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Abstract. The cryptosystem recently proposed by Cramer and Shoup
[CS98] is a practical public key cryptosystem that is secure against adap-
tive chosen ciphertext attack provided the Decisional Diffie-Hellman as-
sumption is true. Although this is a reasonable intractability assumption,
it would be preferable to base a security proof on a weaker assumption,
such as the Computational Diffie-Hellman assumption. Indeed, this cryp-
tosystem in its most basic form is in fact insecure if the Decisional Diffie-
Hellman assumption is false. In this paper we present a practical hybrid
scheme that is just as efficient as the scheme of of Cramer and Shoup;
indeed, the scheme is slightly more efficient than the one originally pre-
sented by Cramer and Shoup; we prove that the scheme is secure if the
Decisional Diffie-Hellman assumption is true; we give strong evidence
that the scheme is secure if the weaker, Computational Diffie-Hellman
assumption is true by providing a proof of security in the random oracle
model.

1 Introduction

It is largely agreed upon in the cryptographic research community that the
“right” definition of security for a public key cryptosystem is security against
adaptive chosen ciphertext attack, as defined by Rackoff and Simon [RS91] and
Dolev, Dwork, and Naor [DDN91]. At least, this is the definition of security that
allows the cryptosystem to be deployed safely in the widest range of applications.

Dolev, Dwork, and Naor [DDN91] presented a cryptosystem that could be
proven secure in this sense using a reasonable intractability assumption. How-
ever, their scheme was quite impractical. Subsequently, Bellare and Rogaway
[BR93,BR94] presented very practical schemes, and analyzed their security un-
der the standard RSA assumption; more precisely, they proved the security of
these schemes in the random oracle model, wherein a cryptographic hash function
is treated as if it were a “black box” containing a random function. However,
the security of these schemes in the “real world” (i.e., the standard model of
computation) has never been proved.

A proof of security in the random oracle model provides strong evidence that
breaking the scheme without breaking the underlying intractability assumptions
will be quite difficult to do, although it does not rule out this possibility alto-
gether. The advantage of a proof of security in the “real world” is that it does not
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just provide such strong evidence, it proves that the scheme cannot be broken
without breaking the underlying intractability assumptions.

Recently, Cramer and Shoup [CS98] presented a practical cryptosystem and
proved its security in the standard model, based on the Decisional Diffie-Hellman
(DDH) assumption. It is hard to compare the security of this scheme with that
of the schemes of Bellare and Rogaway—although the former scheme can be
analyzed in the “real world,” and the latter schemes only in the random oracle
model, the underlying intractability assumptions are incomparable. Indeed, a
proof of security is worthless if the underlying assumptions turn out to be false,
and in fact, both the Cramer-Shoup scheme (in its basic form) and the Bellare-
Rogaway schemes can be broken if their respective assumptions are false.

Perhaps the strongest criticism against the Cramer-Shoup scheme is that the
assumption is too strong; in particular, it has not been studied as extensively as
other assumptions, including the RSA assumption.

In this paper, we address this criticism by presenting a hybrid variation of
the Cramer-Shoup scheme. This scheme is actually somewhat simpler and more
efficient than the original, and a proof of security in the “real world” can also
be made based on the DDH assumption. However, the same scheme can also be
proved secure in the random oracle model based on the Computational Diffie-
Hellman (CDH) assumption. This assumption was introduced by Diffie and Hell-
man [DH76] in their work that opened the field of public key cryptography, and
has been studied at least as intensively as any other intractability assumption
used in modern cryptography. Thus, in comparison to other available practical
encryption schemes, the scheme discussed here is arguably no less secure, while
still admitting a proof of security in the “real world” under a reasonable, if
somewhat strong, intractability assumption.

