
Key Revocation with Interval Cover Families

Johannes Blömer and Alexander May

Department of Mathematics and Computer Science,
University of Paderborn, 33095 Paderborn, Germany

{bloemer,alexx}@uni-paderborn.de

Abstract. We present data structures for complement covering with
intervals and their application for digital identity revocation. We give
lower bounds showing the structures to be nearly optimal. Our method
improves upon the schemes proposed by S. Micali [5,6] and Aiello, Lodha,
Ostrovsky [1] by reducing the communication between a Certificate Au-
thority and public directories while keeping the number of tokens per
user in the public key certificate small.

1 Introduction

Digital identities play an essential role in many cryptographic applications. In-
frastructures for digital identities are built by means of public-key cryptography
and Certification Authorities. The schemes differ in how digital identities can
checked to be valid and how the identities can be revoked.

A digital identity is validated by a certificate issued by a Certification Au-
thority (CA). The CA initially uses a public key generation process to create a
public key/secret key pair. The public key together with a fingerprint is pub-
lished. A user u who wants to establish his own digital identity creates a new
public key/secret key pair and sends the public key together with identifying in-
formation to the CA. The Certificate Authority checks u’s identity to ensure that
the user is really the person he/she claims to be. After that, the CA signs with
its secret key a certificate containing u’s public key, the identifying information
and an expiration date of this certification. Hence, anyone is able to check the
certificate issued by the CA with the CA’s public key. For accepting u’s public
key, one must not trust the user u himself but the CA. To establish higher levels
of trust, one can use a hierarchy of CAs.

A digital identity is valid as long as its certificate has not expired. In contrast
to this, we must also have a mean for revoking users. Assume u’s identity is
stolen or compromised before the certificate expiration date. The thief can sign
arbitrary messages with u’s secret key. Hence, as in the case of credit cards, one
must establish an immediate identity revocation.

There are many solutions proposed in literature how to revoke digital iden-
tities. The first one is a centralized online solution where a trusted database
holds the status of each public key. The database answers queries about public
keys. However, these answers must be authenticated by the database to avoid

S. Vaudenay and A. Youssef (Eds.): SAC 2001, LNCS 2259, pp. 325–341, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

326 Johannes Blömer and Alexander May

man-in-the-middle attacks. In many cases the method is impractical because an
online access is required.

Another solution, the Certificate Revocation List (CRL), is widely used in
practice. In this offline approach, the CA makes a list of all users revoked thus
far and signs it. This list is distributed at regular intervals – for example during a
daily update period – to many public directories. A public directory is untrusted
but one insists that it cannot cheat and must return a user’s revocation status
when queried. The main drawback of this scheme is the time it takes to check a
key’s validity. One must first check the CA signature and then look at the whole
list of revoked users. Consider a fixed update time and let r be the total number
of revoked users up to this point. The CA has to communicate a CRL of size
O(r) to each public directory in order to update the status of the keys. The time
to check a key’s validity using the CRL is also O(r).

There are two other offline schemes proposed by Kocher [3] and Naor, Nis-
sim [7]. They make use of authenticated hash trees. For a fixed update time and
r as defined above the communication from the CA to the public directories is
reduced to O(log r). In order to check a user’s identity, one receives O(log r) hash
values from the directory and computes another O(log r) hash values. These val-
ues are compared with the public directory data in a specified way. Additionally,
the root signature of the authenticated hash tree is checked.

The main drawbacks of the offline solutions mentioned so far are:

– The information send by the CA must be authenticated. Therefore, signing
the data is necessary. In order to prove the status, the signature must be
checked.

– The proof length – the amount of data that has to be checked for validation
– is a function of r. Since normally one must prove a key’s validity very
often, the proof length is the main bottleneck of digital identity revocation.

S. Micali [5,6] proposed an elegant solution for these two problems based
on an idea of offline/online signatures [2], which in turn builds on a work of
Lamport [4]. He suggests to add an additional number y – called the user’s
0-token – into the certificate. In order to create the 0-token, the CA picks a
random number x and a one-way hash function f and computes y = f (l)(x) :=
f(f(. . . f(x))), that is, the function f is applied l times to x in order to compute
the 0-token y. The parameter l corresponds to the number of update periods, e.g.
the days till expiration. On day 1, if user u is not revoked, the CA publishes the
1-token f (l−1)(x) of u. Since f is a one-way function, y can easily be computed
from f (l−1)(x) by applying f once, but it is infeasible to find a valid 1-token
x̃ with f(x̃) = y. Hence, u can take the 1-token as a proof that his key is
valid on day 1. In general, the CA publishes the i-token f (l−i) on day i. This
i-token serves as a day-i proof for the validity of u’s key. Applying f i times and
comparing the result with the 0-token proves the key’s validity. In the sequel,
we will use the terms token and proof synonymously. Notice that in contrast to
the schemes of Kocher [3] and Naor, Nissim [7] this scheme needs only one proof
for key validation and no signature of the CA in the daily update period.

Key Revocation with Interval Cover Families 327

Let U = {1, 2, . . . , n} be the set of users and let 2U denote the power set of
U . For a fixed update time let R ⊆ U be the set of all users revoked so far. We
set r = |R|. The complement R̄ = U − R of R is the set of non-revoked users.
The problem with Micali’s scheme is that each of the n− r non-revoked users in
R̄ obtains his own proof during an update period. Hence in each update period
the CA has to communicate n − r tokens to a public directory. We denote this
as the CA-to-directory communication.

