
Efficient Concurrent Zero-Knowledge

in the Auxiliary String Model

Ivan Damg̊ard

Aarhus University, BRICS?

Dept. of Computer Sience, Ny Munkegade
DK 8000 Aarhus C, Denmark

ivan@daimi.au.dk

Abstract. We show that if any one-way function exists, then 3-round
concurrent zero-knowledge arguments for all NP problems can be built
in a model where a short auxiliary string with a prescribed distribution is
available to the players. We also show that a wide range of known efficient
proofs of knowledge using specialized assumptions can be modified to
work in this model with no essential loss of efficiency. We argue that the
assumptions of the model will be satisfied in many practical scenarios
where public key cryptography is used, in particular our construction
works given any secure public key infrastructure. Finally, we point out
that in a model with preprocessing (and no auxiliary string) proposed
earlier, concurrent zero-knowledge for NP can be based on any one-way
function.

1 Introduction

In a zero-knowledge protocol [23], a prover convinces a verifier that some state-
ment is true, while the verifier learns nothing except the validity of the asser-
tion. Apart from being interesting as theoretical objects, it is well-known that
zero-knowledge protocols are extremely useful tools for practical problems. For
instance as stand-alone for identification schemes1 , but probably a more impor-
tant application is as subprotocols in schemes for more complex tasks such as
voting, electronic cash and distributed key generation.

Hence the applicability of the theory of zero-knowledge in real life is of ex-
treme importance. One important aspect of this is composition of protocols, and
the extent to which such composition preserves zero-knowledge. While sequen-
tial composition does preserve zero-knowledge, this is not always the case for
parallel composition [22].

In [12] Dwork, Naor and Sahai pointed out that the strict synchronization
usually assumed when composing zero-knowledge protocols is unrealistic in sce-
narios such as Internet based communication. Here, many instances of the same
? Basic Research in Computer Science, Center of the Danish National Research Foun-

dation
1 However, the identification problem can also be solved without using zero-

knowledge [2]

B. Preneel (Ed.): EUROCRYPT 2000, LNCS 1807, pp. 418–430, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 419

or different protocols may start at different times and may run with no fixed
timing of messages. What is needed here is a stronger property known as con-
current zero-knowledge, i.e., even an arbitrary interleaving of several instances
of zero-knowledge protocols is again zero-knowledge, even when the verifiers are
all controlled by a single adversary, who may use information obtained from one
protocol to determine its behavior in another instance.

Unfortunately, standard constructions for zero-knowledge protocols fail to
provide this property. This is because they are based on simulation by rewinding
the verifier. In a concurrent setting, the simulator may be forced to rewind an
exponential number of times. In fact, it seems that concurrent zero-knowledge
cannot be provided at all in the usual model with as few rounds as ordinary
zero-knowledge. Kilian, Petrank and Rackoff [19] show that only BPP languages
have concurrent zero-knowledge proofs or arguments with 4 rounds or less, if
black-box simulation is assumed2 .

Thus, a lot of research has gone into finding ways of getting around this
problem. In [12], it was shown that given constraints on the timing of messages3 ,
concurrent zero-knowledge can be achieved for all of NP in a constant number
of rounds. Subsequently it was shown that the need for timing constraints could
be pushed into a preprocessing phase[13]. In [10] it was shown that the timing
constraints in the preprocessing can be reduced to merely ensuring th at all
preprocessings are finished before the main proofs start. This comes at the price
that the work needed in the preprocessing depends on the size and number of
statements to be proved later. Finally, Richardson and Kilian [26] show that it
is possible to do without timing constraints, at the expense of a non-constant
number of rounds.

We note that a completely different approach is possible: one could go for a
weaker property than zero-knowledge, one that would be preserved in a concur-
rent setting. One such possibility is the Witness-Hiding (WH) protocols of Feige
and Shamir [15]. Most WH protocols are based on the standard paradigm of
the prover proving knowledge of one of two ”computationally independent” wit-
nesses without revealing which one he knows. Such protocols are also WH when
used concurrently, and can be used to construct secure identification systems. In
[8], very efficient methods for building such protocols are developed. However,
for more general use, e.g., as subrutines in multiparty computation or verifiable
secret sharing protocols, WH is not always sufficient, one needs simulatability
to prove the overall protocol secure.