We believe this “hedging with hash” approach may be an attractive design
paradigm. The general form of this approach would be to design practical cryp-
tographic schemes whose security can be proved in the “real world” based on
a reasonable, if somewhat strong, intractability assumption, but whose security
can also be proved in the random oracle model under a weaker intractability
assumption. This same “hedging with hash” security approach has also been
applied to digital signature schemes: Cramer and Shoup [CS99] presented and
analyzed a practical signature scheme that is secure in the “real world” under
the so-called Strong RSA assumption, but is also secure in the random oracle
model under the ordinary RSA assumption. Although that paper and this paper
both advocate this “hedging with hash” security approach, the technical details
and proof techniques are quite unrelated. In the context of encryption or signa-
tures, one can also “hedge” just by combining two schemes based on different
intractability assumptions (via composition for encryption and via concatenation
for signatures). However, this type of hedging is much more expensive compu-
tationally, and much less elegant than the type of hedging we are advocating
here.

Other Diffie-Hellman Based Encryption Schemes. [TY98] present a scheme, but
it cannot be proved secure against adaptive chosen ciphertext attack under any
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intractability assumption, even in the random oracle model. There is indeed a
security analysis in [TY98], but rather than basing the proof of security on the
hardness of a specific problem, it is based on the assumption that the adver-
sary behaves in a specific way, similar to as was done in [ZS92]. [SG98] present
two schemes; the first can be proved secure against adaptive chosen ciphertext
attack in the random oracle model under the CDH, while the proof of security
for the second relies on the DDH. Both schemes are amenable to distributed
decryption. Moreover, the techniques in the current paper can be applied to the
second scheme to weaken the intractability assumption, replacing the DDH with
the CDH (but not the distributed version). [SG98] also discusses an encryption
scheme that is essentially the same as that in [TY98], and argues why it would
be quite difficult using known techniques to prove that such is scheme is secure
against adaptive chosen ciphertext attack even in the random oracle model.
[ABR98] present a scheme for which security against adaptive chosen ciphertext
attack can only be proved under non-standard assumptions—these assumptions
relate to the hardness of certain “interactive” problems, and as such they do not
qualify as “intractability assumptions” in the usual sense of the term. Further-
more, using random oracles does not seem to help. [FO99] present a scheme that
can be proven secure against adaptive chosen ciphertext attack under the CDH
assumption in the random oracle model. Moreover, they present a fairly gen-
eral method of converting any public-key encryption scheme that is semantically
secure into one that can be proved secure against adaptive chosen ciphertext
attack in the random oracle model. However, nothing at all can be said about
the security of this scheme in the “real world.”

2 Security against Adaptive Chosen Ciphertext Attack

We recall the definition of security against adaptive chosen ciphertext attack.
We begin by describing the attack scenario.
First, the key generation algorithm is run, generating the public key and

private key for the cryptosystem. The adversary, of course, obtains the public
key, but not the private key.

Second, the adversary makes a series of arbitrary queries to a decryption
oracle. Each query is a ciphertext ψ that is decrypted by the decryption oracle,
making use of the private key of the cryptosystem. The resulting decryption is
given to the adversary. The adversary is free to construct the ciphertexts in an
arbitrary way—it is certainly not required to compute them using the encryption
algorithm.

Third, the adversary prepares two messages m0, m1, and gives these two an
encryption oracle. The encryption oracle chooses b ∈ {0, 1} at random, encrypts
mb, and gives the resulting “target” ciphertext ψ′ to the adversary. The adver-
sary is free to choose m0 and m1 in an arbitrary way, except that if message
lengths are not fixed by the cryptosystem, then these two messages must never-
theless be of the same length.
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Fourth, the adversary continues to submit ciphertexts ψ to the decryption
oracle, subject only to the restriction that ψ 6= ψ′.

Just before the adversary terminates, it outputs b′ ∈ {0, 1}, representing its
“guess” of b.

That completes the description of the attack scenario.

The adversary’s advantage in this attack scenario is defined to be the distance
from 1/2 of the probability that b′ = b.

A cryptosystem is defined to be secure against adaptive chosen ciphertext
attack if for any efficient adversary, its advantage is negligible.