ALO (Aiello, Lodha, Ostrovsky) [1] proposed two schemes that reduce the
CA-to-directory communication. These schemes are called Hierarchical and Gen-
eralized Scheme. The main building block of the ALO schemes is a set F ⊆ 2U .
The set F has the property that each set R̄ of non-revoked users can be written
as the union of the elements in a subset S(R̄) of F . Each element Sj ∈ F has
its own 0-token. For each set Sj ∈ F , each user u ∈ Sj stores the 0-token of Sj
in his certificate. That is, the certificate of user u contains |{Sj ∈ F : u ∈ Sj}|
different tokens. We denote the maximal number maxu∈U |{Sj ∈ F : u ∈ Sj}| of
tokens per certificate by T .

In order to issue day-i proofs for the non-revoked users u ∈ R̄, the CA
computes a cover S(R̄) = {Sj1 , Sj2 , . . . , Sjm},

⋃
1≤k≤m Sjk = R̄ of the set R̄.

Next, it publishes the m i-tokens of the sets Sj1 , Sj2 , . . . , Sjm . Since these sets
cover the set R̄, each non-revoked user u is contained in at least one set Sj .
Recall that u stores the 0-token of Sj in his certificate. Hence, the i-token of the
set Sj is a day-i proof for user u.

There may be different ways to cover R̄ by elements Sj ∈ F . In ALO’s
schemes, the CA always takes the minimal number of subsets for the cover in
order to minimize the number m of proofs. Let

max
R̄⊆U :|R̄|=n−r

{m : CA needs m sets to cover R̄}

be the maximal number of proofs that the CA has to publish for a set R̄ of size
n− r. We denote this maximal number of proofs by P.

Note that Micali’s revocation scheme fits this description. To obtain Micali’s
revocation scheme, define F as F = {{1}, {2}, . . . {n}}. Hence, the users only
have to store one 0-token in their certificate.

Let us define three demands on our key revocation scenario in order of de-
creasing priority:

Proof of key’s validity: In our scenario, a user must prove a key’s validity
very often. Therefore, we insist on only one proof for key validation as in the
revocation schemes of Micali and ALO. The schemes of Kocher and Naor,
Nissim do not meet this requirement.

CA-to-directory communication (P): The CA-to-directory communication
corresponds to the maximal number of proofs the CA has to send to a public
directory. The maximal number of proofs is denoted by P. We have to keep
the CA-to-directory communication small to allow frequent update periods.
Thus, we want to minimize P.

Tokens per certificate (T): We denote the number of tokens per certificate
by T . To make the scheme practical (especially for smart card applications),

328 Johannes Blömer and Alexander May

T must be kept small, since checking long certificates is inefficient. But as-
suming that checked keys are stored, certificates normally have to be checked
only once.

As mentioned above, Micali’s scheme has T = 1 token per certificate. How-
ever, the CA-to-directory communication is P = n − r if r is the number of
revoked users. ALO’s Hierarchical Scheme improves upon Micali’s scheme by re-
ducing the CA-to-directory communication P to r log2(n/r) while increasing the
number of 0-tokens T per certificate to log2 n. The Generalized Scheme of ALO
needs at most r(logc(n/r)+1) proofs per update period and T ≤ (2c−1−1) logc n
tokens per certificate. Due to the (2c−1− 1) factor, this scheme is only practical
for c = 2 or c = 3, otherwise the certificates become too large.

Our results build on the work of ALO. We propose a new method for covering
the set R̄ of non-revoked users by intervals. Therefore, we define a new class for
covering problems called interval cover family (ICF). Our ICFs are constructed
using interval trees.

The set R of revoked users partitions U in subintervals of non-revoked users,
which can be represented by the nodes of an interval tree. Our task is to find a
scheme which covers any interval with sets of an ICF. Furthermore, we want that
each user u ∈ U is in a small number of sets. This property is important because
as in ALO’s schemes, user u must include in his certificate all the 0-tokens of
sets that contain u.

Micali’s [5,6] and ALO’s Hierarchical scheme [1] also belong to the class of
algorithms using interval cover families. The ICF in [5,6] is the simplest one. It
covers intervals by single elements. Thus, the length of the covering intervals is
always 1. In ALO’s Hierarchical scheme, the set of non-revoked users is covered
by intervals with interval lengths that are powers of 2. In this paper, we propose
two new methods for covering intervals that might be interesting for other areas
of covering problems as well.

In Section 2, we introduce the class ICF of interval cover families. Revoca-
tion Scheme 1 (RS1) is presented in Section 3. It is a generalization of ALO’s
Hierarchical scheme. The length of the covering intervals is a power of c ≥ 2. For
RS1, we obtain the upper bounds P ≤ (r+1)(2 logc n−1) and T ≤ (c+1)2

4 logc n
for some constant parameter c.

Our second Revocation Scheme (RS2) presented in Section 4 leads to a CA-
to-directory communication of P ≤ (r+1)(logc n+1), while keeping the number
of 0-tokens per certificate upper bounded by T ≤ (c+1)2

2 logc n(1 + o(1)).
Since the new bounds for T are polynomial in c our systems are practical

for larger parameters c than ALO’s schemes. Thus, we can reduce the CA-to-
directory communication P by choosing a large c. Since this communication is
done during each update period, the system becomes more efficient.