2 Our Work

Our main objective is to show that concurrent zero-knowledge can sometimes be
obtained in a simple way using standard tools. We do not claim any major new
techniques, in fact our solution is quite straightforward. Nevertheless, we believe
2 Virtually all known zero-knowledge protocols are black-box simulatable
3 These constraints are much milder than strict synchronization, please refer to [12]

for details

420 Ivan Damg̊ard

it is useful to realize that in many real life scenarios, resources are available that
allow achieving concurrent zero-knowledge easily.

We do not mean to suggest that our solution is always more practical than
previous methods for achieving concurrent zero-knowledge in constant round,
such as the timing based one from [12]. In fact the solutions are based on as-
sumptions of very different nature. Which solution is preferable will often depend
on the actual scenario in which the you want the solution to work.

Also, nothing we say here makes the theoretical work on the subject less
interesting or important – a major problem, namely whether concurrent zero-
knowledge for NP can be achieved in constant round without extra assumptions,
remains open.

Independently, Kilian and Petrank [18] and Canetti, Goldreich, Goldwasser
and Micali [9] have made observations similar to ours, in the case of [9] as a
result of introducing a new general concept called Resettable Zero-Knowledge.

2.1 The Model

Our work starts from the following assumption: an auxiliary string with a pre-
scribed distribution is available to the prover and verifier. Given this assumption
we will see that concurrent zero-knowledge can be achieved in constant round
with no timing constraints or preprocessing. Informally, zero-knowledge in such
a setting means as usual that the verifiers entire view can be simulated effi-
ciently, which here means its view of the interaction with the prover, as well as
the auxiliary string. Soundness means that no polynomial time prover can cheat
the verifier with non-negligible probability where the probability is taken over
the choice of the auxiliary string as well as the coin tosses of the players.

More formally, an interactive argument for a languageL in this model consists
of a probabilistic polynomial time algorithm G, and polynomial time interactive
Turing Machines P, V . The algorithm G gets as as input 1k and outputs an
auxiliary string σ. P, V then get σ and a word x of length k as input, and P
gets a private input w. At the end of the interaction, V halts and outputs accept
or reject. When we talk about the probability of acceptance or rejection in the
following, these probabilities are taken over the coin tosses of G, P and V . Note
that even when we consider cheating provers, we still assume that σ is correctly
generated (by G).

As usual, a negligible function from natural to real numbers δ() is a function
such that δ(k) ≤ 1/p(k) for all polynomials p(·) and all large enough k)

Definition 1. We say that (G, P, V) is an interactive argument in the auxiliary
string model for language L, if

– For every x ∈ L, there is a w such that if P gets w as private input, V will
accept on input x.

– For words x 6∈ L, and for every probabilistic polynomial time prover, the
probability that V accepts input x is negligible in |x|.

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 421

We have defined here for simplicity only the case where an auxiliary string
is only used to prove a single statement, and where the input parameter to G
is set equal to the length of the common input x. None of these restrictions are
essential, and they can be ignored in a practical application.

To define zero-knowledge, we consider as usual an arbitrary probabilistic
polynomial time verifier V ∗ that gets private auxiliary input y of length polyno-
mial in |x|. We then have:

Definition 2. For any verifier V ∗, there exists a simulator MV ∗, such that for
words x ∈ L and arbitrary auxiliary inputs y, such that MV ∗ runs in expected
polynomial time, and the distribution of MV ∗(x, y) is polynomially indistinguish-
able from the view of V ∗ produced from the same input (namely σ, the random
coins of V ∗, and the conversation with P).