Of course, this is a complexity-theoretic definition, and the above description
suppresses many details, e.g., there is an implicit security parameter which tends
to infinity, and the terms “efficient” and “negligible” are technical terms, defined
in the usual way. One can work in a uniform (i.e., Turing machines) or a non-
uniform model (i.e., circuits) of computation. This distinction will not affect any
results in this paper.

3 Intractability Assumptions

In this section, we discuss the intractability assumptions used in this paper.
Let G be a group of large prime order q.
The Discrete Logarithm (DL) problem is this: given g ∈ G with g 6= 1 and

gx, compute x (modulo q).
The Computational Diffie-Hellman (CDH) problem is this: given g ∈ G with

g 6= 1, along with gx and gy, compute gxy. A “good” algorithm for this problem is
an efficient, probabilistic algorithm such that for all inputs, its output is correct
with all but negligible probability. The CDH assumption is the assumption that
no such “good” algorithm exists. Using well-known random-self reductions, along
with the results of [MW96] or [Sho97], the existence of such a “good” algorithm
is equivalent to the existence of a probabilistic algorithm that outputs a correct
answer with non-negligible probability, where the probability is taken over the
coin flips of the algorithm, as well as a random choice of g ∈ G, and x, y ∈ Zq.

The Decisional Diffie-Hellman (DDH) problem is this: given g ∈ G with
g 6= 1, along with gx, gy , and gz decide if z ≡ xy mod q. A “good” algorithm is
an efficient, probabilistic algorithm such that for all inputs, its output is correct
with all but negligible probability. The DDH assumption is the assumption that
no such “good” algorithm exists. Using the random-self reduction presented
by Stadler [Sta96], the existence of such a “good” algorithm is equivalent to
the existence of a probabilistic statistical test distinguishing the distributions
(g, gx, gy, gz) and (g, gx, gy, gxy), where g ∈ G, and x, y, z ∈ Zq are randomly
chosen.

All of these problems are equally hard in a “generic” model of computation,
where an algorithm is not allowed to exploit the representation of the group G
[Sho97]; in this model, O(

√
q) group operations are both necessary and sufficient.

However, for specific groups, special methods, such as “index calculus” methods,
may apply, allowing for more efficient algorithms.
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In general, the only known way to solve either the CDH or DDH problems is
to first solve the DL problem. However, there remains the possibility that the DL
problem is hard and the CDH problem is easy, or that the CDH problem is hard,
and the DDH problem is easy. Maurer [Mau94] has shown that under certain
circumstances, an algorithm for solving the CDH problem can be used to solve
the DL problem. This reduction is a “generic” reduction that does not depend
on the representation of the group G. It can also be shown that there is no such
generic reduction allowing one to efficiently solve the CDH or DL problems using
an algorithm for the DDH problem. This fact could be considered as evidence
supporting the claim that the DDH assumption is possibly stronger than the
CDH assumption.

It is perhaps worth stressing that although the DDH may be a stronger
assumption than either the DL or CDH assumption, these latter two “usual”
assumptions have rarely, if ever, been used to prove the security of a practical
cryptographic scheme of any kind—except in the random oracle model. Indeed, it
appears to be a widely held misconception that the security of the Diffie-Hellman
key exchange protocol [DH76] and variants thereof (e.g., [DvOW92]) is implied
by the CDH assumption. This is simply not the case—under any reasonable
definition of security, except in the random oracle model. One can use the DDH
assumption, however, as the basis for proving the security of such schemes (see,
e.g., [BCK98,Sho99]).

The DDH assumption appears to have first surfaced in the cryptographic
literature in [Bra93]. For other applications and discussion of the DDH, see
[Bon98,NR97].

As in the previous section, we have suppressed many details in the above
discussion, e.g., there is an implicit security parameter that tends to infinity,
and for each value of the security parameter, there is an implicit probability
distribution of groups.

4 The Encryption Scheme

4.1 The Basic Cramer-Shoup Scheme

We recall the basic Cramer-Shoup cryptosystem, as presented in [CS98]. The
cryptosystem works with a group G of large prime order q.