In Section 5, we study the relations of the class ICF to the task of key
revocation. Using a more refined analysis, we show that RS1 has a maximal CA-
to-directory communication of P ≤ 2r(logc n− �logc r�). Assuming the revoked
users to be uniformly distributed, we can further reduce the bound of RS2 to an
expected upper bound of P ≤ (r + 1− r(r−1)

n))(logc n+ 1).

Key Revocation with Interval Cover Families 329

Table 1. Comparison of our schemes with Micali’s and ALO’s schemes

Scheme P proofs from CA to directories T tokens per certificate

Micali n− r 1

ALO’s Hierarchical r log2(n
r

) log2 n

ALO’s Generalized r(logc(
n
r

) + 1) (2c−1 − 1) logc n

RS1 2r(logc n− �logc r�) (c+1)2

4 logc n

RS2 (r + 1)(logc n+ 1) (c+1)2

2 logc n(1 + o(1))

If we only want to minimize the CA-to-directory communication, an optimal
solution can be obtained from Yao’s range query data structures [8]. However,
Yao’s construction results in prohibitively many tokens per certificate. For the
first time in this area, we also prove lower bounds for the number T of 0-tokens
(see Section 6). For example, Corollary 22 provides a lower bound of T ≥ (ce −
1) · logc n, where e is the Euler number. This shows that if c is constant, the
trade-off in our revocation schemes between CA-to-directory communication P
and the number of 0-tokens T is optimal up to a constant.

2 Definitions

Consider the universe U = {1, 2, . . . , n} of users with personal identification
numbers 1 to n. Let 2U denote the power set of U . Let R ⊆ U be the subset
of revoked users, R̄ = U − R the complement of R. In our schemes, the CA
has to find a family of sets that covers the subset R̄ of all non-revoked users.
Then the CA issues the i-tokens for all the sets in the cover. A day-i proof for
a non-revoked u is a set that contains u.

Definition 1 (interval set) The interval set V = [a, b], V ⊆ U is defined as
[a, b] := {x ∈ IN | a ≤ x ≤ b} . The interval set [a, a] is briefly written as [a]. The
length of an interval set [a, b] is defined as b− a+ 1.

Definition 2 (interval cover) We call a family of subsets S ⊆ 2U an interval
cover (IC) of the interval set I iff

⋃
V ∈S V = I and all subsets V are interval

sets. If |S| ≤ k, S is called a k-IC.

Definition 3 (interval cover family) F ⊆ 2U is an interval cover family
(ICF) of U iff for every interval set I ⊆ U , there is a subset S of F such
that S is an IC of I. F is a k-ICF of U iff there is at least one k-IC S ⊆ F of
I for every I ⊆ U .

330 Johannes Blömer and Alexander May

Lemma 4 Assume we have a k-ICF F of the universe U = {1, . . . , n} and an
arbitrary R ⊆ U with |R| = r. Then F covers R̄ with at most (r + 1)k interval
sets.

Proof: Notice that a subset R of size |R| = r partitions the interval [1, n] in
at most r + 1 subintervals R̄1 ∪ · · · ∪ R̄r+1 = R̄. Thus, it suffices to cover these
subintervals for covering R̄. Since each R̄i is coverable by F with at most k
interval sets, the claim follows.

The number of interval sets needed to cover a set R̄ in Lemma 4 corresponds
to the maximal number of proofs – denoted PF – the CA must send to the
public directories during an update period. Hence, for a k-ICF F the size of PF
is always upper-bounded by (r + 1)k.

It is also important for the practicality of a revocation scheme that the size
of F is polynomial in n and that for every subset R̄ of non-revoked users the
corresponding ICs can be computed in time polynomial in log(n).

For an ICF F and every u ∈ U , we define hF (u) as the multiplicity of u
in F , that is the number of sets in F containing the element u. Because every
set in F that contains u can be part of an interval cover, user u’s certificate
must include all hF (u) 0-tokens that contain u. Thus, the maximal number of
0-tokens, denoted TF := maxu{hF (u)}, corresponds to the maximal length of a
user’s public key certificate. This length should be polynomial in log(n). There
is a trade-off between the number of proofs PF the CA must send to a public
directory and the number of 0-tokens TF in a revocation scheme. For instance
in the Micali scheme [5,6], we have P = n − r and T = 1. In their Generalized
scheme, ALO [1] had P ≤ r(logc(n/r) + 1) and T ≤ (2c−1 − 1) logc n.

In the next section, we present a (2k − 1)-ICF F with TF = O(kn2/k) for
some system parameter k. Taking k = logc n leads to T = O(c2 logc n).

3 A Revocation Scheme Using ICFs

First, we introduce a notation on intervals.

Definition 5 (combinational sum) The combinational sum of an interval
[a1, b1] with an interval [a2, b2] is defined as the interval [min {a1, a2},
max {b1, b2}]. We also say, we combine interval [a1, b1] with [a2, b2]. Let W =
{[a1, b1], [a2, b2], . . . , [am, bm]} be a set of disjoint intervals. We define the maxi-
mal combinational sum of W that is contained in an interval [a, b] as the interval
[minai : ai ≥ a,maxbj : bj ≤ b].
Note that the combinational sum of two intervals [a1, b1] and [a2, b2] may contain
elements which are neither in [a1, b1] nor in [a2, b2].

Next, we define an interval tree T for the interval [1, n] and a parameter k,
that might depend on n. The construction is recursive.

