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Abstract. We propose a new method to compute x-coordinate of kP +
lQ simultaneously on the elliptic curve with Montgomery form over IFp
without precomputed points. To compute x-coordinate of kP + lQ is re-
quired in ECDSA signature verification. The proposed method is about
25% faster than the method using scalar multiplication and the recovery
of Y -coordinate of kP and lQ on the elliptic curve with Montgomery
form over IFp, and also slightly faster than the simultaneous scalar mul-
tiplication on the elliptic curve with Weierstrass form over IFp using
NAF and mixed coordinates. Furthermore, our method is applicable to
Montgomery method on elliptic curves over IF2n .

1 Introduction

Elliptic curve cryptography was first proposed by Koblitz [10] and Miller [15]. In
recent years, efficient algorithms and implementation techniques of elliptic curves
over IFp [3,4], IF2n [7,13] and IFpn [2,9,12] has been investigated. In particular,
the scalar multiplication on the elliptic curve with Montgomery form over IFp
can be computed efficiently without precomputed points [16], and is immune to
timing attacks [11,17]. This method is extended to elliptic curves over IF2n [14].

We need to compute kP + lQ, where P and Q are points on the elliptic
curve and k, l are integers less than the order of the base point, in Elliptic
Curve Digital Signature Algorithm (ECDSA) signature verification [1]. On the
elliptic curve with Weierstrass form, kP + lQ can be efficiently computed by a
simultaneous multiple point multiplication [3,7,19], which we call a simultaneous
scalar multiplication. On the other hand, the simultaneous scalar multiplication
on the elliptic curve with Montgomery form has not been proposed yet. Then
we propose it and call it Montgomery simultaneous scalar multiplication. This
method is about 25% faster than the method using Montgomery scalar multi-
plication and the recovery of Y -coordinate of kP and lQ, and about 1% faster
than Weierstrass simultaneous scalar multiplication over IFp using NAF [8] and
mixed coordinates [4]. Moreover, our method is applicable to elliptic curves over
IF2n .

This paper is described as follows. Section 2 presents preliminaries including
arithmetic over the elliptic curve with Montgomery form and Weierstrass form.
In Section 3, we describe the new method, Montgomery simultaneous scalar
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multiplication. Section 4 presents comparison of our method with others and
Section 5 presents implementation results. We then apply our method to elliptic
curves over IF2n in Section 6 and conclude in Section 7.

2 Preliminaries

2.1 Elliptic Curve with Montgomery Form

Montgomery introduced the new form of elliptic curve over IFp [16]. For A,B ∈
IFp, the elliptic curve with Montgomery form EM is represented by

EM : By2 = x3 +Ax2 + x ((A2 − 4)B �= 0). (1)

We remark that the order of any elliptic curve with Montgomery form is always
divisible by 4.

In affine coordinates (x, y), the x-coordinate of the sum of the two points on
EM can be computed without the y-coordinates of these points if the difference
between these points is known. Affine coordinates (x, y) can be transformed into
projective coordinates (X,Y, Z) by x = X/Z, y = Y/Z. Equation (1) can also be
transformed as

EM : BY 2Z = X3 +AX2Z +XZ2.

Let P0 = (X0, Y0, Z0) and P1 = (X1, Y1, Z1) be points on EM and P2 =
(X2, Y2, Z2) = P1 + P0, P3 = (X3, Y3, Z3) = P1 − P0. Addition formulas and
doubling formulas are described as follows.

Addition formulas P2 = P1 + P0 (P1 �= P0)

X2 = Z3((X0 − Z0)(X1 + Z1) + (X0 + Z0)(X1 − Z1))2

Z2 = X3((X0 − Z0)(X1 + Z1)− (X0 + Z0)(X1 − Z1))2 (2)

Doubling formulas P2 = 2P0

4X0Z0 = (X0 + Z0)2 − (X0 − Z0)2

X2 = (X0 + Z0)2(X0 − Z0)2

Z2 = (4X0Z0)((X0 − Z0)2 + ((A+ 2)/4)(4X0Z0))

P2 = (X2, Z2) can be computed without Y -coordinate. Since the computational
cost of a field addition and subtraction is much lower than that of a field multi-
plication and squaring, we can ignore it. The computational cost of the addition
formulas is 4M+2S, whereM and S respectively denote that of a field multipli-
cation and squaring. If Z3 = 1, the computational cost of the addition formulas
is 3M +2S. If (A+2)/4 is precomputed, the computational cost of the doubling
formulas is also 3M + 2S.

