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Abstract. We discuss multidoubling methods for efficient elliptic scalar
multiplication. The methods allows computation of 2kP directly from P
without computing the intermediate points, where P denotes a randomly
selected point on an elliptic curve. We introduce algorithms for elliptic
curves with Montgomery form and Weierstrass form defined over finite
fields with characteristic greater than 3 in terms of affine coordinates.
These algorithms are faster than k repeated doublings. Moreover, we
apply the algorithms to scalar multiplication on elliptic curves and ana-
lyze computational complexity. As a result of our implementation with
respect to the Montgomery and Weierstrass forms in terms of affine coor-
dinates, we achieved running time reduced by 28% and 31%, respectively,
in the scalar multiplication of an elliptic curve of size 160-bit over finite
fields with characteristic greater than 3.

Keywords. Elliptic curve cryptosystems, Scalar multiplication, Mont-
gomery form, Multidoubling, Fast implementation

1 Introduction

Elliptic curve cryptosystems, which were suggested by Miller [Mi85] and Koblitz
[Ko87], are now widely used in various security services. IEEE and other stan-
dardizing bodies such as ANSI and ISO are in the process of standardizing el-
liptic curve cryptosystems. Therefore, it is very attractive to provide algorithms
that allow efficient implementation. Encryption/decryption or signature genera-
tion/verification schemes require computation of scalar multiplication. The com-
putational performance of cryptographic protocols with elliptic curves strongly
depends on the efficiency of the scalar multiplication. Thus, fast scalar multipli-
cation is essential for elliptic curve cryptosystems.

One method to increase doubling speed involves the “multidoubling”, which
computes 2kP directly from P ∈ E(Fq), without computing the intermediate
points 2P, 22P, · · · , 2k−1P . The concept of multidoubling was first suggested by
Guajardo and Paar in [GP97]. They formulated algorithms for the multidoubling
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of 4P , 8P and 16P on elliptic curves over F2n in terms of affine coordinates. Re-
cent related results include a formula for computing 4P on elliptic curves over Fp

in affine coordinates by Müller [Mu97] and a formula for computing 4P on elliptic
curves over Fp in projective coordinates by Miyaji, Ono and Cohen [MOC97a].
These formulae are more efficient than repeated doublings. All of the previous
works were on the subject of elliptic curves with Weierstrass form. Another
model of an elliptic curve that is useful for cryptosystems is the Montgomery
form. Montgomery introduced the equation to speed up integer factorization
with elliptic curves [Mo87]. The elliptic curve method of factoring was proposed
by H.W.Lenstra [Le87]. In recent years, several authors have proposed elliptic
curve cryptosystems using the Montgomery model [Iz99,LD99,OKS00].

In this paper, we propose efficient algorithms for speeding up elliptic curve
cryptosystems with Montgomery elliptic curves in terms of affine coordinates.
We construct efficient formulae that compute 2kP directly for ∀k ≥ 2. In the
case of an elliptic curve with Montgomery form, our formulae have computational
complexity (8k+4)M+(4k−1)S+I, whereM, S, and I denote multiplication,
squaring and inversion in Fp, respectively. This is more efficient than k repeated
doublings, which require k inversions. When implementing our multidoubling
method, experimental results show that computing 16P achieved running time
reduced by 40% over 4 doublings in affine coordinates. Moreover we introduce
formulae that compute 2kP directly for ∀k ≥ 2, for Weierstrass elliptic curves in
terms of affine coordinates. Our formulae have computational complexity (4k +
1)M+ (4k + 1)S + I. The formulae have slightly simple form compared to the
formulae described in [SS01] and have computational advantage, due to one field
multiplication, over the formulae proposed in [SS00]

As a results of our implementation with respect to Montgomery and Weier-
strass forms in terms of affine coordinates, we achieved running time reduced by
28% and 31%, respectively, in the scalar multiplication of an elliptic curve of size
160-bit. We also discuss the computational complexity of scalar multiplication
using multidoubling. The proposed algorithm improve the performance of scalar
multiplication with the binary method, as well as the window method. There-
fore, they are effective in restricted environments where resources are limited,
such as smart cards.

