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1. Introduction

The integral property of hydrometeorological fields (atmospheric pressure, wind
speed, wind waves, temperature and salinity of seawater, sea currents) is their spatial–
time variability caused by superposition and interaction of a large number of factors.
Characteristic ranges of variability are interannual variability (cyclicity of fluctuations
more than one year), annual cycles, synoptic variability (time scale of fluctuations
from one day to several days), daily cycles, small-scale fluctuations (cyclicity from
several seconds to one hour). The presence of multiscale variability causes
nonstationarity of hydrometeorological processes. Variety of active factors results in
spatial heterogeneity of fields (stratification of surface layer and seawater, movement
of baric formations in an atmosphere and mesoscale eddies in oceans and seas).

Traditionally the basis of objective laws of description of hydrometeorological
field's variability is the analysis of full-scale data: shipboard observations during
voyages, continuous observations at sea or coastal stations, satellite information. The
intensive development of mathematical modeling methods on the basis of analytical
and numerical solutions of system of termo- and hydrodynamics equations under the
appropriate initial and boundary conditions has allowed to fill up considerably this
information base. It results from both reproduction of the measurement data in points
of a regular grid by means of reanalysis [12], and obtaining information about non-
observable parameters on verified models. As a result, for example, we have wind
waves [13], termohaline structure of waters and ecological system parameters [9].

The specificity of application of hydrodynamic models for observation data assimilation

in information base consists in obtaining results as a file of values { }m

1pp =
x=X  in different

spatial points ( )kji z,y,xr
r

 at the time moment ts. Complexity, non-uniform scale,

polycyclicity and great variability of the hydrometeorological information result in necessity
to consider them as stochastic functions of time and spatial coordinates and to describe their
properties in terms of probabilistic characteristics [16]. There are mean value ( )t,rm

r
X ,

variance ( )t,rD
r

, covariation function ( )trX ,t,,rK
rr

 and spectral density ( )t,r,S
r

wX , which

depend on several variable (coordinates vU  and time t, frequency w, spatial rr  and time

t shifts). Traditional problem of multivariate statistical analysis (MSA) is estimation of such
characteristics on natural data.



464 A. Boukhanovsky, V. Rozhkov, and A. Degtyarev

Classical MSA operates with concepts of multivariate stochastic value, system of
dependent stochastic values and multivariate time series [2,4]. The purpose of the
paper the use of MSA methods with regard for specificity of spatial-time fields
obtained by hydrodynamic simulation.

2. Hydrodynamic Simulation as Metocean Data Source

The evolution of surface wave field in space and time is governed by the basic
transport or energy balance equation [17]

GSv
t

S
=Ñ×+

¶
¶ (1)

where S(w,q, rU ,t) is the two-dimensional wave spectrum, dependent on frequency w and
propagation direction q; v=v(w,q) is the group velocity. S is net source function. It is represented
as the sum of the input Sin by the wind, the nonlinear transfer Snl by resonant wave-wave
interaction, and the dissipation Sds. There are some other terms (interaction with slowly variable
currents, etc.) which are normally small. They are not included in the propagation operator.

Equation (1) describes functional relation between fields of atmosphere pressure,
wind and waves. There are many calculation models based on (1) devoted to obtaining
time-spatial wave field. All they are differ from one another by sources function
presentation and computational layout.

The first wave model which was realized as world famous software is WAM-model
[17]. The theory and methods of numerical simulation are continuously improved.
Now we have new results and models (WAVEWATCH [18], PHIDIAS [19],
TOMAWAC [20], INTERPOL [21]) for deep and (SWAN [22]) for shallow water.
Such results and a great activity in the field of reanalysis of pressure and wind in
points of regular mesh [12,13] give possibility to use results of numerical simulation
of time-spatial fields as initial data for analysis by means of MSA.

Specific character of computer presentation of hydrometeorological fields
information is large volume of used data and long time for calculation. Hence,
application of high performance computers is necessary. Part of the results used in this
paper for MSA was obtained in Institute for High Performance Computing on
supercomputer HP SPP1600 (8 processors).

3. Metocean Events as Elements of Functional Spaces

The basic probability model for the analysis of the hydrometeorological data is the random
function ( )h rU W�  of spatial coordinates rU  and time t characterized by mean value

( ) ( )[ ]w,t,rEt,rm
rr

h=h (2)

and covariance function

( ) ( ) ( )[ ],w,t,rw,t,rE,t,,rK 00 t+r+h×h=trh

rrrrr (3)



Peculiarities of Computer Simulation and Statistical Representation 465

where E[•] is the operator of population mean (averaging on ensemble of realizations
numbered by index w), h0(•)=h(•)-mh(•).