Construction of the interval tree T

Key Revocation with Interval Cover Families 331

– The root is labelled with the interval [1, n].
– Each node labelled with an interval [a, b] of length greater than 1 has n1/k

children. The children partition the interval [a, b] into equally long pieces.
That is, the children are roots of the interval trees for the intervals [a + i ·
b−a+1
n1/k , a+ (i+ 1) · b−a+1

n1/k − 1], 0 ≤ i < n1/k (for simplicity, we assume that
n1/k is an integer to avoid rounding).

We store the following contents in each node of the interval tree.

– Each node stores the interval of its label.
– Moreover, each node stores the combinational sums of its label with the
labels of its right siblings.

Let combinational sums of nodes be defined as the combinational sums of their
labels.

[3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]

[1 , 9] [10,18] [19,27]

[1, 27]

[1] [2]

[10,12] [13,15] [16,18] [19,21] [22,24] [25,27][7,9][4,6][1,3]

Fig. 1. The interval tree T for n = 33, k = 3

Example: In Figure 1, the node with label [10, 12] stores the interval sets [10, 12],
[10, 15] and [10, 18]. Its father [10, 18] stores the intervals [10, 18] and [10, 27].

Since in level i the nodes are labelled with intervals of length n(k−i)/k, in
level k we have interval length 1 and the recursive construction stops. Thus, the
interval tree has depth k.

We define the ICF F as the union of all the sets of intervals stored in the
nodes of the interval tree T . However, we exclude the root label interval [1, n].

Next, we want to show that F is a (2k − 1)-ICF, that is, we want to show
that we can cover every interval set I ⊆ [1, n] by at most 2k − 1 sets in F . In
order to prove this, we present an algorithm that needs a maximum of 2k − 1
combinational sums for covering any interval I.

332 Johannes Blömer and Alexander May

Algorithm Cover Scheme 1 (CS1)

INPUT : interval I = [a, b]

FOR level i = 1 TO k in the interval tree T DO
Take the maximal combinational sums of the label intervals in
level i of T that is contained in the yet uncovered parts of [a, b].
IF [a, b] is covered completely, EXIT.

OUTPUT : interval sets I1, I2, . . . , Im with
⋃
j=1...m Ij = [a, b] and m ≤ 2k − 1.

Example: In Figure 1 on input I = [2, 21], the Algorithm CS1 covers I by taking
the intervals [10, 18] (level 1, stored in node [10, 18]), [4, 9] and [19, 21] (level 2,
stored in nodes [4, 6] and [19, 21]) and [2, 3] (level 3, stored in [2]).

Lemma 6 The union F of all intervals stored in the interval tree T is a (2k−1)-
ICF.

Proof: We have to show that CS1 needs at most 2k − 1 interval sets to cover
[a, b]. Notice that CS1 covers the whole interval [a, b] successively from the middle
to the borders. In level 1 of the interval tree T , one gets at most one combina-
tional sum [a1, b1]. The uncovered parts [a, a1 − 1] and [b1 + 1, b] both yield at
most one additional interval in level 2. This holds because the maximal combi-
national sums in level 2 are always of the form [a2, a1−1] respectively [b1+1, b2].
Analogously, we get at most two additional intervals in the subsequent levels.
This leads to the upper bound of 2k − 1.

We define the memory requirement |F | of an ICF F to be the number of interval
sets in F . The running time of a k-ICF F on input I = [a, b] is the time to find a
k-IC S for I. Further, we define the running time of a k-ICF to be the maximal
running time taken over all choices of input intervals I. The following lemma
shows that our (2k − 1)-ICF F can be efficiently implemented.

Lemma 7 The ICF F has memory requirement O(n1+1/k) and running time
O(kn1/k).

Proof: In every set of siblings at most
∑n1/k

i=1 i = O(n2/k) intervals are stored.
This follows from the fact that each node contains its label and all combinational
sums with its right siblings. Hence, F contains at most O(n2/k)

∑k−1
i=0 (n

1/k)i =
O(n1+1/k) interval sets.

The operations in each level can easily be implemented to run in timeO(n1/k),
that is in the number of children. Thus, the total running time is O(kn1/k).

Definition 8 (RS1) Revocation Scheme 1 (RS1) uses the (2k− 1)-ICF F and
Algorithm CS1 in order to cover all interval sets R̄ = U − R of non-revoked
users.

Key Revocation with Interval Cover Families 333

Theorem 9 RS1 is a revocation scheme with PF ≤ (r + 1)(2k − 1) and TF ≤
1
4k(n

1/k + 1)2.

Proof: The number of proofs PF ≤ (r + 1)(2k − 1) follows from Lemma 4.
It remains to show the upper bound for TF . Because the node labels in each

level partition the interval [1, n], every element u ∈ U is stored in exactly one
label per level. We want to determine the number of interval sets of a single level
in which a user u is contained. Therefore, consider the node with the label inter-
val containing u. Combinational sums are only taken among the n1/k siblings of
this node. When enumerating the siblings from left to right, it is easy to see that
the ith sibling is in exactly i · (n1/k− i+1) interval sets. This function in i takes
its maximum for i = (n1/k+1)/2, leading to maxi{i ·(n1/k− i+1)} = (n

1/k+1
2)2.

Hence, user u can be in at most (n
1/k+1
2)2 intervals sets per level. Summing over

the k levels, we obtain TF ≤ 1
4k(n

1/k + 1)2.

Corollary 10 Choosing k = logc n for some constant c, we obtain a (2 logc n−
1)-ICF F that needs O(n) memory and O(logc n) running time. RS1 is a key
revocation scheme with PF ≤ (r + 1)(2 logc n− 1) and TF ≤ (c+1)2

4 logc n.