2 Previous Work

In this section, we summarize the multidoubling, the direct computation and
arithmetic for an elliptic curve with Montgomery form.

2.1 Multidoubling and Direct Computation

The concept of using multidoubling and direct computation of 2kP to efficiently
implement elliptic scalar multiplication was first proposed by Guajardo and Paar
in [GP97]. They formulated algorithms for computing 4P , 8P , and 16P on elliptic
curves over F2n in terms of affine coordinates. In recent years, several authors
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have reported methods that compute 2kP directly, but some of them are limited
to small k. The following section summarizes the previous work on multidoubling
and direct computation.

1. Guajardo and Paar [GP97] proposed formulae for computing 4P , 8P , and
16P on elliptic curves over F2n in terms of affine coordinates.

2. Müller [Mu97] proposed formulae for computing 4P on elliptic curves over
Fp in terms of affine coordinates.

3. Miyaji, Ono, and Cohen [MOC97a] proposed formulae for computing 4P on
elliptic curves over Fp in terms of projective coordinates.

4. Han and Tan [HT99] proposed formulae for computing 3P , 5P , 6P , 7P , etc,
on elliptic curves over F2n in terms of affine coordinates.

5. Sakai and Sakurai [SS00,SS01] proposed formulae for computing 2kP (∀k ≥
1) on elliptic curves over Fp in terms of affine coordinates.

We should remark that the algorithm proposed by Cohen, Miyaji and Ono in
[CMO98] can be efficiently used for the direct computation of several doublings.
The authors call their algorithm a “modified jacobian” coordinate system. The
coordinate system uses (redundant) mixed representation such as (X,Y, Z, aZ4).
Doubling in terms of the modified jacobian coordinates has computational ad-
vantages over weighted projective (jacobian) coordinates. Itoh et al. also gave a
similar method for doubling [ITTTK99].

All of these works dealt with computations on Weierstrass elliptic curves. In
later sections, we will formulate algorithms that work on Montgomery elliptic
curves in terms of affine coordinates, and analyze their computational complex-
ity.

2.2 Elliptic Curves with Montgomery Model

Let a, b ∈ Fp, 4a3 +27b2 	= 0, p > 3, and p be a prime number. An elliptic curve
defined over Fp for Weierstrass model is defined by the following equation (1).
Elliptic curve cryptosystems using curves with Weierstrass form are in the pro-
cess of being standardized, e.g., [IEEE], and are widely used in various security
services.

E : y2 = x3 + ax+ b (1)

H. W. Lenstra proposed the elliptic curve method of factoring [Le87]. Mont-
gomery introduced the following equation to speed up integer factorization with
elliptic curves [Mo87]. In recent years, several authors have proposed cryptosys-
tems using an elliptic curve with Montgomery form [Iz99,LD99,OKS00]. Let
A,B ∈ Fp, (A2− 4)B 	= 0. An elliptic curve of Montgomery model is defined by
the following equation (2).

Em : Bv2 = u3 +Au2 + u (2)

The formulae for transforming Montgomery and Weierstrass forms are given
by the following (See [Iz99] for details).
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By the transformation u = 3x−AB
3B and v = y

B2 , we obtain y2 = x3 +
B2(3−A2)

3 x + AB3(2A2−9)
27 . Therefore, by the relationship a = B2(3−A2)

3 and b =
AB3(2A2−9)

27 , we can transform a Montgomery form into a Weierstrass form.
The above linear transformation clearly converts any elliptic curve with

Montgomery form into a curve with Weierstrass form. However, the inverse trans-
formation, from Weierstrass form to Montgomery form, works only if there exists
a particular curve. Based on the above relationship between (a, b) and (A,B), we
eliminate B, then we obtain A6−9A4−27(r−1)A2+27(4r−1) = 0, where r =

a3

4a4+27b2 . Let we consider the equation f(t) = t3−9t2−27(r−1)t+27(4r−1) = 0,
where t = A2. If f(t) has a solution t = α such as a quadratic residue in Fp,
a Weierstrass form can be transform into a Montgomery form by the following
relation. Let β be a square root of α, we obtain A = β and B = 9b(3−β2)

αβ(2β2−9) . Then
the relation x = 3Bu+AB

3 and y = B2v are derived.
A detailed analysis on the case which can transform a Weierstrass form into

a Montgomery form was given by Izu [Iz99]. He concluded that approximately
40% of curves with Weierstrass form can be transformed into a curve with Mont-
gomery form.

