy Ei

k for fixed phase x1
0i, (b) – the same dependencies, but calculated for the other

(slightly differing from the first one) fixed phase x̄1
0i : |x̄1

0i − x1
0i| = 10−5x1

0i.

the total mean, giving the final probability for specific quantum transition as
depending on energy, one have to average the corresponding quantum probability
with respect to (Ei

k, x1
0) within the range [∆E, ∆x1

0], where ∆E is a small interval
of energies near Ei

k and ∆x1
0 is a period of initial phase. The average process

consists in that square ∆E × ∆x1
0 is divided on n � 1 rectangles, each of them

having some phase point x1
0i inside. Then each rectangle is subdivided by the grid

with Mi = li × ki nodes, li and ki being the number of breaking points for ∆E



Numerical Investigation of Quantum Chaos 481

and ∆x1
0/n intervals respectively. Probability for geodesic trajectory (bearing

ray) to pass through the i-th rectangle is calculated by the formula

P
(
x1

i , E
i
k

)
= lim

ki,li→∞

(
Ni

Mi

)
, (11)

where Ni counts how many times the bearing ray passes through into R2
out

subspace. Weighted-mean probability is then calculated as the sum

∆nm(E) = lim
n→∞

{
1
n

n∑
i=1

P
(
x1

i , E
)
Wnm

(
x1

i , E
)}

. (12)

After the averaging with use of (12) the dependence of transition probabilities
on collision energy Ei

k for Li + FH → LiF + H reaction becomes smooth, as
one can see from Fig.5.

Fig. 5. Transition probabilities dependencies after averaging with respect on phase.

8 Conclusion

The reduction of multi-channel scattering problem solution to trajectory prob-
lem allows to use up-to-date multiprocessor computers with massive-parallel
architecture and to calculate more trajectories within short period of time. In
particular, about 105 trajectories were calculated for energy range, within which
the resonant state arising is possible. It was shown numerically, that an interval
of energies exists in which the internal time dependence on the natural parameter
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s may be of oscillatory type. At a small decrease of collision energy, a number of
internal time oscillations grows dramatically. In this case the system loses all the
information about its initial state completely. Chaos arises in a wave function,
which then organizes itself into a new order within the limit τ → ∞. Mathemat-
ically it becomes possible as a result of common wave equation irreversibility
by time. One of the numerical results of this work is a chaos map construc-
tion Fig.3. There was also numerically shown a strong sensitivity (for chaotic
conditions) of quantum transition probabilities dependencies on energy to small
changes of initial phase. It was shown that statistical approach must be used to
calculate smooth dependencies of probabilities on energy, and the formula (12)
for calculation was presented. Let’s stress that the result obtained supports the
transitional complex theory, developed by Eyring and Polanyi on the basis of
heuristic considerations, the essence of the method being statistical description
of chemical reactions.
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