Note that our result improves upon the generalized scheme of ALO, who had
T ≤ (2c−1 − 1) logc n. A refined analysis of PF is given in Section 5.

Even with refined analysis, there remain two problems with the (2k − 1)-
ICF presented above. First, we always assume an upper bound of 2k− 1 for the
number of intervals taken by algorithm CS1. Consider a small interval [a, b] with
length much shorter than n. Algorithm CS1 will take its first combinational sum
in a level i that is close to the leaves in level k. It is easy to see that in this
case, CS1 outputs at most 2(k− i)+1 interval sets. Therefore, Lemma 6 gives a
pessimistic bound. Second, after using the first combinational sum in level i, we
just need combinational sums of the rightmost or leftmost sibling nodes in the
subsequent levels. But we store combinational sums of all sibling nodes. In the
next section, we show how to avoid these problems.

4 Another Revocation Scheme Based on ICFs

We take an interval tree T ′ similar to the interval tree T in Section 3. The nodes
and their labels remain the same as in T , only their content is changed.

Definition 11 (partial sums) For each set of sibling nodes in a tree, we call
the combinational sums of the leftmost sibling v with all other siblings to the right
the right partial sums. The combinational sums of v’s father’s leftmost sibling
with v and all of v’s siblings are called the upper right partial sums (for an
example, see below). The combinational sums of the rightmost sibling w with all
other siblings to the left – except the leftmost sibling – are called the left partial

334 Johannes Blömer and Alexander May

sums. Analogously, the combinational sums of w’s father’s rightmost sibling with
w and all of w’s siblings are called the upper left partial sums.

Let W = {[a1, b1], [a2, b2], . . . , [am, bm]} be a set of partial sums. We define
the maximal partial sum ofW that is contained in an interval [a, b] as the interval
[minai : ai ≥ a,maxbj : bj ≤ b].

Example: In Figure 1, the right partial sums of the set {[13], [14], [15]} of sibling
nodes are [13], [13, 14] and [13, 15]. The left partial sums are [15] and [14, 15].
The upper right partial sums are the interval sets [10, 13], [10, 14], [10, 15] and
the upper left partial sums are [15, 18], [14, 18] and [13, 18].

Notice that we should omit those upper right partial sums where the father
of the leftmost sibling v is itself a leftmost sibling, since these combinational
sums yield always the label of the father. This holds analogous for the upper left
partial sums.

Node contents of the interval tree T′

– Each node stores its label.
– For any sibling nodes in level k − 2j, 0 ≤ j < k−1

2 , the leftmost sibling v
stores the right partial sums. Additionally, v stores the upper right partial
sums.

– For any sibling nodes in level k − 2j, 0 ≤ j < k−1
2 , the rightmost sibling w

stores the left partial sums. In addition, w stores the upper left partial sums.
– Any sibling nodes in level i of the recursion tree are divided in i equally large
parts. In any part, each node stores the combinational sums of its label with
the labels of its right siblings in this part.

Again, the ICF F ′ is defined as the union of all intervals stored in the nodes.

Algorithm Cover Scheme 2 (CS2)

INPUT : interval I = [a, b]

level i := 1
UNTIL a combinational sum is taken DO

Take the maximal combinational sum of the label intervals
in level i of T ′ that is contained in [a, b]. (That combinational
sum may consist of up to i intervals.) i := i+ 1

FOR level j = i+ (k − i mod 2) TO k STEP 2 DO
Take the maximal partial sums of the yet uncovered parts of [a, b].
IF [a, b] is covered completely, EXIT.

OUTPUT : interval sets I1, I2, . . . , Im with
⋃
j=1...m Ij = [a, b] and m ≤ k + 1.

Example: We cover the interval [2, 21] using Algorithm CS2 and the interval
tree T ′ of Figure 1. CS2 outputs the combinational sum [10, 18] in level 1 and
the upper partial sums [2, 9] and [19, 21] in level 3.

Key Revocation with Interval Cover Families 335

Lemma 12 The union F ′ of all intervals stored in the nodes of the interval tree
T ′ is a (k + 1)-ICF.

Proof: Let Algorithm CS2 take a combinational sum in level i. Since in level
i, maximal combinational sums of label intervals can be divided into i parts, we
take at most i intervals. In the remaining k − i levels, CS2 can take at most 2
intervals in each of the levels k − 2j, 0 ≤ j < k−i

2 . These are at most �k−i2 �
levels. Thus, we obtain the upper bound i+ 2 · �k−i2 � ≤ i+ 2 · k−i+1

2 = k+ 1.

Lemma 13 The (k+1)-ICF F ′ needs O(n1+1/k) memory and O(kn1/k) running
time.

Proof: The memory requirement of F ′ is the amount of partial sums and
combinational sums. We have at most 2n1/k right and left partial sums per set
of siblings. The upper partial sums sum up to another 2n1/k intervals. Ignoring
that these intervals are only taken in each second level we get an upper bound
of 4n1/k ·∑k−1

i=0 (n
1/k)i = O(n) for the partial sums. Further, each set of siblings

stores O(n2/k) combinational sums. Summing over the levels gives an upper
bound of O(n2/k) ·∑k−1

i=0 (n
1/k)i = O(n1+1/k) which is also an upper bound for

the total memory requirement.
Since the operations in each level can be implemented to run in time O(n1/k),

the running time is O(kn1/k).