Note that the standard non-interactive zero-knowledge model (where the
auxiliary string is a uniformly chosen random string) [3] is a special case, and
indeed by their very nature non-interactive zero-knowledge proofs do not require
rewinding to simulate, and so are robust in a concurrent setting. It is even
possible to do any polynomial number of non-interactive proofs based on the
same globally shared random string [14].

However, there are still several reasons why non-interactive zero-knowledge
proofs are not the answer to all our problems: they are in general much less
efficient than interactive ones and - as far as we know - require stronger cryp-
tographic assumptions (trapdoor one-way permutations as opposed to arbitrary
one-way functions). We would like a solution allowing us to use standard efficient
constructions of protocols securely in a concurrent setting, without significant
loss of efficiency.

We also need to consider proofs of knowledge in our model. For this, we
use a straightforward adaptation of the definition of Bellare and Goldreich, in
the version modified for computationally convincing proofs of knowledge[4]. The
scenario, consisting of G, P, V is the same as before. Now, however, the language
L is replaced by a binary relation R, and the prover’s claim for the given common
input x is that he knows w such that (x, w) ∈ R.

Definition 3. We say that (G, P, V) is a proof of knowledge for R in the aux-
iliary string model, with knowledge error κ(), if

– If P is given w, such that (x, w) ∈ R, then V accepts.
– There exists an extractor, a machine with oracle access to the prover which

on input x outputs w with (x, w) ∈ R. This extractor must satisfy the follow-
ing for any probabilistic polynomial time prover and any long enough x: if
the provers probability ε(x) of making the verifier accept is larger than κ(x),
then the extractor runs in expected time p(|x|)/(ε(x)− κ(x)).

The model we use (with a general auxiliary string) was also used in [5] (for
a different purpose). The rationale for allowing a general distribution of the
reference string is of course that one may hope that this allows for more efficient

422 Ivan Damg̊ard

protocols, for examplea much shorter auxiliary string. The problem, on the other
hand, may be that requiring a more powerful resource makes the model less
realistic.

However, as we shall see, our protocols do in fact apply to a realistic situation,
namely a public-key cryptography setting where users have public/private key
pairs. In fact our prover and verifier do not need to have key pairs themselves,
nevertheless, they will be able to prove and verify general NP statements in
concurrent zero-knowledge by using the public key PA of a third party A as
auxiliary string. This will work, provided that

– The verifier believes that A’s secret key is not known to the prover.
– The prover believes that PA was generated using the proper key generation

algorithm for the public-key system in use.

We stress that A does not need to take part in the protocols at all, nor does he
need to be aware that his public key is being used this way, in particular keys for
standard public key systems like RSA, El Gamal or DSS can be used directly.

Note that if we have a secure public key infrastructure where public keys
are being certified by a certification authority (CA), then all our demands are
already automatically satisfied because the CA can serve as player A in the
above: in order for the infrastructure to be secure in the first place, each user
needs to have an authentic copy of the CA’s public key available, and one must
of course trust that the CA generated its public key in the proper way and does
not reveal its private key to anyone else.

So although our model does make stronger assumptions on the environment
than the standard one, we believe that this can be reasonable: The problem of
concurrent zero-knowledge arises from the need to apply zero-knowledge proto-
cols in real situations. But then solutions to this problem should be also allowed
to take advantage of resources that may exist in such scenarios.

It is important to realize one way in which our model can behave differently
from the standard one: suppose a verifier shows to a third party a transcript of
his interaction with the prover as evidence that the protocol really took place.
Then, in our model, there are scenarios where this will be convincing to the
third party (contrary to what is case with the standard model). This may in
some applications be a problem because it can harm the privacy of users. We
stress, however, that in the case where a public-key infrastructure exists, there
are ways around this problem. We discuss this issue in more detail in Section 4.