Let (kt · · · k1k0)2 be the binary representation of k with kt = 1. To compute
the scalar multiplication kP from P = (x, y), we hold {miP, (mi+1)P} formi =
(kt · · · ki)2. If ki = 0, miP = 2mi+1P and (mi + 1)P = (mi+1 + 1)P +mi+1P .



Fast Simultaneous Scalar Multiplication on Elliptic Curve 257

Otherwise, miP = (mi+1+1)P +mi+1P and (mi+1)P = 2(mi+1+1)P . We can
compute {kP, (k+1)P} from {P, 2P}. Montgomery scalar multiplication requires
the addition formulas t − 1 times and the doubling formulas t times. Since the
difference between (mi+1 + 1)P and mi+1P is P , we can assume (X3, Z3) =
(x, 1) in addition formulas (2). The computational cost of Montgomery scalar
multiplication kP is (6|k| − 3)M + (4|k| − 2)S, where |k| is the bit length of k.

In ECDSA signature verification, we need to compute x-coordinate of kP +
lQ, where P,Q are points on the elliptic curve and k, l are integers less than
the order of the base point. kP and lQ can be computed using Montgomery
scalar multiplication, but kP + lQ cannot be computed from kP and lQ using
formulas (2) because the difference between kP and lQ is unknown. Therefore,
the recovery of Y -coordinate of kP and lQ is required to compute kP + lQ from
kP and lQ using other addition formulas. The method of recovering Y -coordinate
is described in [18]. If kP = (X0, Z0), (k + 1)P = (X1, Z1) and P = (x, y), we
can recover Y -coordinate of kP = (X,Y, Z) as:

X = 2ByZ0Z1X0

Y = Z1((X0 + xZ0 + 2AZ0)(X0x+ Z0)− 2AZ0
2)− (X0 − xZ0)2X1

Z = 2ByZ0Z1Z0

The computational cost of recovering Y -coordinate is 12M + S.
To compute x-coordinate of kP + lQ, we require these 6 steps.

Step1 Compute kP using Montgomery scalar multiplication
Step2 Recover Y -coordinate of kP
Step3 Compute lQ using Montgomery scalar multiplication
Step4 Recover Y -coordinate of lQ
Step5 Compute kP + lQ from kP and lQ in projective coordinates
Step6 Compute x-coordinate of kP + lQ using x = X/Z

The computational cost of Step5 is 10M + 2S and that of Step6 is M + I,
where I denotes that of a field inversion. We can assume |k| = |l| without loss of
generality. The computational cost of x-coordinate of kP + lQ is (12|k|+29)M+
8|k|S + I.

2.2 Simultaneous Scalar Multiplication on Elliptic Curve
with Weierstrass Form

For a, b ∈ IFp, the elliptic curve with Weierstrass form EW is represented by

EW : y2 = x3 + ax+ b (4a2 + 27b3 �= 0).

We remark that all elliptic curves with Montgomery form can be transformed
into Weierstrass form, but not all elliptic curves with Weierstrass form can be
transformed into Montgomery form.

kP + lQ can be computed simultaneously on the elliptic curve with Weier-
strass form without precomputed points [19]. This method is known as Shamir’s
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trick [5]. On the elliptic curve with Weierstrass form over IFp, the most effec-
tive method computing kP + lQ without precomputed points is the simulta-
neous scalar multiplication using non-adjacent form (NAF) (k′t′ · · · k′1k′0), where
k′i ∈ {0,±1} (0 ≤ i ≤ t′), and mixed coordinates [4]. In [3], Weierstrass si-
multaneous scalar multiplication using window method and mixed coordinates
is described. This method is faster than Weierstrass simultaneous scalar mul-
tiplication using NAF, but requires much more memories where the points are
stored. That is why we pick Weierstrass simultaneous scalar multiplication using
NAF and mixed coordinates in this section.