2.3 Group Operation for Elliptic Curves with Montgomery Form

We describe algorithms for group operation in an elliptic curve with Montgomery
form. When we estimate a computational efficiency, we will ignore the cost of a
field addition, as well as the cost of a multiplication by small constants.

Affine Coordinates. Suppose P3(u3, v3) = P1(u1, v1) + P2(u2, v2) ∈ Em(Fp),
and P1 	= P2. The addition formulae are given by the following.

u3 = Bλ2 −A− u1 − u2
v3 = λ(u1 − u3)− v1
λ =

v1 − v2
u1 − u2

(3)

The computational complexity for an addition involves 3M+ S + I.
Suppose P3(u3, v3) = 2P1(u1, v1) ∈ Em(Fp). Point doubling can be accom-

plished by the following.

u3 = Bλ2 −A− 2u1
v3 = λ(u1 − u3)− v1
λ =

3u21 + 2Au1 + 1
2Bv1

(4)

The computational complexity of a doubling involves 5M+ 2S + I.

Projective Coordinates. Next, we describe formulae for the group opera-
tions in projective coordinates. Let u = U

W , v = V
W . Suppose P2(U2,W2) =
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P1(U1,W1) + P (u, v, 1). The point P3(U3,W3) = P1(U1,W1) + P2(U2,W2) can
be computed by the following.

U3 = (U1U2 −W1W2)2

= (Sub1Add2 +Add1Sub2)2

W3 = u (U1W2 −W1U2)2

= u (Sub1Add2 −Add1Sub2)2

where, Add1 = U1+W1, Sub1 = U1−W1, Add2 = U2+W2 and Sub2 = U2−W2.
The computational complexity for an addition involves 3M+ 2S.

Note that V -coordinate does not enter into any of the formulae. An addition
can be accomplished without computation of the V -coordinate if the difference
between the two given points is known [Mo87]. Point doubling can be accom-
plished by the following.

U3 =
(
U2

1 −W 2
1
)2

= Add2
1Sub

2
1

W3 = 4U1W1
(
U2

1 +AU1W1 +W 2
1
)

=
(
Add2

1 − Sub21
) {
Sub21 + C

(
Add2

1 − Sub21
)}

where, C = A+2
4 . For a given curve, C can be pre-computed. Therefore above

formulae have computational complexity 3M+ 2S.
The basic well known method for elliptic scalar multiplication on curves with

Weierstrass form is the “double-and-add” (or binary) method. There are several
methods which have computational advantage over the binary method such as
the window method. However, in the case of elliptic curves with Montgomery
form in terms of projective coordinates, we can not apply such methods, because
the difference between the two given points, i.e., the U -coordinate of P2 − P1,
must be known when adding the two points. To compute kP , we compute 2P and
then repeatedly compute two points (2mP, (2m+1)P ) or ((2m+1)P, (2m+2)P ),
depending on whether the corresponding bit in the binary representation of k is a
0 or a 1 [AMV93,Mo87,MV93]. This method maintains the invariant relationship
such that the difference of the two points always P .

3 The Proposed Algorithms

In this section, we describe new algorithms for elliptic curves with Montgomery
form, which compute 2kP directly from a given point P ∈ Em(Fp) without
computing the intermediate points 2P, 22P, · · · , 2k−1P . We will begin by con-
structing formulae for small k, then we will construct an algorithm for general
k (k ≥ 2). We will also show an algorithm that compute 2kP directly for ellip-
tic curves with Weierstrass form. This is an improved version of the algorithm
proposed in [SS00,SS01].

