
Efficient Object Caching for Distributed Java
RMI Applications�

John Eberhard�� and Anand Tripathi

Department of Computer Science, University of Minnesota,
Minneapolis, MN 55431

{eberhard, tripathi}@cs.umn.edu

Abstract. Java-based1 distributed applications generally use RMI (Re-
mote Method Invocation) for accessing remote objects. When used in
a wide-area environment, the performance of such applications can be
poor because of the high latency of RMI. This latency can be reduced by
caching objects at the client node. However, the use of caching introduces
other issues, including the expense of caching the object as well as the
expense of managing the consistency of the object. This paper presents
a middleware for object caching in Java RMI-based distributed applica-
tions. The mechanisms used by the middleware are fully compatible with
Java RMI and are transparent to the clients. Using this middleware, the
system designer can select the caching strategy and consistency protocol
most appropriate for the application. The paper illustrates the benefits of
using these mechanisms to improve the performance of RMI applications.

1 Introduction

Distributed object systems are commonly implemented using some type of re-
mote procedure call, or in the Java case, remote method invocation (RMI) [20].
One problem with using RMI is the high latency associated with invoking a
method on an object. This problem is especially severe in wide-area networks,
due to large latencies dictated by the distances between sites. To overcome the
latency inherent in remote method invocation, the programmer is forced to struc-
ture applications so that interactions are reduced, or the programmer must rely
on other schemes to reduce latency related problems.

One approach to overcome the latency problem is to cache objects at the
client’s node. For example, a programmer could structure a client program so
that a copy of the object resides at the client. When manually replicating the
object in this manner, the programmer must decide the granularity of caching.
The programmer must also ensure that the replicated copy of an object remains
consistent with its other copies. Obviously, programatically adding caching in
� This work was supported by NSF ITR 0082215.

�� Author is currently employed by IBM Rochester, Rochester, MN 55901
1 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

R. Guerraoui (Ed.): Middleware 2001, LNCS 2218, pp. 15–35, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

16 J. Eberhard and A. Tripathi

this manner is expensive and error-prone. A better solution is the use of a mid-
dleware to transparently add caching to an RMI application. This middleware
should permit the programmer to choose the caching and consistency protocols
best suited to the application.

A middleware that improves the performance of Java RMI through the use
of caching must meet certain requirements. First, for caching to be useful, it
must be compatible with RMI and transparent to clients currently using RMI.
Second, object caching mechanisms must support consistency protocols tailored
to both the semantics and usage of an object. Third, when using caching, only
the data needed by the client should be cached. One technique to do this is to
selectively choose which objects should be cached. Another technique is to cache
an object that contains only a portion of the data of the original object. To
accomplish this, we introduce the concept of “reduced object.”

Based on these requirements, we have designed a set of object caching mecha-
nisms, integrated into a middleware system and a set of tools, for adding caching
to any existing Java RMI application. This paper describes the following contri-
butions of our work.

– A set of caching mechanisms transparent to and compatible with the existing
RMI clients of an application.

– These mechanisms support integration of different kinds of consistency pro-
tocols by the server.

– These mechanisms retain semantics of Java’s wait/notify synchronization
mechanisms.

– A set of tools to create the objects necessary to support caching in Java
RMI. These tools create the Java classes necessary to cache an RMI object.

– The notion of reduced object is introduced to support caching only parts of
an object as needed by a client, to reduce the overheads in caching the full
object.

– We present the results of our experimental evaluation of this system using
two different kinds of applications, which demonstrate the benefits of these
mechanisms for RMI applications.

As shown in this paper, adding caching to an RMI application can be accom-
plished using a middleware system that easily permits caching and consistency
policies to be chosen for RMI objects.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 presents the requirements guiding the development of the RMI
caching middleware. Section 4 presents the middleware and associated caching
mechanisms. Section 5 illustrates the benefit of this middleware using two dif-
ferent RMI applications. Section 6 presents the conclusions.

2 Related Work

Several researchers have investigated caching to improve the performance of
RMI and Java distributed object systems. Other researchers have used caching

Efficient Object Caching for Distributed Java RMI Applications 17

in distributed object systems. In comparison to existing work, our mechanisms
retain RMI compatibility, permitting existing RMI clients to transparently use
caching. Our mechanisms permit different consistency protocols to be associated
with different objects. We also support reduced objects, which contain a subset of
the state of the original objects. Below, we briefly review the work most relevant
to this paper.

In their work on RMI performance, Krishnaswamy, et al., [14] describe a
caching system used to improve RMI. Their system differs from our work be-
cause they cache the serialized version of the object inside the reference layer
of the Java RMI implementation. All interactions with the object take place on
the serialized object. A consistency framework assures that the entire serialized
object remains consistent with the object on the server. Like their approach, our
system retains RMI compatibility. Unlike their approach, our system caches the
objects in their unserialized forms. Furthermore, rather than caching complete
objects, our system permits caching portions of objects.

In a more recent work, Krishnaswamy, et al., [13] developed object caching
for distributed Java applications. Their work is similar to our work in that they
permit a variety of consistency protocols to be used to manage cached objects.
Their work is concerned with using the quality of service specified by the client
to guide caching decisions. While we take a server centric approach, the client
can still provide information about its environment. However, unlike our work,
they do not examine the impact of caching portions of objects.

Other researchers[3] have implemented Java caching using distributed shared
memory. These approaches have required changes to the underlying Java virtual
machine and would not be appropriate in a heterogeneous wide-area environ-
ment, nor would they be usable by existing Java RMI clients. Unlike their ap-
proach, our work does not require changes to the Java virtual machine.