Definition 14 (RS2) The Revocation Scheme 2 (RS2) uses the (k+1)-ICF F ′

and Algorithm CS2 in order to cover all interval sets R̄ = U −R of non-revoked
users.

Theorem 15 The (k + 1)-ICF F ′ yields a revocation scheme with PF ′ ≤ (r +
1)(k + 1) and TF ′ ≤ k+1

2 · n2/k + k
4 · (2n1/k + 1) + 1

2 (log k + 1)n1/k.

Proof: The upper bound for the number of proofs PF ′ follows from Lemma 4.
To complete the proof, we must show that TF ′ ≤ k+1

2 ·n2/k+ k
4 · (2n1/k+1)+

1
2 (log k+1)n1/k. Let us start with the partial sums and consider a set of sibling
nodes as enumerated from left to right. It is easy to see that the ith sibling is
in n1/k − i + 1 right partial sums and in i − 1 left partial sums. This gives a
total of n1/k partial sums for each element u ∈ U . Analogously, one can show
that each element u is in n1/k upper partial sums. Since each upper partial sum
consists of n1/k combinational sums, we get another n2/k intervals. Thus, we
have a total of n2/k + n1/k partial sums for every element u ∈ U in the levels
k − 2j, 0 ≤ j < k−1

2 . Summing over these levels gives us an upper bound of
�k−12 � · (n2/k + n1/k) ≤ k

2 · (n2/k + n1/k).
In addition to the partial sums, we divide all sibling nodes in level i of T ′ in

parts of size n1/k

i and compute the combinational sums with their right siblings

336 Johannes Blömer and Alexander May

in that part. Analogous to the proof of Theorem 9 every element in level i is in
no more than 1

4 (
n1/k

i + 1)2 of these intervals. Summing over the levels gives

1
4

k∑
i=1

(
n1/k + i

i

)2

=
1
4

(
k∑
i=1

n2/k

i2
+

k∑
i=1

2n1/k

i
+

k∑
i=1

1

)

≤ 1
4

(
π2

6
· n2/k + 2(log k + 1) · n1/k + k

)

Together with the partial sums computed before we get the desired upper bound
for the number of 0-tokens

TF ′ ≤ k + 1
2
· n2/k + k

4
· (2n1/k + 1) +

1
2
(log k + 1)n1/k.

Corollary 16 Taking k = logc n, RS2 is a revocation scheme with PF ′ ≤ (r +
1)(logcn+ 1) and TF ′ ≤ (c+1)2

2 · logc n(1 + o(1)).
If we compare this result with the revocation scheme RS1 of Section 3, we

roughly halve the number of proofs P by doubling T . Since we have update
periods frequently, it is preferable to make P small by slightly enlarging T .

5 ICFs and Key Revocation

In the previous sections, we studied the covering of arbitrary intervals [a, b] by
ICFs and connected this to the task of key revocation by Lemma 4. But Lemma 4
yields a pessimistic bound:

– We always expect that r revoked users yield r + 1 intervals of non-revoked
users. This is no longer true if r becomes large.

– The intervals representing non-revoked users are not arbitrary but disjoint,
that is the intervals do not overlap. Further, the average length of the inter-
vals that have to be covered depends on the parameter r.

5.1 The Expected Number of Intervals

In the following, we assume that the revoked users R are uniformly distributed
over the interval [1, n] and look for the expected number of intervals of non-
revoked users. Let i1, i2, . . . , ir be the revoked users in sorted order, that is
i1 < i2 < · · · < ir. We call ij and ij+1 a pair iff ij+1 = ij +1. Note that pairs of
revoked users do not introduce a new interval that must be covered, since they
enclose an interval of non-revoked users of size 0. Let X be the random variable
for the number of intervals. Then

ER(X) ≤ r + 1− ER(number of pairs).

Key Revocation with Interval Cover Families 337

We obtain an upper bound since revoked users at the interval borders 1 and n
never yield an additional interval. Thus, the borders 1 and n always pair.
The expected number of pairs is

ER(number of pairs) =

(
n−2
r−2
)

(
n
r

) · (n− 1) =
r(r − 1)
n

.

We summarize this in the following lemma.

Lemma 17 Let the revoked users be distributed uniformly over [1, n] and let F
be a k-ICF. Then F yields a key revocation system with an expected upper bound
of PF ≤ (r + 1− r(r−1)

n)k for the CA-to-directory communication.

5.2 Key Revocation with RS1 for Growing r

Lemmas 4 and 17 still give pessimistic bounds, since they assume that arbitrary
intervals are covered. But CS1 does not always use 2k − 1 intervals to cover an
interval [a, b]. If the interval length of [a, b] is small, Algorithm CS1 will not use
any intervals in the upper levels of the interval tree T . However, if the number
r of revoked users increases then the average interval lengths of intervals that
must be covered decreases. Hence, we expect some amortization of costs with
growing r.

This fact was studied in ALO [1]. They proved an upper bound of T ≤
r log2(

n
r). Note, that the logarithmic term decreases with increasing r. We show

our algorithm to be a generalization of [1] by showing a bound of 2r(logc n −
�logc r�)−m for arbitrary c > 2 and m = r − c�logc r	. Therefore, we adapt the
proof techniques of [1]. For c = 2, our scheme reduces to the Hierarchical Scheme
proposed in ALO[1].

Definition 18 Let P (n,R) be the number of proofs using the revocation scheme
RS1 for covering U − R, where U = {1, 2, . . . , n}. We define P (n, r) =
maxR:|R|=r{P (n,R)} to be the worst case number of proofs for a revocation set
R of r users.