Key Generation. The key generation algorithm runs as follows. Random elements
g1, g2 ∈ G\{1} are chosen, and random elements

x1, x2, y1, y2, z ∈ Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Finally, a random key k indexing a universal one-way hash func-
tion UOWH is chosen. We assume that the output of the hash function is
an element of Zq . The public key is (g1, g2, c, d, h, k), and the private key is
(x1, x2, y1, y2, z).
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Encryption. To encrypt, we assume a message m can be encoded as an element of
G. The encryption algorithm runs as follows. First, it chooses r ∈ Zq at random.
Then it computes

u1 = gr
1 , u2 = gr

2 , e = hrm, α = UOWH(k; u1, u2, e), v = crdrα.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs as
follows. It first computes α = UOWH(k; u1, u2, e), and tests if

ux1+y1α
1 ux2+y2α

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”; oth-
erwise, it outputs

m = e/uz
1.

In [CS98], it was shown that this scheme is secure against adaptive chosen
ciphertext attack, under the DDH assumption for G, and assuming UOWH is
a secure universal one-way hash function. Although there are theoretical con-
structions for UOWH [NY89], a reasonable construction would be to use the
compression function of SHA-1, in conjunction with the constructions in [BR97]
or [Sho00]. With this approach, the security of UOWH can be based on the
assumption that the SHA-1 compression function is second-preimage collision
resistant, a potentially much weaker assumption than full collision resistance.

4.2 A General Hybrid Construction

We describe here a general method for constructing a hybrid encryption scheme.
To this end, it is convenient to define the notion of a key encapsulation scheme.
This is a scheme that allows a party to generate a random bit string and send
it to another party, encrypted under the receiving party’s public key.

A key encapsulation scheme works just like a public key encryption scheme,
except that the encryption algorithm takes no input other than the recipient’s
public key. Instead, the encryption algorithm generates a pair (K,ψ), where K
is a random bit string of some specified length, say l, and ψ is an encryption of
K, that is, the decryption algorithm applied to ψ yields K.

One can always use a public key encryption scheme for this purpose, gener-
ating a random bit string, and then encrypting it under the recipient’s public
key. However, as we shall see, one can construct a key encapsulation scheme in
other ways as well.

One can easily adapt the notion of security against adaptive chosen cipher-
text attack to a key encapsulation scheme. The only difference in the attack
scenario is the behavior of the encryption oracle. The adversary does not give
two messages to the encryption oracle. Rather, the encryption oracle runs the
key encapsulation algorithm to obtain a pair (K′, ψ′). The encryption oracle
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then gives the adversary either (K′, ψ′) or (K′′, ψ′), where K′′ is an indepen-
dent random l-bit string; the choice of K′ versus K′′ depends on the value of
the random bit b chosen by the encryption oracle.

Using a key encapsulation scheme that is secure against adaptive chosen
ciphertext attack, we can construct a hybrid public key cryptosystem that is
secure against adaptive chosen ciphertext attack as follows.

We need a pseudo-random bit generator PRBG. There are theoretical con-
structions for such a generator, but a perfectly reasonable approach is to con-
struct the generator using a standard block cipher, such as DES, basing its se-
curity on a reasonable pseudo-randomness assumption on the underlying block
cipher. We assume that PRBG stretches l-bit strings to strings of arbitrary length.
We assume here that 1/2l is a negligible quantity.

We need a hash function AXUH suitable for message authentication, i.e., an
almost XOR-universal hash function [Kra94]. We assume that AXUH is keyed
by an l′-bit string and hashes arbitrary bit strings to l-bit strings. Many efficient
constructions for AXUH exist that do not require any intractability assumptions.

To encrypt a message m, we run the key encapsulation scheme to obtain a
random string K along with its encryption ψ. Next, we apply PRBG to K to
obtain an l′-bit string K1, an l-bit string K2, and an |m|-bit string f . Finally,
we compute

e = f ⊕m, a = AXUH(K1; e) ⊕K2.