2.2 The Results

Our first result is a construction for protocols of a particular form. Assume we
have a binary relation R, and a 3-move proof of knowledge for R, where the
verifier sends a random challenge as the second message. Thus this protocol gets
a string x as common input for prover and verifier, whereas the prover gets as
private input a witness for x, i.e. w such that (x, w) ∈ R. Conversations in the
protocol are of form (a, e, z), where the prover chooses a, z. We will assume that

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 423

the protocol is honest verifier zero-knowledge in the sense that given e, one can
efficiently compute a correctly distributed conversation where e is the challenge.
Finally we assume that a cheating prover can answer only one of the possible
challenges, or more precisely, from the common input x and any pair of accepting
conversations (a, e, z), (a, e′, z′) where e 6= e′, one can compute a witness for x.
We call this a Σ-protocol in the following. We have

Theorem 1. Given any binary relation R and a Σ-protocol for R. If one-way
functions exist, then there exists a computationally convincing and concurrent
zero-knowledge 3-move proof of knowledge (with negligible knowledge error and
no timing constraints) for R in the auxiliary string model.

The construction behind this result can be applied in practice to the well known
proofs of knowledge of Schnorr [21] and Guillou-Quisquater [16] to yield con-
current zero-knowledge proofs of knowledge in the auxiliary string model with
negligible loss of efficiency compared to the original protocols (which were not
even zero-knowledge in the usual sense!). The idea behind this result also imme-
diately gives:

Theorem 2. If one-way functions exist, there exist 3-move concurrent zero-
knowledge interactive arguments in the auxiliary string model (with no timing
constraints) for any NP problem.

In both these results, the length of the auxiliary string is essentially the size
of the computational problem the prover must solve in order to cheat. The length
does not depend on the size or the number of statements proved.

Our final result is an observation concerning the preprocessing model of
Dwork and Sahai [13] (where there is no auxiliary string). It was shown in [13]
that prover and verifier can do a once-and-for-all preprocessing (where timing
constraints are applied), and then do any number of interactive arguments for
any NP problem in concurrent zero-knowledge (with no timing constraints) in 4
rounds. This was shown under the assumption that one-way trapdoor permuta-
tions exist. Below, we observe the following:

Theorem 3. If any one-way functions exists, then any NP problem has a 3-
round concurrent zero-knowledge argument in the preprocessing model of Dwork
and Sahai.

We note that our preprocessing is once-and-for-all, like the one in [13]: once
the preprocessing is done, the prover and verifier can execute any polynomial
number of proofs securely, and the complexity of the preprocessing does not
depend on the number or size of the statements proved.

3 The Protocols

3.1 Trapdoor Commitments Schemes

In a commitment scheme, a committer C can commit himself to a secret s chosen
from some finite set by sending a commitment to a reciever R. The receiver should

424 Ivan Damg̊ard

be unable to find s from the commitment, yet C chould be able to later open
the commitment and convince R about the original choice of s.

A trapdoor commitment scheme is a special case that can be loosely de-
scribed as follows: first a public key pk is chosen based on a security parameter
value k, usually by R by running a probabilistic polynomial time generator G.
Then pk is sent to C. There is a fixed function commit that C can use to
compute a commitment c to s by choosing some random input r, and setting
c = commit(s, r, pk). Opening takes place by revealing s, r to R, who can then
check that commit(r, s, pk) is the value he received originally.

We then require the following:

Hiding: For a pk correctly generated by G, uniform r, r′ and any s, s′, the
distributions of commit(s, r, pk) and commit(s′ , r′, pk) are polynomially in-
distinguishable (as defined in [23]).

Binding: There is a negligible function δ() such that for any C running in
expected polynomial time (in k) the probability that C on input pk computes
s, r, s′, r′ such that commit(s, r, pk) = commit(s′, r′, pk) and s 6= s′ is at
most δ(k).

Trapdoor Property: The algorithm for generating pk also outputs a string
t, the trapdoor. There is an efficient algorithm which on input t, pk out-
puts a commitment c, and then on input any s produces r such that c =
commit(s, r, pk). The distribution of c is poynomially indistinguishable from
that of commitments computed in the usual way.

In other words, the commitment scheme is binding if you know only pk, but
given the trapdoor, you can cheat arbitrarily.