NAF has the property that no two consecutive coefficients k′i are non-zero
and the average density of non-zero coefficients is approximately 1/3. In mixed
coordinates, we use the addition formulas of Jm ← J + A for the additions,
the doubling formulas of J ← 2Jm for the doublings ahead of addition, and the
doubling formulas of Jm ← 2Jm for the doublings ahead of doubling, where
J , A, and Jm respectively denote Jacobian coordinate, affine coordinate, and
modified Jacobian coordinate. This method is described as follows.

Algorithm 1: Weierstrass Simultaneous Scalar Multiplication using NAF and
mixed coordinates
Input: k = (kt · · · k1k0)2, l = (lt · · · l1l0)2, P,Q ∈ EW (kt or lt = 1).
Output: x-coordinate of W = kP + lQ.

1. Compute P +Q, P −Q.
2. Let (k′t′ · · · k′1k′0) and (l′t′ · · · l′1l′0) be NAF of k and l (k′t′ or l

′
t′ = 1).

3. W ← k′t′P + l′t′Q.
4. For i from t′ − 1 downto 0 do

4.1 if (k′i, l
′
i) = (0, 0) then

W ← 2W (Jm ← 2Jm);
4.2 else then

W ← 2W (J ← 2Jm),
W ←W + (k′iP + l′iQ) (Jm ← J +A).

5. Compute x-coordinate of W .

At step 1, P +Q, P −Q are computed in affine coordinates and their com-
putational cost is 4M +2S+ I. In mixed coordinates, the computational cost of
the addition formulas of Jm ← J + A, the doubling formulas of J ← 2Jm, and
the doubling formulas of Jm ← 2Jm are respectively 9M + 5S, 3M + 4S, and
4M+4S. Since the probability that (k′i, l

′
i) = (0, 0) is (1−1/3)2 = 4/9, we repeat

step 4.1 4|k|/9 times and step 4.2 5|k|/9 times if t′ = t+ 1. The computational
cost of step 4.1 is (4|k|/9)·(4M+4S) and that of step 4.2 is (5|k|/9)·(12M+9S).
This shows that the computational cost of step 4 is 76|k|/9 ·M +61|k|/9 ·S. The
computational cost of step 5 isM+S+I by x = X/Z2. Therefore, the computa-
tional cost of x-coordinate of kP+lQ is (76|k|+45)/9·M+(61|k|+27)/9·S+2I.
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3 Proposed Method —
Montgomery Simultaneous Scalar Multiplication

Now we propose the new method to compute kP + lQ simultaneously on the
elliptic curve with Montgomery form over IFp.

At first, we define a set of four points Gi,

Gi =




miP + niQ,
miP + (ni + 1)Q,
(mi + 1)P + niQ,

(mi + 1)P + (ni + 1)Q



, (3)

for mi = (kt · · · ki)2, ni = (lt · · · li)2. Now, we present how to compute Gi from
Gi+1 in every case of (ki, li).

1. (ki, li) = (0, 0)
Since mi = 2mi+1 and ni = 2ni+1, we can compute all elements of Gi from
Gi+1 as:

miP + niQ = 2(mi+1P + ni+1Q)
miP + (ni + 1)Q = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + ni+1Q) + (mi+1P + (ni+1 + 1)Q)

All elements of Gi can be computed without (mi+1 + 1)P + (ni+1 + 1)Q ∈
Gi+1.

2. (ki, li) = (0, 1)
Since mi = 2mi+1 and ni = 2ni+1 + 1, we can compute all elements of Gi
from Gi+1 as:

miP + niQ = (mi+1P + (ni+1 + 1)Q)) + (mi+1P + ni+1Q)
miP + (ni + 1)Q = 2(mi+1P + (ni+1 + 1)Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ (mi+1P + (ni+1 + 1)Q)

All elements of Gi can be computed without (mi+1 + 1)P + ni+1Q ∈ Gi+1.

3. (ki, li) = (1, 0)
Since mi = 2mi+1 + 1 and ni = 2ni+1, we can compute all elements of Gi
from Gi+1 as:

miP + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)
miP + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = 2((mi+1 + 1)P + ni+1Q)

(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ ((mi+1 + 1)P + ni+1Q)
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All elements of Gi can be computed without mi+1P + (ni+1 + 1)Q ∈ Gi+1.