The ciphertext is
(ψ, e, a).

To decrypt (ψ, e, a), we first decrypt ψ to obtain K. Note that decrypting ψ
may result in a “reject,” in which case we “reject” as well. Otherwise, we apply
PRBG to K to obtain an l′-bit string K1, an l-bit string K2, and an |e|-bit string
f . We then test if a = AXUH(K1; e) ⊕ K2. If this condition does not hold, we
“reject.” Otherwise, we output m = e⊕ f .

Theorem 1. If the underlying key encapsulation scheme is secure against adap-
tive chosen ciphertext attack, and PRBG is a secure pseudo-random bit generator,
then the above hybrid scheme is also secure against adaptive chosen ciphertext
attack.

This appears to be somewhat of a “folk theorem.” The proof is straightfor-
ward, and is left as an easy exercise for the reader.

4.3 A Hybrid Cramer-Shoup Scheme

We now describe a key encapsulation scheme based on the Cramer-Shoup en-
cryption scheme. Combined with the general hybrid construction in §4.2, this
yields a hybrid encryption scheme. As a hybrid scheme, it is much more flexible
than the “basic” version of the scheme described in §4.1, as messages may be
arbitrary bit strings and do not need to be encoded as group elements. This
flexibility allows one greater freedom in choosing the group G, which can be ex-
ploited to obtain a much more efficient implementation as well. Also, the scheme
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we describe incorporates some modifications that lead to a simpler and more
efficient decryption algorithm.

We need a pair-wise independent hash function PIH. We assume that PIH
takes a key µ and maps elements λ ∈ G to l-bit strings. Many efficient construc-
tions for PIH exist that do not require any intractability assumptions. We will
want to apply the Entropy Smoothing Theorem (see [Lub96, Ch. 8] or [IZ89]) to
PIH, assuming that the input λ is a random group element. To do this effectively,
the relative sizes of q and l must be chosen appropriately, so that

√
2l/q is a

negligible quantity.
We also need a “magic” hash function MH mapping elements of G × G to

l-bit strings. This function is not required to satisfy any particular security
requirements. A construction using a cryptographic hash like MD5 or SHA-1 is
recommended (see [BR93]). This function will only play a role when we analyze
the scheme in the random oracle model, where MH will be modeled as a random
oracle.

Now we are ready to describe the key encapsulation scheme.

Key Generation. A random element g1 ∈ G\{1} is chosen, together with w ∈
Zq\{0} and x, y, z ∈ Zq. Next, the following group elements are computed:

g2 = gw
1 , c = gx

1 , d = gy
1 , h = gz

1 .

Finally, a random key k indexing a universal one-way hash function UOWH is
chosen, as well as a random key µ for PIH; the public key is (g1, g2, c, d, h, k, µ).

Key Encapsulation. The key encapsulation scheme runs as follows. First, it
chooses r ∈ Zq at random. Then it computes

u1 = gr
1, u2 = gr

2 , α = UOWH(k; u1, u2), v = crdrα, λ = hr.

Finally, it computes
K = PIH(µ; λ) ⊕ MH(u1, λ).

The ciphertext is
(u1, u2, v),

which is an encryption of the key K.

Decryption. Given a ciphertext (u1, u2, v), the decryption algorithm runs as fol-
lows. It first computes α = UOWH(k; u1, u2), and tests if

u2 = uw
1 and v = ux+αy

1 .

If this condition does not hold, the decryption algorithm outputs “reject” and
halts. Otherwise, it computes λ = uz

1, outputs the keyK = PIH(µ; λ)⊕MH(u1, λ).