By example of the three interconnected fields: atmospheric pressure p( r
r

,t), wind

speed V
r

( r
r

,t) and wind waves S(w,Q, r
r

,t). It is easy to make sure that the operations
of addition and multiplication in (1) and (2) are subject to a concrete definition owing

to specificity of fields p(•),V
r

(•),S(•). For each value ( r
r

,t) the field of pressure p(•)
is scalar value, the field  is vectorial value depending on a gradient of scalar field p(•),

field of wind waves computed in accordance with field V
r

(•) through the equation of
wave energy balance (1) is represented by frequency  directional spectrum S(w,Q,•),
where w is frequency, Q is mean direction of waves propagation.

Fig. 1. Frequency-directed climatic spectrum of complex sea. North-Eastern part of the Black
Sea

Hence, expressions (2) and (3) do not require comments only for p(•). Addition

operation in (2) is carried out in accordance with "parallelogram rule" for V
r

(•).
Multiplication operation in (3) is understood as tensor product. Then 

V
m r (•) is vector,

and )(K
V

•r  is dyadic tensor [15]. Spectrum S(w,Q, r
r

,t) is function for wave field.

Therefore interpretation of mS(•) and KS(•) is obvious only when (w,Q) are fixed.

),,(S),(S XQw=Qw (4)

where X is parameters set k,1j,j =x , forming affine vector. Spectral moments or average

values associated with them are used as parameters of observed waves elements. Relations
for mean vector, its variance and specific quantiles can be obtained with the help of
statistical linearization method. Approach (4) issues from the given function of joint
distribution }z,...,z{P)z,...,z(F kk11k1 <x<x=X  of systems of parameters X . In fig. 1
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the example of calculation of an average spectrum ),,(S XQw  of complex waves

(Northeast part of the Black Sea), and also correspondent probabilistic intervals is shown.
In table 1 characteristics of three functional spaces typical for hydrometeorological

fields are shown (scalar, Euclidean vector and affine vector).

Table 1. Functional spaces for hydrometeorological fields description

Object Population
mean

Variation Scalar product Decompositio
n

Examples
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wind speed field,
sea currents.
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wave parameters
field,
temperature,
salinity and
oxygen in water

Note: dm=m’(z)dz is a measure defined by density of uninterrupted distribution of scalar z.
Operations of addition in (2) and multiplication in (3) define rules of actions with

ensemble elements. For the further simplification of model of the analysis let us
introduce rules of operations with elements of space r

r
 and time t, by means of scalar

product. From table 1 it is clear, that only concept of scalar product is obvious to
scalar values. For Euclidean and affine vectors it generalizes concept of scalar product
both in discrete space and in continuous space.

Spaces with scalar product defined in table 1 will be Hilbert [3]. Hence, in each of
them any element can be presented as an infinite converging series on some system of
basic elements of this space: scalar functions )t,r(k

r
j , Euclidean )t,r(k

rr
Y  or affine

)t,r(k

r
F  vectors - functions. Let us use this decomposition as fundamental way for

model of statistical analysis simplification and reduction of dimension. They allow to
proceed from scalar or vector function to an accounting set of scalar coefficients, i.e.
to replace model of stochastic function by system of random values.

4. Statistical Representation of Time–Spatial Metocean Fields

Decomposition on basic elements in finite dimensional space is one of classical MSA
procedures [2]. Decomposition coefficients ak are called canonical variable. The
principal components explaining general variability, factor loadings determining
correlation structure, and canonical correlations representing degree of interrelation
between two objects are considered depending on the purposes decomposition. The
problem of obtaining canonical variables in the analysis of continuous
hydrometeorological fields h( r

r
, t) was traditionally solved by their representation as

system of random values H={h1,…,hn} in characteristic points { r
r

i} or/and at time
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moments {ti}, n,1i =  with correlation matrix KH=E[H×HT]. Classical procedures of
matrix algebra were applied for transition to canonical basis [5].

In fig. 2 as an example spatial and time correlation functions of surface atmospheric
pressure field are shown. From the figure it is clear, that they decrease slowly enough;
the degree of coherence between rather far points is high. Hence, it is possible to
speak about quasi-homogeneous areas. In this case using of hi,hj values in Hn in close
points )r,r( ji

rr
 results in multicollinearity and estimation of correlation matrix KH

appears poorly worded and numerically singular. In generalizing work [1] it is noted
that now neither quantitative criteria of multicollinearity, nor universal methods of its
elimination by means of matrix algebra exist.

Fig. 2. Estimations of spatial and time correlation functions of pressure field. a) – spatial
covariation function Kp(x,y,t) (hPa2) of pressure field over the Barents Sea in homogeneous
approximation: 1–t=0, 2–t=24h. (b) –autocorrelation functions of pressure in characteristic
points over the Barents Sea. 1– (750N, 300E), 2– (750N,500E), 3– (700N, 400E).(c) – joint
correlation functions of pressure in characteristic points over the Barents Sea. 1–(750N, 300E)
and (750N,500E), 2–(750N,300E) and (700N,400E), 3–(750N,500E) and (700N, 400E).