3.1 Montgomery Form

As an example, we give an algorithm that compute 8P directly from P ∈ Em(Fp).
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Computing 8P . Let P8(u8, v8) = 8P (u1, v1) ∈ Em(Fp). For an elliptic curve
with Montgomery form in terms of affine coordinates, P8 can be computed in
the following way. The derivation is based on repeated substitution of the point
doubling formulae, such that only one field inversion needs to be calculated. First
we compute C, Di, Ei, Fi, for 1 ≤ i ≤ 3 as follows.

C = AB

D1 = u1B

E1 = v1

F1 = 1 + u1(2A+ 3u1)

D2 = −22CE2
1 − 8D1E

2
1 + F 2

1

E2 = −8B2E4
1 + F1(4D1E

2
1 −D2)

F2 = 24B2E4
1 +D2(23CE2

1 + 3D2)

D3 = −24C(E1E2)2 − 8D2E
2
2 + F 2

2

E3 = −8E4
2 + F2(4D2E

2
2 −D3)

F3 = 28B2(E1E2)4 +D3(25C(E1E2)2 + 3D3)

Then we compute u8 and v8 as follows.

u8 =
−8E2

3(23C(E1E2)2 +D3) + F 2
3

26B(E1E2E3)2

v8 =
F3((26C(E1E2)2 + 12D3)E2

3 − F 2
3 )− 8E4

3

29B2(E1E2E3)3

Note that C and B2 can be pre-computed, and that although the denominator
of u8 differs from that of v8, the above formulae require only one inversion
if we multiply the numerator of u8 by 23BE1E2E3. The above formulae have
computational complexity 25M+ 11S + I.

Multidoubling. From the formulae that compute 2kP for small k, given in
the previous subsection, we can easily obtain general formulae that allow direct
doubling P �→ 2kP for k ≥ 2. The figure shown below describes the formulae,
and their computational complexity is given as Theorem 1.

Algorithm 1: Direct computation of 2kP in affine coordinates on an elliptic curve
with Montgomery form, where k ≥ 2 and P ∈ Em(Fp).

INPUT: P1 = (u1, v1) ∈ Em(Fp)
OUTPUT: P2k = 2kP1 = (u2k , v2k ) ∈ Em(Fp)

Pre Computations

C = AB

B2 = B2

Step 1. Compute D0, E0 and F0

D0 = u1B

E0 = v1

F0 = 1 + u1(2A+ 3u1)
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Step 2. For i from 1 to k compute Di and Ei, for i from 1 to k − 1 compute Fi

Di = −22iC

(
i−1∏
j=0

Ej

)2

− 8Di−1E
2
i−1 + F 2

i−1

if i = 1 E1 = −8B2E
4
0 + F0(4D0E

2
0 −D1)

else Ei = −8E4
i−1 + Fi−1(4Di−1E

2
i−1 −Di)

Fi =

(
i−1∏
j=0

Ej

)2

24iB2

(
i−1∏
j=0

Ej

)2

+ 22i+1CDi


+ 3D2

i

Step 3. Compute u2k and v2k

u2k =
Dk

B
(
2k
∏k−1
i=0 Ei

)2

v2k =
Ek

B2

(
2k
∏k−1
i=0 Ei

)3

Theorem 1. For an elliptic curve with Montgomery form in terms of affine
coordinates, there exists an algorithm that computes 2kP , with k ≥ 2, in at most
8k+4 field multiplication, 4k− 1 field squaring and one inversion in Fp for any
point P ∈ Em(Fp), excluding precomputation.

The proof is outlined in Appendix A.1.

3.2 Weierstrass Form

The multidoubling for Weierstrass elliptic curves in terms of affine coordinates
is given below. Their computational complexity have, given as Theorem 2, (4k+
1)M+(4k+1)S+I. The complexity has a one field multiplication computational
advantage over the formulae proposed in [SS00]. Moreover, the formulae have
slightly simple form compared to the formulae described in [SS01]

Algorithm 2: Direct computation of 2kP in affine coordinates on an elliptic curve
with Weierstrass form, where k ≥ 1 and P ∈ E(Fp).