Theorem 2. The above key encapsulation scheme is secure against adaptive
chosen ciphertext attack, under the DDH assumption for G, and also assuming
that UOWH is a secure universal one-way hash function.
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We only briefly sketch the proof, as it differs only slightly from the proof of
the main theorem in [CS98]. The structure of the proof is as follows. We make a
sequence of transformations to the attack game. In each of these transformations,
we argue that we affect the adversary’s advantage by a negligible amount, and in
the final transformed game, the adversary’s advantage is zero. The original game
is denoted G0, and the transformed games are denoted Gi, for i = 1, 2, . . . .

First, some notation. Let ψ′ = (u′1, u
′
2, v

′) be the “target” ciphertext. For
notational convenience and clarity, the internal variables used by the encryption
algorithm in generating the target ciphertext will also be referred to in “primed”
form, e.g., the value of α for the target ciphertext is denoted α′. Also, we will call
a ciphertext (u1, u2, v) valid if logg1

u1 = logg2
u2; otherwise, it is called invalid.

In game G1, we change the key generation algorithm as follows. It chooses
random g1, g2 ∈ G\{1} at random, along with

x1, x2, y1, y2, z1, z2 ∈ Zq .

Next, it computes the following group elements:

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz1
1 g

z2
2 .

It chooses the keys k and µ as before, and the public key is (g1, g2, c, d, h, k, µ).
We also modify the decryption oracle as follows. Given a ciphertext (u1, u2, v),
it computes α = UOWH(k; u1, u2), and tests if

v = ux1+y1α
1 ux2+y2α

2 .

If this condition does not hold, the decryption oracle outputs “reject.” Otherwise,
it computes λ = uz1

1 u
z2
2 , and outputs the key K = PIH(µ; λ) ⊕ MH(u1, λ).

We now claim that the adversary’s advantage in game G1 differs from its
advantage in game G0 by a negligible amount. The argument is runs along the
same lines as that of the proof of Lemma 1 in [CS98]. That is, these two games are
equivalent up to the point where an invalid ciphertext is not rejected; however,
the probability that this happens is negligible.

In game G2, we modify the encryption oracle, simply choosing u′1, u′2 ∈ G at
random, setting

v′ = (u′1)
x1+y1α′(u′2)

x2+y2α′ ,

and computing the rest of the target ciphertext as usual.
It is clear that under the DDH assumption, the adversary’s advantage in

game G2 differs from its advantage in game G1 by a negligible amount.

In game G3, we move the computation of the target ciphertext ψ′ =
(u′1, u′2, v′) to the very beginning of the game, and if the adversary ever submits
a ciphertext ψ = (u1, u2, v) to the decryption oracle with (u1, u2) 6= (u′1, u′2), but
with α = α′, we simply halt the game.

It is clear that under the security assumption for UOWH, adversary’s advan-
tage in game G3 differs from its advantage in game G2 by a negligible amount.
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In game G4, we modify the encryption oracle yet again, choosing λ′ as a
random group element.

That this only has a negligible impact on the adversary’s advantage follows
from the line of reasoning in the proof of Lemma 2 in [CS98]. That is, these two
games are equivalent up to the point where an invalid ciphertext is not rejected
(provided logg1

u′1 6= logg2
u′2); however, the probability that this happens is

negligible (this makes use of the fact that no collisions in UOWH are found).

In game G5, we modify the encryption oracle again, this time choosing K′

as a random l-bit string.
This modification only has a negligible impact on the adversary’s advantage.

Indeed, since PIH is a pair-wise independent hash function, so is the function

λ 7→ PIH(µ; λ) ⊕ MH(u′1, λ),

where we view (µ, u′1) as the key to this hash function. By the Entropy Smoothing
Theorem, the valueK′ = PIH(µ; λ′)⊕MH(u′1, λ′) is statistically indistinguishable
from a random l-bit string.

It is clear that in game G5, the adversary’s advantage is zero. That completes
the proof of the theorem.

Theorem 3. Modeling MH as a random oracle, the above key encapsulation
scheme is secure against adaptive chosen ciphertext attack, under the CDH as-
sumption for G, and also assuming that UOWH is a secure universal one-way
hash function.