From the results in Shamir et al.[20], it follows that existence of any one-way
function f implies the existence of a trapdoor commitment scheme, where the
public key is simply f(y), where y is chosen uniformly in the input domain of
f , and y is the trapdoor. Based on standard intractability assumptions such as
hardness of discrete log or RSA root extraction, very efficient trapdoor commit-
ment schemes can be built, see e.g. [6].

3.2 A Construction for Σ-Protocols

In what follows, we will assume that we have a relation R and a Σ-protocol P
for R. The prover and verifier get as common input x, while the prover gets as
private input w, such that (x, w) ∈ R.

We will be in the auxiliary string model, where the auxiliary string will be
the public key pk of a trapdoor commitment scheme, generated from security
parameter value k = |x|. For simplicity, we assume that the commitment scheme
allows to commit in one commitment to any string a, that may occur as the first
message in P (in case of a bit commitment scheme, we could just commit bit by
bit). Finally, note that since the properties of a Σ-protocol are preserved under
parallel composition, we may assume without loss of generality that the length
of a challenge e in the protocol is at least k.

The protocol then proceeds as follows:

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 425

1. On input x, w, the prover computes a using the prover’s algorithm from P,
chooses r at random and sends c = commit(a, r, pk) to the verifier.

2. The verifier chooses e at random and sends it to the prover.
3. The prover computes z, the answer to challenge e in P and sends z, a, r to

the verifier.
4. The verifier accepts iff it would have accepted on x, a, e, z in P, and if c =

commit(a, r, pk).

It is straightforward to show that this protocol has the desired properties.
First, a simulator for the protocol given an arbitrary verifier V ∗:

1. Generate pk with known trapdoor t and give x, pk to V ∗.
2. Send a commitment c computed according to the trapdoor property to V ∗

and get e back.
3. Run the honest verifier simulator on input e to get an accepting conversation

(a, e, z) in the original protocol. Use the trapdoor to compute r such that
c = commit(a, r, pk). Send z, a, r to V ∗.

This simulation works based on the hiding and trapdoor properties of the com-
mitment scheme, and does not require rewinding of V ∗, hence the protocol is
also concurrent zero-knowledge.

To show it is a proof of knowledge with knowledge error κ(), we will show
that the protocol satisfies the definition when we choose κ(x) = 1/q(|x|) for any
polynomial q(), thus the ”true” knowledge error is smaller than any polynomial
and so is negligible. This analysis is rather loose because we are dealing with a
general type of intractability assumption. A much better analysis can be obtained
from making a concrete assumption on a particular commitment scheme.

Our algorithm for extracting a witness will based on the following

Claim. From any prover convincing the verifier with probability ε(x) > 1/q(k),
we can extract, using rewinding, convincing answers to two different challenges
(on the same intial message) e, e′, in time proportional to 1/ε(x) for all large
enough k (Recall that we have set k = |x|).

Intuitively, this is just because 1/q(k) > 2−k for all large enough k, and a
success probability larger than 2−k must mean that you can answer more than
one challenge, since the number of challenges is at least 2k. However, the proof
is a bit less obvious than it may seem: the prover may be probabilistic, but
we still have to fix his random tape once we start rewinding. And there is no
gurantee that the prover has success probability ε(x) for all choices of random
tapes, indeed ε(x) is the average over all such choices. However, a strategy for
probing the prover can be devised that circumvents this problem:

Using a line of reasoning devised by Shamir, let H a matrix with one row
for each possible set of random choices by the prover, and 2k columns index by
the possible challenges (assume for simplicity that there are precisely 2k). In the
matrix we write 1 if the verifier accepts with this random choice and challenge,
and 0 otherwise. Say a row is heavy if it contains more that ε(x)/2 1’s. Since
the total fraction of 1’s in H is ε(x), at least 1/2 of the 1’s are located in heavy

426 Ivan Damg̊ard

rows. By using the prover as a black-box, we can probe random entries in H , or
random entries in a given row, and the goal is of course to find two 1’s in the
same row. Consider the following algorithm:

1. Probe random entries in H until a 1 is found.
2. Start running the following two processes in parallel. Stop when at least one

of them stops.
A. Probe random entries in the row where we already found a 1, stop when

a new 1 is found.
B. Repeatedly flip a random coin that comes out heads with probability

ε(x)/c (where c is an appropriately chosen constant, see below), and
stop as soon as heads comes out. This can be done, e.g., by probing
a random entry in H , choosing a random number among 1, ..., c, and
outputting heads iff both the entry and the number was 1.