4. (ki, li) = (1, 1)
Since mi = 2mi+1 + 1 and ni = 2ni+1 + 1, we can compute all elements of
Gi from Gi+1 as:

miP + niQ = ((mi+1 + 1)P + ni+1Q))
+ (mi+1P + (ni+1 + 1)Q)

miP + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ (mi+1P + (ni+1 + 1)Q)

(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q)
+ ((mi+1 + 1)P + ni+1Q)

(mi + 1)P + (ni + 1)Q = 2((mi+1 + 1)P + (ni+1 + 1)Q)

All elements of Gi can be computed without mi+1P + ni+1Q ∈ Gi+1.

In every case, all elements of Gi can be computed from Gi+1 without (mi+1+
1− ki)P + (ni+1 + 1− li)Q ∈ Gi+1. When we define a set of three points G′i,

G′i = Gi − {(mi + 1− ki−1)P + (ni + 1− li−1)Q}, (4)

all elements of Gi can be computed from G′i+1. Therefore, we can compute G′i
from G′i+1. The way to compute G′i fro m G′i+1 depends on (ki, li, ki−1, li−1),
since computing Gi from G′i+1 depends on (ki, li) while extracting G′i from Gi
depends on (ki−1, li−1).

Example 1 (ki, li, ki−1, li−1) = (0, 0, 0, 0)

mi, ni, G′i+1 and G′i would be described as: mi = 2mi+1, ni = 2ni+1,

G′i+1 =




mi+1P + ni+1Q,
mi+1P + (ni+1 + 1)Q,
(mi+1 + 1)P + ni+1Q


 , G′i =




miP + niQ,
miP + (ni + 1)Q,
(mi + 1)P + niQ




Therefore, we can compute G′i from G′i+1 as:

miP + niQ = 2(mi+1P + ni+1Q)
miP + (ni + 1)Q = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q) (5)
(mi + 1)P + niQ = ((mi+1 + 1)P + ni+1Q) + (mi+1P + ni+1Q)

If we define G′i = {T0[i], T1[i], T2[i]}, equations (5) can be described as:

T0[i] = 2T0[i+ 1]
T1[i] = T1[i+ 1] + T0[i+ 1] (T1[i+ 1]− T0[i+ 1] = Q)
T2[i] = T2[i+ 1] + T0[i+ 1] (T2[i+ 1]− T0[i+ 1] = P ).
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Example 2 (ki, li, ki−1, li−1) = (0, 1, 1, 0)

mi, ni, G′i+1 and G′i would be described as: mi = 2mi+1, ni = 2ni+1 + 1,

G′i+1 =




mi+1P + ni+1Q,
mi+1P + (ni+1 + 1)Q,

(mi+1 + 1)P + (ni+1 + 1)Q


 , G′i =




miP + niQ,
(mi + 1)P + niQ,

(mi + 1)P + (ni + 1)Q




Therefore, we can compute G′i from G′i+1 as:

miP + niQ = (mi+1P + (ni+1 + 1)Q) + (mi+1P + ni+1Q)
(mi + 1)P + niQ = ((mi+1 + 1)P + (ni+1 + 1)Q)

+ (mi+1P + ni+1Q) (6)
(mi + 1)P + (ni + 1)Q = ((mi+1 + 1)P + (ni+1 + 1)Q)

+ (mi+1P + (ni+1 + 1)Q)

Equations (6) can be described as:

T0[i] = T1[i+ 1] + T0[i+ 1] (T1[i+ 1]− T0[i+ 1] = Q)
T1[i] = T2[i+ 1] + T0[i+ 1] (T2[i+ 1]− T0[i+ 1] = P +Q)
T2[i] = T2[i+ 1] + T1[i+ 1] (T2[i+ 1]− T1[i+ 1] = P )

From equations (3) and (4), we can define G′t+1 as an initial set of G′i as:

Gt+1 = {O, Q, P, P +Q}
G′t+1 = Gt+1 − {(1− kt)P + (1− lt)Q},

where O is the point at infinity. By calculating G′i from G′i+1 repeatedly, we can
compute G′1 from G′t+1 whereas kP + lQ will be computed from G′1. Our method
to compute x-coordinate of kP + lQ can be described as next page. Ti + Tj (P )
means that the difference between Ti and Tj is P .