Therefore for canonical variable introduction let us resort directly to methods of
decomposition in functional spaces shown in table 1. Karhunen [11] and Loeve [14]
show that for scalar stochastic functions statistically orthogonal basis is generated by the
homogeneous Fredholm integrated equation with the symmetric positive definite kernel

)t,r(drd),r(),t,r,r(K 11

r

1

rrrrr
jl=ttjtò (5)

Spectrum of such kernel is discrete. Application of quadrature methods for (4)
solution results in matrix representation without avoiding multicollinearity of the
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problem. Therefore let us use projective (variational) methods [6] for obtaining
orthogonal basis. It improves conditionality of the problem due to new appropriate
orthogonal basis. Occasionally such method allows to obtain analytical solution for
some types of modeling representations of autocorrelation function Kh(•) of non-
homogeneous field. For example, one of the elementary models describes non-
homogeneous field (in accordance with variation s2(t)) with correlation function of

]1,1[s,t),st(k)s()t()s,t(K -˛-ss=z .kind. Let us assume that s(•)=s0+bt and

k(t–s)=1–|t–s|/2. Then asymptotic expressions for the first two eigenvalues from (5)
look as follow:

[ ] [ ]
.24018134169Q
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2
0

2
2

2
0

2
1

s+sb+b=

-s+b=l+s+b=l
(6)

As an example, values l1, l2, obtained with the help of quadrature matrix procedure
at the given number of knots N of a uniform grid, and by means of (5) for various
combinations ( bs ,0 ), are shown in tab. 2. From the tab. we can see that convergence

of quadrature (matrix) method is rather slow. By virtue of specificity of substitution of
a numerable spectrum by a finite one, such spectrum produces upper estimate for

*
2

*
1 ,ll  monotonously converging to true value. Using of analytical solution (5) in all

cases gives close enough results, especially for *
1l . Estimations of *

2l  are more

different from those obtained by matrix method; their specification requires increase
order of asymptotic decomposition.

Table 2. Comparison of convergence for matrix (quadrature) method and analytical
approximation (6) by variational method.

Matrix method s0=1,b=0.1 s0=1,b=0.3 s0=1,b=0.5 s0=1,b=0.7

5
1.52
0.59

1.66
0.55

1.90
0.50

2.22
0.48

10
1.44
0.49

1.54
0.46

1.72
0.42

1.97
0.40

100
1.37
0.41

1.45
0.39

1.59
0.36

1.78
0.34

N

500
1.36
0.40

1.44
0.38

1.58
0.36

1.77
0.33

Analytical
approximation (6)

1.34
0.40

1.42
0.36

1.57
0.30

1.76
0.23

Each eigenvalue il  sets variance of i-th principal component. This is coefficient ai,

which is determined by inverse transformation of tab. 1

ò jz=
r

kk dtrd)t,r()t,r(a
rrr (7)

For vector random field (wind speed or sea currents) )t,r(V
rr

 from tab. 1

representation of orthogonal basis at transition to the principal components is
ambiguous. Let us consider the problem of obtaining statistically orthogonal basis for
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a random vector field )v,u()r(V =
rr

. In this case decomposition coefficients ak are not

correlated, and the vector basis is the solution of system of homogeneous Fredholm
equations

),r(rd)r()r,r(Krd)r()r,r(K

),r(rd)r()r,r(Krd)r()r,r(K

12221vv2221vu

12221uv2221uu

rrrrrrrrr

rrrrrrrrr

ly=y+j

lj=y+j

òò
òò (8)

with respect to components ),( yj=Y
r

. Orthogonal basis generated by (8) defines

operator transformation F=Y Q  resulting correlative tensor

[ ]åå Y˜Yl=
k j

pjkiijpkV
)r()r()r,r(K

rrrrrr
r

(9)

in diagonal form:

L==FF=YY T/TTT QQKQKQK (10)

where L is diagonal tensor, composed of variations of decomposition coefficients ak.

Inner orthogonal transformation F  from tensor K  to /K  defines turn of principle

basis ( ¢¢
21 e,e
rr

) of vector space relative to natural basis ( 21 e,e
rr

) in each point kr
r

.

Tensor-function /K  can be presented as

œ
ß

ø
Œ
º

Ø
lJ-
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=
)r,r()r,r(

)r,r()r,r(
)r,r(K

pk2pk

pkpk1
pk
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where l1, l2 are principle axes of covariation tensor between points )r,r( pk

rr
, J is

indicator of rotation (when k=p J is equal zero). Transit to principle basis ( ¢¢
21 e,e
rr

) for

each pair )r,r( pk

rr
 allows to consider components of vectors =V

r
(u,v) independently.