3. If process A finished first, output the position of the two 1-entries found.

This algorithm obviously runs in expected time a polynomial in k times
O(1/ε(x)).

We then look at the success probability: assume the row we find is heavy.
Then the expected number of trials to find a new 1 is T (ε(x)) = 2k/(ε(x)2k−1−1)
which is O(1/ε(x)) if ε(x) > 2−k+2; and this last condition certainly holds for all
large enough k. The probability that A uses less than 2T (ε(x)) trials is at least
1/2. By choosing c large enough, we can ensure that the probability that B uses
more trials than 2T (ε(x)) is constant. Since the probability that we find a heavy
row to begin with is constant (1/2), the total success probability is also constant.
Hence repeating this entire procedure until we have success takes expected time
a polynomial in k times O(1/ε(x)), as required. This finishes the proof of the
above claim.

Once we are successful, we get commitment c, conversations (a, e, z), (a′, e′, z′)
that are accepting in the original protocol, and finally values r, r′ such that
c = commit(a, r, pk) = commit(a′, r′, pk). If a = a′, a witness for the common
input x can be computed by assumption on the original protocol. Our extractor
simply repeats the whole extraction process until a = a′.

Since one repeat of the extraction process takes expected polynomial time,
it follows from the binding condition of the commitment scheme that the case
a 6= a′ occurs with negligible probability, at most δ(k). Hence the entire extractor
takes expected time 1/(1 − δ(k)) times the time need for one attempt. This is
certainly at most p(|x|)/(ε(x)− q(|x|)) for some polynomial p().

This and the result from [20] above on existence of trapdoor commitments
now implies Theorem 1. As for Theorem 2, we just need to observe that the
standard zero-knowledge interactive protocols for NP complete problems [24,1]
can in fact be based on any commitment scheme. They are usually described as
sequential iterations of a basic 3-move protocol. However, in our model we will
use a trapdoor commitment scheme, and do the iterations in parallel: it is then
trivial that the protocols can be straight line simulated if the simulator knows the
trapdoor. And soundness for a poly-time bounded prover follows by a standard

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 427

rewinding argument. A more careful analysis of the error probability and the
way it depends on the intractability assumption we make can be obtained using
the definitions from [11].

This same idea applies easily to the preprocessing model (with no auxiliary
string) of Dwork and Sahai [13]: here, the prover and verifier are allowed to do a
preprocessing, where timing constraints are used in order to ensure concurrent
zero-knowledge. After this, the goal is to be able to do any number of interactive
arguments in concurrent zero-knowledge, without timing constraints. In [13], it
is shown how to achieve this based on existence of one-way trapdoor permuta-
tions. However, an idea similar to the above will allow us to do it based on any
one-way function (and a smaller number of rounds): In the preprocessing, the
verifier chooses an instance of the trapdoor commitment scheme from [20] and
sends the public key to the prover. The verifier then proves knowledge of the
trapdoor. After this, any number of interactive arguments for NP problems can
be carried out in constant round and concurrent zero-knowledge. We will use the
parallel version of [24] or [1] based on the commitment scheme we established in
the preprocessing. Simulation can be done by extracting the trapdoor from the
verifier’s proof of knowledge (here, rewinding is allowed because of the timing
constraints) and then simulate the main proofs straight-line.

4 Implementation in Practice

In our arguments for practicality of our model, we claimed that the public key
of a third party can be used as auxiliary string. Given the construction above,
this amounts to claiming that the public key of any public-key crypto-system or
signature scheme can also be used without modification as the public key of a
trapdoor commitment scheme.