Assume n = ck.

Theorem 19 For r = cl, l ≥ 0, RS1 has P (n, r) ≤ 2r logc(
n
r) for c > 2, c ∈ IN .

Proof: Similar to the proof in ALO [1]. The proof is given in the full version
of the paper.

In the following theorem, we prove the upper bound for P (n, r) for arbitrary r.

Theorem 20 For r = cl +m, RS1 yields P (n, r) ≤ 2r(logc n− �logc r�)−m.

Proof: The proof is given in the full version of the paper.

338 Johannes Blömer and Alexander May

6 Lower Bounds for TF in a k-ICF F

In this section, we show lower bounds for the number of tokens TF . Let U =
{1, 2, . . . , n} be the set of users. We cover arbitrary interval sets [a, b] ⊆ U of non-
revoked users by k-ICFs. Comparing the lower bounds to our results in Section 3
and 4 will prove that our revocation schemes are up to constants optimal.

Theorem 21 Let F be a k-ICF of U , then TF ≥ k
√
k! · (n+ 1)1/k − k.

Proof: We prove a lower bound for covering the interval sets [1, 1], [1, 2], . . .
, [1, n] with the k-ICF F . This yields a lower bound for covering all interval
sets I ⊆ U . The bound is proven by induction. For k = 1 an optimal family F1
covering these sets must contain all of the n interval sets. But each of these sets
contains the element 1. Thus, TF1 = hF1(1) = n. The identity

TFk = hFk(1), (1)

is an invariant of the proof, where Fk denotes an optimal covering scheme with
at most k interval sets. The inductive step is done from k − 1 to k.

Assume, there’s an optimal family Fk covering the sets [1, 1], [1, 2], . . . , [1, n]
with at most k interval sets and minimal TFk . We show in Lemma 24 that we
can assume wlog TFk = hFk(1). Hence, invariant (1) holds.

Now, consider the interval sets of Fk containing 1. Let these be the sets [1, a1],
[1, a2], . . . , [1, at], where a1 = 1 because Fk must cover the single user 1. By
construction, t = TFk . An auxiliary set is defined by [1, at+1] with at+1 = n+ 1.
The intervals sets [1, ai+1 − 1], 1 ≤ i ≤ t are covered by taking the interval set
[1, ai] and an optimal covering in Fk of the remaining interval [ai + 1, ai+1 − 1]
with at most k − 1 sets.

The element ai+1 is the first element in the interval [ai+1, ai+1−1]. Hence,
it plays the role of the element 1 when covering the sets [ai + 1, ai + 1], [ai +
1, ai + 2], . . . , [ai + 1, ai+1 − 1]. By equation (1), the element ai + 1 is critical,
because it has maximal multiplicity of all the elements in [ai+1, ai+1−1]. Thus,
element ai + 1 must be contained in hFk−1(1) interval sets and the induction
hypothesis applies with k − 1 and interval length ai+1 − ai − 1. Additionally,
ai+1 is contained in the t− i interval sets [1, ai+1], . . . , [1, at]. Since hFk(1) = t
and 1 is the element of maximal multiplicity, we obtain for 1 ≤ i ≤ t

k−1
√
(k − 1)! · (ai+1 − ai) 1

k−1 − (k − 1) + t− i ≤ t (2)

⇒ ai+1 ≤ ai + (i+ k − 1)k−1

(k − 1)!
. (3)

Solving the recurrence in (3) for a1 = 1 yields

ai+1 ≤ ai−1 + (i+ k − 2)k−1

(k − 1)!
+

(i+ k − 1)k−1

(k − 1)!
≤ · · · ≤ 1

(k − 1)!

i+k−1∑
j=1

jk−1

<
1

(k − 1)!

∫ i+k

j=0
jk−1dj =

(i+ k)k

k!

Key Revocation with Interval Cover Families 339

But we know at+1 = n+ 1, which leads to

(t+ k)k

k!
≥ n+ 1

⇒ t ≥ k
√
k! · (n+ 1)1/k − k.

Using Stirling’s formula k! ∼ √2πk (ke)k > (ke)k, we conclude
Corollary 22

TF > k

e
· (n+ 1)1/k − k >

(
n1/k

e
− 1
)
k

Taking k = logc n yields

Corollary 23
TF ≥

(c
e
− 1
)
· logc n.

Lemma 24 Let Fk be a k-ICF covering [1, 1], [1, 2], . . . , [1, n] with minimal TFk .
Fk can be turned into a k-ICF with hFk(1) = TFk .

Proof: The proof is given in the full version of the paper.

Theorem 25 Let F be a k-ICF of U , then TF >
(1
6

) 1
k−1 n

2
k .

Proof: Let F={S1, S2, . . . , Sm}. Since F is a k-ICF, for every interval set
I ∈ U there exist at most k interval sets Si1 , Si2 , . . . , Sik such that S(I) :=
{Si1 , Si2 , . . . , Sik} is a cover of I. Note, that some Sij might be empty and there
might be several S(I) in F that cover I. For each interval set I we consider an
arbitrary but fixed S(I).