INPUT: P1 = (x1, y1) ∈ E(Fp)
OUTPUT: P2k = 2kP1 = (x2k , y2k ) ∈ E(Fp)

Step 1. Compute A0, B0 and C0

A0 = x1

B0 = y1

C0 = 3x2
1 + a
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Step 2. For i from 1 to k compute Ai and Bi, for i from 1 to k − 1 compute Ci

Ai = C2
i−1 − 8Ai−1B

2
i−1

Bi = 8B4
i−1 + Ci−1(Ai − 4Ai−1B

2
i−1)

Ci = 3A2
i + 16i−1a

(
i−1∏
j=1

Bj

)4

Step 3. Compute x2k and y2k

x2k =
Ak(

2k
∏k
i=1 Bi

)2

y2k =
Bk(

2k
∏k
i=1 Bi

)3

Theorem 2. For an elliptic curve with Weierstrass form in terms of affine
coordinates, there exists an algorithm that computes 2kP in at most 4k + 1
multiplications, 4k + 1 squarings, and one inversion in Fp for any point P ∈
E(Fp).

The proof is outlined in Appendix A.2.

3.3 Complexity Comparison on Direct Computation

In this subsection, we compare the computational complexity of the multidou-
bling given in the previous subsection with the complexity of k separate repeated
doublings. The complexity of a doubling is estimated from the algorithm given
by the formulae (4) or as shown in [IEEE]. Tables 1 and 2 show the number
of multiplications M, squarings S, and inversions I in the base field Fp. Note
that our method reduces inversions at the cost of multiplications. Therefore, the
performance of the new formulae depends on the cost factor of one inversion
relative to one multiplication. For this purpose, we introduce the notation of a
“break-even point ”, as used in [GP97]. It is possible to express the time that it
takes to perform one inversion in terms of the equivalent number of multiplica-
tions needed per inversion. In this comparison, we assume that one squaring has
complexity S = 0.8M, and that the costs of field addition and multiplication by
small constants can be ignored.

As we can see from Table 1, if a field inversion has complexity I > 10.4M,
one quadrupling will be more efficient than two separate doublings. If Fp has
size 160-bit or larger, it is likely that I > 10.4M in many implementations (e.g.,
see [WMPW98]). In addition, if k > 2, our direct computation method is more
efficient than individual doublings in most implementations. For Weierstrass
form, shown in Table 2, our direct computation method is more efficient than
individual doublings in most implementations.
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Table 1. Complexity comparison on direct computation : Montgomery form

Calculation Method Complexity Break-Even

M S I Point

4P Direct computation 18 7 1 10.4M < I
Separate 2 doublings 10 4 2

8P Direct computation 25 11 1 7.0M < I
Separate 3 doublings 15 6 3

16P Direct computation 32 15 1 5.9M < I
Separate 4 doublings 20 8 4

2kP Direct computation 8k + 4 4k − 1 1 (4.6 + 7.8
k−1 )M < I

Separate k doublings 5k 2k k

Table 2. Complexity comparison on direct computation : Weierstrass form

Calculation Method Complexity Break-Even Point

M S I
4P Direct computation 9 9 1 8.6M < I

Separate 2 doublings 4 4 2

8P Direct computation 13 13 1 6.3M < I
Separate 3 doublings 6 6 3

16P Direct computation 17 17 1 5.4M < I
Separate 4 doublings 8 8 4

2kP Direct computation 4k + 1 4k + 1 1 (3.6 + 5.4
k−1 )M < I

Separate k doublings 2k 2k k

4 Scalar Multiplication with Direct Computation

4.1 The Algorithm

Using our previous formulae for direct computation of 2kP , we can improve
elliptic scalar multiplication with the sliding signed binary window method
[Go98,KT92]. For example, we apply our new formulae to the window method
with windows of length 4. We represent a scalar m in P �→ mP with a nonad-
jacent form (NAF) 1. For example, m = (1101110111)2 will be represented as
m′ = (1001̃0001̃001̃)NAF , where 1̃ denotes -1.
1 Koyama and Tsuruoka pointed out that an NAF is not necessarily the optimal
representation to use [Go98,KT92]. Although it has minimal weight, allowing a few
adjacent nonzeros may increase the length of zero-runs, which, in turn, would re-
duces the total number of additions. Their method may be useful for our scalar
multiplication with direct computations of 2kP .
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Algorithm 3 describes scalar multiplication on elliptic curves using our direct
computations of 2kP for the case k up to 4.