We can assume that the public key was generated using some known key
generation algorithm (recall that we originally assumed about the third party
that he generates his keys properly and does not give away the private key).
Clearly, the function mapping the random bits consumed by this algorithm to
the resulting public key must be one-way. Otherwise, the system could be broken
by reconstructing the random input and running the algorithm to obtain the
private key. Thus, from a theoretical point of view, we can always think of the
public key as the image of a random input under a one-way function and apply
the commitment scheme from [20].

This will not be a practical solution. But fortunately, standard public key
systems used in real life allow much more efficient implementations. Any system
based on discrete logarithms in a prime order group, such as DSS, many El
Gamal variants, and Cramer-Shoup has as part of the public key some group
element of form gx where x is private and g is public, and where g has prime
order q . This is precisely the public key needed for the trapdoor commitment
scheme of Pedersen [25], which allows commitment to a string of length log q in
one commitment.

428 Ivan Damg̊ard

If we have an RSA public key with modulus n, we can always construct from
this a public key for the RSA based trapdoor commitment scheme described in
[6]. We define q to be the least prime such that q > n (this can easily be computed
by both prover and verifier). We then fix some number b in Z∗

n, this could be
for instance be a string representing the name of the verifier. The intractability
assumption for the commitment scheme then is that the prover will not be able
to extract a q’th root mod n of b (such a root always exists by choice of q). Also
this scheme allows comitment to log q bits in one commitment.

Note that when executing a proof of the kind we constructed, it is always
enough in practice for the prover to make only one commitment: he can always
hash the string the wants to commit to using a standard collision intractable hash
function and commit to the hash value. This means that well known efficient
protocols can be executed in this model with no significant loss of efficiency.

Finally, we discuss the issue of whether a verifier can prove to a third party
that he interacted with the prover. We give an example where this is possible in
our model:

Suppose a public key pk is used as auxiliary string as we have described, to
do proofs of knowledge for a hard relation. And suppose the verifier V interacts
with a prover and then shows a transcript of the interaction to a third party C
as evidence that the protocol actually took place.

Note that V , if he wanted to create the transcript completely on his own,
would have to simulate the protocol given the fixed key pk. Now, if V computes
his challenge string for instance by applying a one-way function to the first
message sent by the prover in the protocol, this simulation appears to be a hard
problem, unless one knows either the private key corresponding to pk or the
prover’s secret. Of course, this is different from simulating the verifier’s entire
view, which includes the random choice of pk - this can indeed be done efficiently
since the protocol is zero-knowledge in our model.

So in this scenario, C would have to conclude that V could only have obtained
the transcript by either interacting with the prover or cooperating with the party
who generated pk in the first place. And if for instance this party is a CA that
C trusts then he can exclude the latter possibility.

The implications of this property depend entirely on the scenario we are in.
In some cases it can be an advantage to be able to prove that a protocol really
took place, in other cases such tracing would harm the privacy of users.

However, in a case where a public-key infrastructure is available, in partic-
ular when V has a public key pkV known to P , one can change the protocol
slightly making it harder for V to convince C. The idea is to redefine the way
in which P commits to bits, such that a commitment to bit b will have the
form commit(pk, b1), commit(pkV , b2), where P chooses b1, b2 randomly such
that b = b1 ⊕ b2. This preserves binding and hence soundness because P does
not know an honest V ’s private key. Also hiding and hence zero-knowledge is
preserved because we can still assume that pk is correctly generated and so no
information on b1 is leaked. However, assuming that V actually knows his own
private key, he can clearly use it as trapdoor for the commitment in order to

Efficient Concurrent Zero-Knowledge in the Auxiliary String Model 429

simulate the protocol without interacting with P , and so seeing a transcript will
not convince C in this case. This idea is closely related to the concept of verifier
designated proofs (see e.g. [7,17]).

References

1. Brassard, Chaum and Crépeau: Minimum disclosure proofs of knowledge, JCSS
vol. 37, pp.156-189, 1988.

2. M. Bellare, R. Canetti, and H. Krawczyk: A modular approach to the design and
analysis of authentication and key exchange protocols. STOC 98.