Assume TF ≤ (16)
1
k−1n

2
k . Fix some interval set Si = [a, b] of F and consider

the number of times this set can be contained in a cover S(I) of some interval
set I = [s, t], where s < a or b < t. Consider the case s < a. By assumption, user
a−1 is contained in at most (16)

1
k−1n

2
k sets of F . On the other hand, every cover

S(I) containing Si = [a, b] must contain a set Sj which includes the element
a − 1. Next consider the interval Sj ∪ Si = [c, d]. Assuming s < c and arguing
as above, S(I) must contain one of the (16)

1
k−1n

2
k intervals containing c − 1.

Continuing in this way and using the fact that F is a k-ICF, we conclude that
there are at most 1

6n
2(k−1)
k covers S(I) in which a set Si can participate. This

holds for any Si:

|{I ⊆ U : Si ∈ S(I)}| ≤ 1
6
n

2(k−1)
k . (4)

340 Johannes Blömer and Alexander May

Next, we count the number of elements with multiplicities in all the
(
n
2

)
interval

sets I in U . Since there is one interval of length n, two intervals of length n− 1,
etc., we get

∑
I∈U |I| =

∑n
i=1 i · (n − i + 1) = 1

6n
3 + 1

2n
2 + 1

3 >
1
6n

3. Since the
interval sets Si that cover I can overlap, the following inequality holds

∑
I∈U

∑
Si∈S(I)

|Si| ≥
∑
I∈U
|I| > 1

6
n3. (5)

Using inequality (4), we also obtain∑
I∈U

∑
Si∈S(I)

|Si| =
∑
Si∈F

|Si| · |{I ⊆ U : Si ∈ S(I)}|

≤ 1
6
n

2(k−1)
k

∑
Si∈F

|Si| (6)

Combining (5) and (6) leads to∑
Si∈F

|Si| > n3−
2(k−1)
k = n1+

2
k .

Note that
∑
Si∈F |Si| =

∑
u∈U hF (u). Taking the average number of the mul-

tiplicities hF (u) yields that there must be an element u with hF (u) > n
2
k ,

contradicting the assumption that each element is in at most (16)
1
k−1n

2
k sets.

Definition 26 We call a k-ICF F δ-optimal, if for all k-ICFs F̄ : TFTF̄ = O(δ).

Theorem 27 RS1 uses a mink{n3/k, kn2/k}-optimal k-ICF. The (k + 1)-ICF
F ′ constructed for RS2 is mink{n1/k, k}-optimal.

Proof: RS1 uses a (2k−1)-ICF F with TF = O(kn2/k). This can be turned into
a k-ICF with TF = O(kn4/k). Dividing by the lower bounds of Corollary 22 and
Theorem 25 gives the mink{n3/k, kn2/k}-optimality. RS2 uses a (k + 1)-ICF F ′

with TF ′ = O(kn2/k). Applying Corollary 22 and Theorem 25 proves the claim.

Corollary 28 For k = logc n, the (2k− 1)-ICF F used in RS1 and the (k+1)-
ICF F ′ used in RS2 are 1-optimal.

Note, that we obtain the lower bound in Theorem 21 by covering the intervals
[1, 1], [1, 2], . . . , [1, n]. This is only a small subset of all the intervals in [1, n]
and the left border is fixed by the element 1. It seems that making both borders
variable introduces a factor of n2/k, but we can not prove this yet. Thus, we
expect a lower bound of TF = Ω(kn2/k) for any k-ICF F . This would yield
1-optimality for the ICF F ′ in RS2 independent of the choice of k.

Key Revocation with Interval Cover Families 341

7 Conclusion

We introduced a new class called ICF for key revocation. Micali’s scheme [5,6]
and ALO’s Hierarchical scheme [1] belong to this class. We improved upon the
former results by reducing the critical update cost for CA-to-directory commu-
nication. In practice, the performances of our revocation schemes depend on the
expected number r of revoked users. If one expects r to be a small fraction of n,
then RS2 is preferable. It avoids a factor of 2 in the communication. RS1 should
perform better for large r. We have shown the first lower bounds in this area,
proving our schemes to be optimal up to constants.

References

1. W. Aiello, S. Lodha, R. Ostrovsky, “Fast Digital Identity Revocation”, Proc.
Crypto ’98, Lecture Notes in Computer Science Vol. 1462, pages 137-152, 1998

2. S. Even, O. Goldreich, S. Micali, “On-line/Off-line Digital Signing”, Proc. Crypto
’89, Lecture Notes in Computer Science Vol. 435, pages 263-275, 1989

3. P. Kocher, “A quick introduction to Certificate Revocation Trees”, unpublished
manuscript, 1998

4. L. Lamport, “Password authentication with insecure communication”, Communi-
cations of ACM, 24, pages 770-771, 1981

5. S. Micali, “Enhanced Certificate Revocation System”, Technical memo MIT/
LCS/TM-542, ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/tm.outbox, 1995

6. S. Micali, “Certificate Revocation System”, U.S. Patent number 5666416, 1997
7. M. Naor and K. Nissim, “Certificate Revocation and Certificate Update”, Proceed-

ings of 7th USENIX Security Symposium, pages 217-228, 1998
8. Andrew C. Yao, “Space-time trade-off for answering range queries (extended ab-

stract)”, Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing, pages 128-136, 1982

	Key Revocation with Interval Cover Families
	1 Introduction
	2 Definitions
	3 A Revocation Scheme Using ICFs
	4 Another Revocation Scheme Based on ICFs
	5 ICFs and Key Revocation
	5.1 The Expected Number of Intervals
	5.2 Key Revocation with RS1 for Growing r

	6 Lower Bounds for T_F in a k-ICF F
	7 Conclusion
	References