At step1, P − Q must be computed because the difference between (mi +
1)P + niQ and miP + (ni + 1)Q is P −Q.

We consider about the computational cost of the proposed method. At step1,
we compute P + Q,P − Q in affine coordinates and their computation cost is
4M + 2S + I. At step2, 3 and 4, we use projective coordinates in the same
way as Section 2.1. We assume |k| = |l| as referred in the previous section.
At step3, we require the addition formulas twice and the doubling formulas
once, or the addition formulas three times per bit of k. In either case, since the
computational cost per bit of k is 9M + 6S, the computational cost of step3 is
9(|k| − 1)M +6(|k| − 1)S. The computational cost of step4 is 3M +2S and that
of step5 is M + I. Therefore, the computational cost of the proposed method is
(9|k| − 1)M + (6|k| − 2)S + 2I.
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Algorithm 2: Montgomery Simultaneous Scalar Multiplication
Input: k = (kt · · · k1k0)2, l = (lt · · · l1l0)2, P,Q ∈ EM (kt or lt = 1).
Output: x-coordinate of W = kP + lQ.
1. Compute P +Q, P −Q.
2. If (kt, lt) = (0, 1) then: T0 ← O, T1 ← Q, T2 ← P +Q;

else if (kt, lt) = (1, 0) then: T0 ← O, T1 ← P, T2 ← P +Q;
else then: T0 ← Q, T1 ← P, T2 ← P +Q.

3. For i from t downto 1 do
3.1. If (ki, li, ki−1, li−1) = (0, 0, 0, 0) then:

T2 ← T2 + T0 (P ), T1 ← T1 + T0 (Q), T0 ← 2T0;
3.2. else if (ki, li, ki−1, li−1) = (0, 0, 0, 1) then:

T2 ← T2 + T1 (P −Q), T1 ← T1 + T0 (Q), T0 ← 2T0;
3.3. else if (ki, li, ki−1, li−1) = (0, 0, 1, 0) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← 2T0, T2 ← T2 + T (P −Q);
3.4. else if (ki, li, ki−1, li−1) = (0, 0, 1, 1) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (Q), T2 ← T2 + T (P −Q);
3.5. else if (ki, li, ki−1, li−1) = (0, 1, 0, 0) then:

T2 ← T2 + T0 (P +Q), T0 ← T1 + T0 (Q), T1 ← 2T1;
3.6. else if (ki, li, ki−1, li−1) = (0, 1, 0, 1) then:

T2 ← T2 + T1 (P ), T0 ← T1 + T0 (Q), T1 ← 2T1;
3.7. else if (ki, li, ki−1, li−1) = (0, 1, 1, 0) then:

T ← T1, T1 ← T2 + T0 (P +Q), T0 ← T + T0 (Q), T2 ← T2 + T (P );
3.8. else if (ki, li, ki−1, li−1) = (0, 1, 1, 1) then:

T ← T1, T1 ← T2 + T0 (P +Q), T0 ← 2T, T2 ← T2 + T (P );
3.9. else if (ki, li, ki−1, li−1) = (1, 0, 0, 0) then:

T ← T1, T1 ← T2 + T0 (P +Q), T0 ← T + T0 (P ), T2 ← 2T ;
3.10. else if (ki, li, ki−1, li−1) = (1, 0, 0, 1) then:

T ← T1, T1 ← T2 + T0 (P +Q), T0 ← T + T0 (P ), T2 ← T2 + T (Q);
3.11. else if (ki, li, ki−1, li−1) = (1, 0, 1, 0) then:

T0 ← T1 + T0 (P ), T2 ← T2 + T1 (Q), T1 ← 2T1;
3.12. else if (ki, li, ki−1, li−1) = (1, 0, 1, 1) then:

T0 ← T2 + T0 (P +Q), T2 ← T2 + T1 (Q), T1 ← 2T1;
3.13. else if (ki, li, ki−1, li−1) = (1, 1, 0, 0) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (P −Q), T2 ← T2 + T (Q);
3.14. else if (ki, li, ki−1, li−1) = (1, 1, 0, 1) then:

T ← T1, T1 ← T2 + T0 (P ), T0 ← T + T0 (P −Q), T2 ← 2T2;
3.15. else if (ki, li, ki−1, li−1) = (1, 1, 1, 0) then:

T0 ← T1 + T0 (P −Q), T1 ← T2 + T1 (Q), T2 ← 2T2;
3.16. else then:

T0 ← T2 + T0 (P ), T1 ← T2 + T1 (Q), T2 ← 2T2.
4. If (k0, l0) = (0, 0) then W ← 2T0;

else if (k0, l0) = (0, 1) then W ← T1 + T0 (Q);
else if (k0, l0) = (1, 0) then W ← T1 + T0 (P );
else then W ← T1 + T0 (P −Q).

5. Compute x-coordinate of W by x = X/Z.
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4 Comparison

Now we compare the computational cost of the proposed method to that of both
methods in Section 2. In addition, we compare this to the computational cost
of the method described in IEEE P1363 Draft [8], which is based on the scalar
multiplication using NAF on the elliptic curve with Weierstrass form. This is a
fair comparison because all four methods require no precomputed point. Table
1 shows the computational cost of each method to compute x-coordinate of
kP + lQ. M , S and I respectively denote the computational costs of a field
multiplication, squaring and inversion.

Table 1. The computational costs of every method

Method M S I

Weierstrass NAF [8] (40|k| − 1)/3 14|k| − 9 1

Montgomery 12|k|+ 29 8|k| 1

Weierstrass Simultaneous +NAF (Algorithm 1) (76|k|+ 45)/9 (61|k|+ 27)/9 2

Montgomery Simultaneous (Algorithm 2) 9|k| − 1 6|k| − 2 2

Table 2 shows the computational cost of each method for |k| = 160 and
the total cost when we assume S/M = 0.8 and I/M = 30 [12]. We also com-
pare the computational cost of our method to that of Weierstrass simultane-
ous scalar multiplication using window method and mixed coordinates, which
requires memories for 13 points [3]. The proposed method, Montgomery simul-
taneous scalar multiplication, is about 45% faster than the method described in
IEEE P1363 Draft, and about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate. Moreover, the proposed
method is about 1% faster than Weierstrass simultaneous scalar multiplication
using NAF. Our method is about 2% slower than Weierstrass simultaneous scalar
multiplication using window method, but requires much less memories.

5 Running Times

Here we present the running times of each method described in Section 4. To
calculate arbitrary precision arithmetic over IFp, we used the GNU MP library
GMP [6]. The running times were obtained on a Pentium II 300 MHz machine.
We used the following elliptic curve over IFp, where |p| = 162 and the order of
the base point r was 160 bits. #E means the order of this elliptic curve.
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Table 2. The computational cost of each method for |k| = 160 and S/M = 0.8, I/M =
30.

Method M S I M (S/M = 0.8, I/M = 30)

Weierstrass NAF 2133 2231 1 3938

Montgomery 1949 1280 1 3003

Weierstrass Simultaneous + NAF 1356 1087 2 2286

Montgomery Simultaneous 1439 958 2 2265

Weierstrass Simultaneous + Window 1281 1018 4 2215

p = 2 0aa6fc4d 8396f3ac 06200db7 3e819694 067a0e7b

a = 1 5fed3282 429907d6 03b41b7a 309abf87 bed9bd83

b = 1 74019686 9a423134 f3cdf013 b13564d0 ba3999e8

#E = 4 ∗ 82a9bf13 60e5bceb 01878167 1d478cea 881e1d1d

A = 1 8be6a098 c28d6bc0 3286dc51 e7e3f705 8a5b9d98

B = 0 120c2550 f6ff7a01 440d78d1 122fa3ac aa70fd53

We obtained average running times to compute x-coordinate of kP + lQ
by randomly choosing 100 points P,Q over this elliptic curve and 100 integers
k, l < r. Table 3 shows the average time of each method to compute x-coordinate
of kP + lQ. From Table 3, we notice the proposed method, Montgomery simul-
taneous scalar multiplication, is about 44% faster than the method described in
IEEE P1363 Draft, and about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate. Moreover, the proposed
method is about 3% faster than Weierstrass simultaneous scalar multiplication
using NAF. This shows that the theoretical advantage of our method is actually
observed.