3. Blum, De Santis, Micali and Persiano: Non-Interactive Zero-Knowledge, SIAM
J.Computing, vol.20, 1991.

4. Bellare and Goldreich: Defining proofs of knowledge, Proc. of Crypto 92, Springer
Verlag LNCS series nr. 740.

5. Brandt, Landrock, Damgåard and Pedersen: Zero-knowledge authentication scheme
with secret key exchange, J.Cryptology, vol.11, pp.147-160, 1998.

6. Cramer and Damg̊ard: Zero-Knowledge proofs for finite field arithmetic, Proc. of
Crypto 98, Springer Verlag LNCS series nr.1462.

7. Cramer and Damg̊ard: Fast and Secure Immunization against Man-in-the-Middle
Impersonation, Proc. of EuroCrypt 97.

8. Cramer, Damgåard and Schoenmakers: Proofs of partial knowlegde, Proc. of Crypto
94, Springer Verlag LNCS series nr. 839.

9. Canetti, Goldreich, Goldwasser and Micali: Resettable Zero-Knowledge, proceed-
ings of STOC 2000.

10. Di Crescenzo and Ostrovsky: Concurrent Zero-Knowledge: Avoiding Impossibility
with Pre-Processing, Proc. of Crypto 99, to appear.

11. Damg̊ard and Pfitzmann: Squential Iteration of Interactive Arguments, proc. of
ICALP 98, Springer Verlag LNCS series.

12. Dwork, Naor and Sahai: Concurrent Zero-Knowledge, Proc. of STOC 98.
13. Dwork and Sahai: Concurrent Zero-Knowledge. Reducing the need for timing con-

straints, Proc. of Crypto 98, Springer Verlag LNCS series, nr.1462.
14. Feige, Lapidot and Shamir: Multiple non-interactive zero knowledge proofs based

on a single random string, Proc. of FOCS 90.
15. Feige and Shamir: Witness indistinguishability and witness hiding protocols, Proc.

of STOC 90.
16. L. Guillou and J.-J. Quisquater: A Practical Zero-Knowledge Protocol fitted to

Security Microprocessor Minimizing both Transmission and Memory, Proc. of Eu-
roCrypt 88, Springer Verlag LNCS series.

17. Jacobsson, Impagliazzo and Sako: Designated Verifier Proofs and their Applica-
tions, Proc. of EuroCrypt 96.

18. Joe Kilian: Private communication.
19. Kilian, Petrank and Rackoff: Lower Bounds for Zero-Knowledge on the Internet,

Proc. of FOCS 98.
20. Feige and Shamir: Zero-knowledge proofs of knowledge in two rounds, Proc. of

Crypto 89, Springer Verlag LNCS series nr. 435.
21. C.P. Schnorr: Efficient Signature Generation by Smart Cards, Journal of Cryptol-

ogy 4 (1991) 161–174.
22. Goldrecish and Krawczyk: On the composition of zero-knowledge proof systems,

SIAM J.Computing, vol.25, pp.169-192, 1996.

430 Ivan Damg̊ard

23. Goldwasser, Micali and Rackoff: The knowledge complexity of interactive proof sys-
tems, SIAM J.Computing, vol. 18, pp.186-208, 1989.

24. Goldreich, Micali and Wigderson: Proofs that yield nothing but their validity or all
languages in NP have zero-knowledge interactive proofs systems, JACM, vol 38,
pp.691-729, 1991.

25. Pedersen: Non-interactive and information theoretic secure verifiable secret shar-
ing, proc. of Crypto 91, Springer Verlag LNCS series, nr. 576.

26. Richardson and Kilian: On the Concurrent Composition of Zero-Knowledge Proofs,
to appear in Proceedings of EuroCrypt 99.

	Introduction
	Our Work
	The Model
	The Results

	The Protocols
	Trapdoor Commitments Schemes
	A Construction for $Sigma $-Protocols

	Implementation in Practice