Algorithm 3: Elliptic scalar multiplication combining our direct computation
of 2kP with the window method, and window size k = 4

INPUT: P ∈ Em(Fp) or E(Fp), m ∈ Z

OUTPUT: mP ∈ Em(Fp) or E(Fp)

Step 1. Construct NAF representation
m = (etet−1 · · · e1e0)NAF , ei ∈ {−1, 0, 1}

Step 2. Precomputation
2.1 P6 ← 6P
2.2 For i from 7 to 10 do: Pi ← Pi−1 + P

Step 3. Pm ← O, i← t
Step 4. While i ≥ 3 do the following:
4.1 If ei = 0 then:

find the longest bitstring eiei−1 · · · el such that ei = ei−1 = · · · el = 0,
and do the following
Pm ← 2i−l+1Pm
i← l − 1

4.2 else (ei 	= 0):
If (eiei−1ei−2ei−3)NAF > 0 then:
Pm ← 16Pm + P(eiei−1ei−2ei−3)NAF

else:
Pm ← 16Pm − P|(eiei−1ei−2ei−3)NAF |

i← i− 4
Step 5. Pm ← (ei · · · e0)NAFPm using the traditional double-and-add method
Step 6. Return Pm

In Algorithm 3, we compute 16P directly from P in each window rather than
using 4 separate doublings. In Step 4.1 with strings of zero-runs in the scalar
mNAF , we should choose computations 16P , 8P , 4P or 2P optimally. This can
be done with rules such as: 1) If a length of zero equals to 4, we compute 16P .
2) If a length of zero equals to 3, we compute 8P , and so on. Note that the
computation for Step 5 is inexpensive if m is large.

Using our algorithms for scalar multiplication, many of the doublings in the
traditional window method will be replaced by the direct computation of 16P .
Therefore, if one computation of 16P is relatively faster than four doublings,
scalar multiplication with our method will be significantly improved. We will
examine this improvement by real implementation in the next section.

5 Complexity Comparison on Scalar Multiplication

In this section, we discuss the computational complexity of scalar multiplication
using our direct computation.
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Table 3. Number of computations of 2kP , where 1 ≤ k ≤ 4, and addition in the
sliding signed binary window method with window length of 4

Curves Add 2P 4P 8P 16P

160-bit 36.82 14.93 4.99 2.58 31.75

192-bit 37.63 15.29 5.06 2.64 39.54

224-bit 37.77 15.31 5.05 2.69 47.49

256-bit 41.77 15.31 5.06 2.70 55.53

384-bit 48.76 17.13 5.10 3.59 86.26

521-bit 90.39 31.34 14.51 6.94 109.87

5.1 Number of 2kP Computations in the Window Method

Table 3 shows the number of required computations of 2kP and additions in
the sliding signed binary window method based on Algorithm 3. The window
size shown in the table is 4 as an example. The numbers were counted by our
implementation such that We randomly generated 10000 exponents and counted
the number of operations. The averages of the numbers are shown in Table 3. In
the case of a window of length 4, direct computations of 4P , 8P , and 16P can
be used.

From the table, we can see that with direct computations of up to 16P , the
computational efficiency of 16P significantly affects scalar multiplication.

5.2 Break-Even Point

Based on the number of computations of 2kP in scalar multiplication, given in
Table 3, we compared the computational complexity of scalar multiplication. For
example, in the case of a 160-bit scalar, the complexity of scalar multiplication
using direct computation with k = 4 can be evaluated as: C = 36.82A+14.93D2+
4.99D4+2.58D8+31.75D16, whereA,D2,D4,D8, andD16 denote the complexity
of the computation for point addition, doubling, 4P , 8P , and 16P , respectively.
The complexity of those point operations can be evaluated using the algorithms
given in the previous sections. For the proposed scalar multiplication with the
window method, we used Algorithm 3, which is based on the sliding window
method with NAF representation for a scalar.