To prove this theorem, suppose there is an adversary that has a non-negligible
advantage in the attack game. Now, Theorem 2 remains valid, even if we replace
MH by a random oracle. So assuming the security properties of UOWH, the
existence of an efficient adversary with non-negligible advantage implies the ex-
istence of an efficient algorithm for solving the DDH problem in G. In fact,
the proof of Theorem 2 shows how to construct such an algorithm using the
adversary as a subroutine; though technically “efficient,” this may not be the
most practical algorithm for solving the DDH problem in G; a more practical
algorithm would certainly make the simulator we describe below more efficient.

In any case, we assume we have an efficient algorithm solving the DDH
problem. To be precise, define the function DHP(g, gx, gy, gz) to be 1 if g 6= 1
and z ≡ xy mod q, and 0 otherwise. Then our assumption is that there is an
efficient probabilistic algorithm that on all inputs computes DHP correctly, with
negligible error probability.

Now we show how to use such an algorithm for DHP, together with an ad-
versary that has non-negligible advantage in the attack game, to construct an
efficient algorithm for solving the CDH problem. We assume that the instance of
the CDH problem consists of randomly chosen group elements g1, u′1, h ∈ G (with
g1 6= 1), and our goal is to compute λ′ ∈ G such that DHP(g1, u′1, h, λ

′) = 1.
We describe a simulator that simulates the adversary’s view in the attack

game. The input to the simulator is g1, u′1, h ∈ G as above.
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The simulator constructs a public key for the cryptosystem as follows. It
chooses w ∈ Zq\{1} at random and sets g2 = gw

1 . It chooses x, y ∈ Zq at
random, and computes c = gx

1 , d = gy
1 ∈ G, It also generates a random key k for

UOWH and a random key µ for PIH. The public key is (g1, g2, c, d, h, k, µ).
The simulator is in complete control of the random oracle representing MH.

We maintain a set S (initially empty) of tuples

(u1, λ, ν) ∈ G×G× {0, 1}l,

representing the portion of MH that has been defined so far. That is, MH(u1, λ) is
defined to be ν if and only if (u1, λ, ν) ∈ S. We also maintain the subset SDDH ⊂
S of tuples (u1, λ, ν) satisfying the additional constraint that DHP(g1, u1, h, λ) =
1. We also maintain a set S′ (initially empty) of pairs

(u1, K) ∈ G× {0, 1}l.

To process a request to evaluate the random oracle at a point (u1, λ) ∈ G×G,
the simulator executes the algorithm shown in Figure 1.

if (u1, λ, ν) ∈ S for some ν ∈ {0, 1}l
return ν

else if DHP(g1, u1, h, λ) = 0 {
ν ←R {0, 1}l
S ← S ∪ {(u1, λ, ν)}
return ν

}
else if u1 = u′1

output the solution λ = λ′ to the CDH problem and halt
else {

if (u1, K) ∈ S′ for some K ∈ {0, 1}l
ν ← K ⊕ PIH(µ; λ)

else
ν ←R {0, 1}l

S ← S ∪ {(u1, λ, ν)}
SDDH ← SDDH ∪ {(u1, λ, ν)}
return ν

}

Fig. 1. Simulator’s algorithm to evaluate random oracle at (u1, λ).

The manner in which pairs are added to S′ is described below, in the de-
scription of the simulation of the decryption oracle.

We next describe how the simulator deals with the encryption oracle. It
computes u′2 = (u′1)

w, and computes v′ = (u′1)
x+α′y. It outputs a random l-bit

string K′ and the “target” ciphertext ψ′ = (u′1, u
′
2, v

′). Note that the output of
the encryption oracle is independent of the random bit b.
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Now we describe how the simulator deals with the decryption oracle. The
algorithm used to process a request to decrypt a ciphertext ψ = (u1, u2, v) 6= ψ′

is shown in Figure 2.