Therefore outer orthogonal transformation Q  of tensor /K  to L  defines rotation of

sample axis in fundamental space over area r .

For an explanation of correlation structure of scalar and vector random fields,
techniques of factor analysis are used. This is representation of random field h( t,r

r
) as

decomposition on the limited number m of coefficients ak [8], specifying correlation
function Kh( t,t,r,r 21

rr
) as

),t(k),r()t,r(),t,r,r(K
m

1i
2i1ii21 t+tjjl=t e

=
h å rrrr (12)

Here ke(t,t) is correlation function describing variability of specific and random
factors e(t). For scalar random fields basis functions (factor loadings) are defined
mostly with the help of principal factors method. It consists in application of equation
(5) to correlation function corrected on value ke(t,t) [7].

In hydrometeorology for description of spatial and time connectedness two
techniques of factor analysis connected with methods of correlation function
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construction •h( t,t,r,r 21

rr
) are traditionally distinguished. The first is the S-technique,

when sections t2
0

1
0

21 )]t,r()t,r([M)r,r(K
rrrr

hh=h  of spatial correlation function are

considered. Numeration of ensemble elements is defined by time t. Otherwise, when

r
00 )],r()t,r([M),t(K r

rr
thh=th , we speak about T-technique which explains time

connectedness.
As an example let us consider double factor model of average monthly variability

of surface level atmosphere pressure field in the North hemisphere, which is
constructed with the help of S– and T– techniques. In fig.3 structure of factor loadings
is presented for these two techniques.

Within the framework of S-technique the first factor (coefficient a1, axis f1) explains
41%, and defines the influence of processes occurring over the Euroasian continent and
the Pacific Ocean. The second factor a2 (20 % of variability, axis f2) defines processes
over the North American continent and Western part of the Atlantic Ocean. Western part
of the Atlantic region influences both factors approximately equally.

(a) (b)

Fig. 3. Graphic representation of double factor model of correlation structure of atmosphere
pressure field over North hemisphere (a) – S–technics: each point is denoted as LATITUDE
(N)_ LONGITUDE (E) (b) T–technics: each month is denoted by serial number

Within the framework of T-technique in accordance with many years data in the
North hemisphere the first factor explains 51% of variability and characterizes
intensity of processes in autumn-winter season (October-February). The second factor
(20% variability) characterizes summer season (June-August). The range
corresponding to interseason defines both factors equally.

For description of spatial and time connectedness of system of two dependent
random fields h( r

r
,t), z( r

r
,t) or time connectedness of two spatial areas h( 1r

r
,t),

h( 2r
r

,t) canonical correlation analysis is used [10]. It allows to explain not only

structure of auto correlation functions Kz(•), Kh(•), but also joint correlation function
Kzh(•). For this purpose let us introduce in appropriate functional spaces joint
canonical basis functions ck( r

r
,t) and dk( r

r
,t) and appropriate canonical variables
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òò z=h=
r
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rrrrrr (13)

for which value of joint correlation function is

r(Uk(t),Wk(t+t))fimax,   E[U2]=E[W2]=1. (14)

for any t‡0. Solution of (13–14) as the problem of conditional optimization in
functional space results in system of two uniform integral Fredholm equations:
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relative to functions •( r
r

), d( r
r

) for stipulated t and eigenvalues l.  By example of
atmospheric pressure field in synoptic range of variability in tab. 3 values of first l1(t)
and second l2(t) functions of canonical correlation for two spatial areas (Northwest of
Atlantic and Europe) are given. From the table it is clear, that the functions li(t)
decrease slowly.

Table 3. Canonical correlation functions for the Northeast Atlantic and Europe. Synoptic
variability.  Autumn season (October-November).

t, days 0 5 10 15 20

l1(t) 0.76 0.67 0.65 0.45 0.32

l2(t) 0.46 0.41 0.37 0.28 0.19

5. Conclusions

1. Application of termohydrodynamic modeling methods has allowed to generalize
the diverse data of full-scale observations and to create the information base
containing characteristics X={xi( t,r

r
)} of the hydrometeorological phenomena on

the regular grid kr
r

 at the given time moments of ts.

2. Hydrometeorological fields at fixed )t,r(
r

 designated as )( •  are considered as

elements of various functional spaces: scalar (atmospheric pressure )(p • ),

Euclidean vector (wind speed ))(V •
r

, function (spectral density of complex waves

),,(S •Qw ). In these spaces operations of addition (averaging), multiplication of

elements and scalar product have various interpretation.
3. For the description of variability of spatial–time fields canonical variables as

coefficients of decomposition in appropriate Hilbert spaces are used. To avoid of
multicollinearity basis functions of decomposition are determined by the solution of
appropriate Fredholm equations with the help of variational methods.
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