The complexity comparisons in the case of 160-bit are described in Tables 4
and 5. By the “Traditional method”, we mean a scalar multiplication using the
double-and-add method in terms of affine coordinates. Again, we assume that
one squaring has complexity S = 0.8M. For larger sizes, the comparison can be
obtained in the same way.
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Table 4. Break-even point in scalar multiplication on a 160-bit elliptic curve with
Montgomery form

Method Complexity Break-Even Point

Binary Traditional 1360M + 240I 9.3M < I
Proposed 1686M + 205I

NAF Traditional 1259M + 213I 6.6M < I
Proposed 1551M + 169I

Window with NAF Traditional 1195M + 197I 6.1M < I
Proposed 1840M + 91I

Table 5. Break-even point in scalar multiplication on a 160-bit elliptic curve with
Weierstrass form

Method Complexity Break-Even Point

Binary Traditional 800M + 240I 6.6M < I
Proposed 1030M + 205I

NAF Traditional 724M + 213I 7.1M < I
Proposed 1038M + 169I

Window with NAF Traditional 679M + 197I 5.6M < I
Proposed 1269M + 91I

6 Running Time

In this section, we present the running times that we obtained with our software
implementation of the proposed algorithms.

The platform consisted of a 600MHz Pentium III, which has 32-bit word,
using Windows 2000, Visual C++ 6.0, and MASM 6.15. The programs were
written in assembly language for multi-precision integer operations, which may
be time-critical in our implementation, or in ANSI C language for other opera-
tions.

We used the following domain parameters for an elliptic curve with Mont-
gomery form.

p = 800000000000000000000000000000000000012b

A = 49cb474d172aadfd987191a490ae0671674fe5a9

B = 17240aee6e1c8c00a7ec1df1b8721d3f90437803

Gu = 31c0186c5389ec1c81d85f4e1449390c954f7f39

Gv = 534a718a33d4e2c2089ac68e48c8f6eb101ec46d

�Em(Fp) = 800000000000000000005b4c33272e33dfe2cb9c

where (Gu, Gv) ∈ Em(Fp), and &Em(Fp) denotes the number of points on Em.
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Table 6. Running time of elliptic curve and field operations in msec

Curve Elliptic (160-bit) Field (160-bit)

Add 2P 4P 8P 16P multiply square inversion

Montgomery 0.11 0.12 0.19 0.25 0.29 1.92 · 10−3 1.63 · 10−3 56.0 · 10−3

Weierstrass 0.093 0.094 0.13 0.16 0.20

Table 7. Running time of scalar multiplication of a randomly selected point in msec

Curve Binary NAF Window with NAF

(160-bit) Traditional Proposed Traditional Proposed Traditional Proposed

Montgomery 27.4 25.7 25.0 22.7 23.3 16.7

Weierstrass 22.5 20.2 20.0 17.1 17.9 12.3

Table 8. Improvement of the performance of scalar multiplications in %

Curve (160-bit) Binary NAF Window with NAF

Montgomery 6 9 28

Weierstrass 10 14 31

Table 6 shows the running times of elliptic curve and definition field opera-
tions. 2 Table 7 shows the running times of scalar multiplications.

We achieved running time reduction as shown in Table 8. As a result of
our implementation with respect to Montgomery and Weierstrass form in terms
of affine coordinates, we achieved running time reduced by 28% and 31%, re-
spectively, in the scalar multiplication of the elliptic curve of size 160-bit. The
proposed algorithms improved the performance of a scalar multiplication with
the binary method, as well as the window method. Therefore they are effective
in an restricted environment where resources are limited, such as with a smart
card.
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A Computational Complexity of Direct Computations

In this appendix, we give proofs of Theorems 1 and 2. In these proofs, we ignore the
cost of field additions and a subtractions, as well as the cost of multiplications by small
constants.