α← UOWH(k; u1, u2)

if u2 6= uw
1 or v 6= ux+αy

1

return “reject”

else if (u1, K) ∈ S′ for some K ∈ {0, 1}l
return K

else if (u1, λ, ν) ∈ SDDH for some λ ∈ G and ν ∈ {0, 1}l
return ν ⊕ PIH(µ; λ)

else {
K ←R {0, 1}l
S′ ← S′ ∪ {(u1, K)}
return K

}

Fig. 2. Simulator’s algorithm to decrypt ψ = (u1, u2, v).

That completes the description of the simulator. It is easy to verify that the
actual attack and the attack played against this simulator are equivalent, at
least up to the point where the adversary queries the random oracle at the point
(u′1, λ′). But up to that point, the hidden bit b is independent of the adversary’s
view. Therefore, since we are assuming the adversary does have a non-negligible
advantage, the adversary must query the random oracle at the point (u′1, λ

′)
with non-negligible probability.

That completes the proof of Theorem 3.

Remarks

Remark 1. The decryption algorithm tests if u2 = uw
1 and v = ux+αy

1 . In the
proof of Theorem 2, we show that we can replace this test with a different test
that is equivalent from the point of view of the data the adversary sees; however,
these tests may not be equivalent from the point of view of timing information. In
particular, if the decryption algorithm returns “reject” immediately after finding
that u2 6= uw

1 , this could perhaps leak timing information to the adversary that
is not available in game G1 in the proof. We therefore recommend that both the
tests u2 = uw

1 and v = ux+αy
1 are performed, even if the one of them fails.

Remark 2. In a typical implementation, the group G may be a subgroup of Z∗
p

for a prime p, perhaps where p is much larger than q. In this case, after testing
if the encodings of u1, u2, v properly represent elements of Z∗

p, the decryption
algorithm must check that uq

1 = 1, so as to ensure that u1 ∈ G. We need not
make any further tests to check that u2, v ∈ G, since this is already implied by
the tests u2 = uw

1 and v = ux+αy
1 .
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Remark 3. The decryption algorithm must compute either three or four expo-
nentiations, all with respect to the same base u1. An implementation can and
should exploit this to get a significantly more efficient decryption algorithm by
using precomputation techniques (see, e.g. [LL94]).

Remark 4. The reduction given in the proof of Theorem 3 is perhaps not as
efficient as one would like. If T is the time required to solve the DDH problem,
and Q queries are made to the random oracle, then the running time of the
simulator will be essentially that of the adversary plus O(T ·Q). Also, note that
the inclusion of u1 as an argument to MH is not essential to get a polynomial-
time security reduction; however, if we dropped u1 as an argument to MH, the
only simulator we know how to construct has a term of O(Q·Q′·T ) in its running
time, where Q′ is the number of decryption oracle queries.

Remark 5. In the proof of Theorem 3, we argued that if there is an adversary
with a non-negligible advantage in the attack game, then there is an efficient
algorithm for solving the DDH. This perhaps deserves some elaboration. For such
an adversary A, there exists a polynomial P (γ) in the security parameter γ, and
an infinite set Γ of choices of the security parameter, such that for all γ ∈ Γ , the
advantage ofA is at least 1/P (γ). We are assuming that the group G is generated
by a probabilistic function G(γ) that takes the security parameter γ as input. For
an algorithm A′, a security parameter γ, and 0 ≤ ε ≤ 1, define V (A′, γ, ε) be the
set of outputs G of G(γ) such that A′ computes DHP on G with error probability
at most ε. As in the previous remark, let Q be (an upper bound on) the number
or random oracle queries made by A. Then the existence of A, together with
Theorem 2, implies that there exists an efficient algorithm A′ and a polynomial
P ′(γ), such that for all γ ∈ Γ , Pr[G(γ) ∈ V (A′, γ, 1/(2Q))] ≥ 1/P ′(γ). The
reduction described in the proof of Theorem 3 only works when γ ∈ Γ and
G(γ) ∈ V (A′, γ, 1/(2Q)), but this is enough to contradict the CDH assumption.
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