Table 3. The average time of each method

Method Average time (ms)

Weierstrass NAF 36.2
Montgomery 26.9

Weierstrass Simultaneous + NAF 20.8
Montgomery Simultaneous 20.1
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6 Elliptic Curve over IF2n

A non-supersingular elliptic curve E over IF2n is represented by E : x2 + xy =
x3+ax2+b, where a, b ∈ IF2n , b �= 0. We can apply the proposed method to Mont-
gomery method on elliptic curves over IF2n [14]. The advantage of Montgomery
method on elliptic curves over IF2n is that we need not consider transformability
from Weierstrass form to Montgomery form. Since the computational cost of a
field squaring over IF2n is much lower than that of a field multiplication over
IF2n , we can ignore it.

In Montgomery method, the computational cost of addition formulas and
doubling formulas are respectively 4M and 2M in projective coordinates. If we
compute kP + lQ using Montgomery scalar multiplication, we requires addition
formulas twice and doubling formulas twice per bit of k. Therefore, the compu-
tational cost per bit of k is estimated to be about 12M .

On the other hand, if we compute kP + lQ using Montgomery simultaneous
scalar multiplication, we require addition formulas twice and doubling formulas
once at probability of 3/4, and addition formulas three times at probability of
1/4 per bit of k, as described in Algorithm 2. Since we require addition formulas
9/4 times and doubling formulas 3/4 times per bit of k, the computational cost
per bit of k is estimated to be about 21/2 ·M .

In Weierstrass simultaneous scalar multiplication over IF2n using NAF [7,13],
the computational cost per bit of k is estimated to be about 9M if a = 0, 1.

Therefore, the proposed method is only 13% faster than the method using
Montgomery scalar multiplication and 17% slower thanWeierstrass simultaneous
scalar multiplication using NAF. This shows that the proposed method on elliptic
curves over IF2n is not so efficient as that on elliptic curves with Montgomery
form over IFp.

7 Conclusion

We proposed the new method to compute x-coordinate of kP + lQ simultane-
ously on the elliptic curve with Montgomery form over IFp without precomputed
points. To compute x-coordinate of kP+ lQ is required in ECDSA signature ver-
ification. Our method is about 25% faster than the method using Montgomery
scalar multiplication and the recovery of Y -coordinate over IFp, and slightly
faster than Weierstrass simultaneous scalar multiplication over IFp using NAF
and mixed coordinates. Our method is considered to be particularly useful in
case that ECDSA signature generation is performed using Montgomery scalar
multiplication on the elliptic curve over IFp because of its efficiency of computa-
tion and its immunity to timing attacks, since all arithmetic on the elliptic curve
can be computed with Montgomery form and we don’t require transformation
to the elliptic curve with Weierstrass form. Furthermore, we showed that our
method was applicable to Montgomery method on elliptic curves over IF2n .
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7. D. Hankerson, J. Lopéz, and A. Menezes, “Software Implementation of Elliptic

Curve Cryptography over Binary Fields”, Cryptographic Hardware and Embedded
Systems - CHES 2000, LNCS 1965, pp. 3-24, 2000.

8. IEEE P1363, Standard Specifications for Public Key Cryptography, Draft Version
13, November 1999. http://grouper.ieee.org/groups/1363/

9. T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshino, “Fast Elliptic Curve
Algorithm Combining Frobenius Map and Table Reference to Adapt to Higher
Characteristic”, Advances in Cryptography - EUROCRYPT ’99, LNCS 1592, pp.
176-189, 1999.

10. N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation, vol. 48,
pp. 203-209, 1987.

11. P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, Advances in Cryptology – CRYPTO ’96, LNCS 1109, pp.
104-113, 1996.

12. C. H. Lim and H. S. Hwang, “Fast Implementation of Elliptic Arithmetic in
GF (pn)”, Public Key Cryptography - PKC 2000, LNCS 1751, pp. 405-421, 2000.
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