A.1 Proof of Theorem 1

In Step 1 of Algorithm 1, two multiplications are performed to compute u1B and
u1(2A+ 3u1). The complexity of Step 1 involves 2M.

In Step 2, the following computations are performed k times to compute Di and
Ei, and k − 1 times to compute Fi. We first perform 2 squarings to compute E2

i−1

and F 2
i−1. If i > 1, we perform one multiplication to compute (

∏i−1
j=0 Ej)

2. Next we
perform 2 multiplications for the computation of Di−1E

2
i−1 and C(

∏i−1
j=0 Ej)

2. Note
that (

∏i−2
j=0 Ej)

2 should be stored in the previous loop of the iteration. This gives Di,
and so the complexity of computing Di involves 3M + 2S if i > 1 and 2M + 2S if
i = 1. Next, we perform one squaring and one multiplication to compute E4

i−1 and
Fi−1(Di−1E

2
i−1 − Di−1). If i = 1, we perform one more multiplication to compute

B2E
4
0 . This gives Ei, and so the complexity of computing Ei involvesM+ S if i > 1

and 2M+ S if i = 1. Next, if i 	= k, we perform 3 multiplications and one squaring to
compute CDi, B2(

∏i−1
j=0 Ej)

2, (
∏i−1
j=0 Ej)

2(24iB2(
∏i−1
j=0 Ej)

2 +22i+1CDi) and D2
i . This

gives Fi, and so the complexity of computing Fi involves 3M+ S.
The total complexity of Step 2 involves k(4M+ 3S) + (k − 1)(3M+ S).
In Step 3, we first perform k−1 multiplications to compute (

∏k−1
i=0 Ei) and set the

result to T1. Next, two multiplications for (
∏k−1
i=0 Ei)

3 and B2(
∏k−1
i=0 Ei)

3 are performed.
Note that (

∏k−1
i=0 Ei)

2 has already been computed in Step 2. Then, we perform on
inversion to compute (23kB2(

∏i−1
j=0 Ej)

3)−1 and set the result to T2. Next, we perform
one multiplication to compute EkT2. Then, we obtain v2k . The complexity of computing
v2k involves (k − 1)M+ 3M+ I.

To compute u2k , we perform 3 multiplications to compute DkB, DkBT1, and
DkBT1T2. Then, we obtain u2k . The complexity of computing u2k involves 3M.

According to above computation, the complexity of Algorithm 1 involves (8k +
4)M+ (4k − 1)S + I.

A.2 Proof of Theorem 2

In Step 1 of Algorithm 2, one squaring is performed to compute x2
1. The complexity

of Step 1 involves S.
In Step 2, the following computations are performed k times to compute Ai and

Bi, and k − 1 times to compute Ci. First, we perform 3 squarings to compute B2
i−1,

B4
i−1, and C2

i−1. Second, we perform one multiplication to compute Ai−1B
2
i−1. Then

we obtain Ai. Third, we perform one multiplication to compute Ci−1(Ai−4Ai−1B
2
i−1).

Then we obtain Bi. Next, we perform one squaring to compute A2
i . If i = 1, we perform

one multiplication to compute aB4
1 and set the result to U , and if i > 1, we perform one

multiplication to compute UB4
i−1 and set the result to U . Then, U equals a(

∏i−1
j=1 Bj)

4.
Then we obtain Ci. The complexity of Step 2 involves (2M+3S)k+(M+S)(k− 1).

In Step 3, we first compute
∏k
i=1 Bi which takes k− 1 multiplications. Second, we

perform one inversion to compute (2k
∏k
i=1 Bi)

−1 and set the result to T . Next, we
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perform one squaring to compute T 2. Next, we perform one multiplication to compute
AkT

2. Then, we obtain x2k . Finally, we perform 2 multiplications to compute BkT 2T .
Then, we obtain y2k . The complexity of Step 3 involves (k − 1)M+ 3M+ S + I.

According to above computation, the complexity of Algorithm 2 involves (4k +
1)M+ (4k + 1)S + I.
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