Lipkind, et at., [16], describe a Java distributed object system with caching.
Their architecture is based on “object views”, where the programmer explicitly
states how an object is to be used. The information from the object views is
used to optimize the behavior of a distributed shared memory system running
on a cluster of workstations. The work presented in this paper differs from their
work in that we use RMI for client-server communication, thus permitting its
use in a wide-area network.

Another distributed object system is Globe[4][22]. Like the system presented
in this paper, several objects are used to represent a cached distributed object.
These objects serve roughly the same purpose as the objects in the caching
architecture presented in this paper, i.e., a local cache object, a consistency
object, and a communications object. However, with their local cache object,
they currently do not have a mechanism to use a subset of the instance variables
of the classes. The use of reduced objects that contain only a subset of the
instance variables of an object is a contribution of our work.

Rover is a distributed object system that caches objects. Its primary goal is
support for disconnected operation. It has a single consistency policy that uses
optimistic concurrency control to execute methods on a cached object. Requests
for method execution are queued for eventual execution at the server. Like most

18 J. Eberhard and A. Tripathi

object systems, Rover caches a complete copy of the object. In contrast, our work
provides support for integration of different consistency protocols. As mentioned
earlier, our work uses reduced objects to minimize the amount of state cached
at the client.

Like many other systems, we use the proxy principle[19] to implement a
distributed object system. Like GARF[7], we separate the functionality of the
object from other concerns. While GARF was focused on providing fault toler-
ance, our focus is on providing caching to improve the performance of an existing
distributed object system.

A well-known object system is Thor[17]. Thor uses page-based, transactional
object caching that uses a single protocol based on optimistic concurrency. Our
work differs in that we do not require transactional boundaries and we support
multiple consistency protocols. Instead of caching objects as a physical page, our
work uses the logical relationships between objects to direct caching decisions.

Our work applies the principle of binary rewriting to creating objects that
support caching in a middleware system. Binary rewriting has been used in the
past to remove synchronization[1][5] and also to improve the performance of
applet-loaded classes[12]. We extend the use of binary rewriting to the creation
of objects for caching. As described below, we have developed tools to analyze
the byte code in a Java class file and to manipulate that byte code to create
the objects in our system. To achieve our byte code manipulation, we use the
JavaClass API written by Markus Dahm[6].

3 Background and Requirements

Before undertaking the caching of Java RMI objects, the nature of such objects
must be understood. Once this is understood, requirements can be developed
to assure efficient and usable caching. These key requirements are RMI com-
patibility, flexible caching and consistency policy support, and minimal caching.
These requirements, their motivating factors, and corresponding challenges are
explained below. We also briefly discuss the issue of cache replacement.

3.1 Object Model

A Java RMI object is an object that implements an interface extending the
java.rmi.Remote interface. The object is accessed at the client using the methods
of the interface. To cache an RMI object, the structure of a Java RMI object
must be understood.

When viewed in the strictest sense, an object contains fields that are either
native types or references to other objects. The Java serialization mechanism
serializes an object so that it can be transmitted to another JVM environment.
When moving the object to another system, it is a simple matter to copy the
native types. However, moving a reference implies also moving the referenced
object. Some fields of the object and some referenced objects cannot be serialized.
A field designated as transient cannot be copied to a client, since the Java
serialization mechanism will not serialize a transient field when the object is

Efficient Object Caching for Distributed Java RMI Applications 19

serialized. Also, an object that is not serializable cannot be cached. An example
of this type of object is a FileReader object, which cannot be serialized because
it refers to an open file. When a Java RMI object, or Remote object, is serialized,
the object is replaced with a remote reference.

An object is cached by sending to the client the portions of the object that
are expected to be used by the client. Once the object has been cached, the
object and associated objects may be changed using methods of the interface.
A method manipulates the fields of the object and referenced objects. A native
field is manipulated using reads or writes to the field. A reference field can be
modified to refer to another object, or a method can be invoked on the referenced
object to change that object. If an object is cached, the caching mechanism must
have some means of assuring that changes to fields and referenced objects are
consistent with its other copies, including the primary copy of the object residing
at the server.

Any middleware system that caches RMI objects must be aware of the object
structure and provide mechanisms to assure the consistency of the fields of the
cached object as well as the serializable objects referenced by the cached object.

In summary, the characteristics of RMI objects that affect caching are the
following:

– transient variables cannot be cached
– non-serializable objects cannot be cached
– remote objects are serialized as RMI stubs and accessed via RMI stubs
– the serializable portion of an object as well as the serializable and non-

Remote objects referenced by the object can be cached
– the system must assure that the cached object, including referenced objects,

remain consistent with other copies

3.2 RMI Compatibility

A key requirement is RMI compatibility. Compatibility should be evidenced in
the following ways. Caching should easily be added to an existing RMI appli-
cation. Objects should be transparently cached at the client in a manner fully
compatible with RMI. It should be possible to use caching with some Remote
objects, yet access other Remote objects using RMI. Objects should be accessed
using RMI, if caching the object will not improve performance. Security concerns
may also prevent an object from being cached.

Because the current goal of our work is to determine the benefits of caching,
we require the use of RMI as the underlying communication mechanism. Be-
cause prior work has established that RMI can be improved using other
techniques[14][18], we wish to show that the benefits of our work are solely
due to caching, not other factors.

Meeting these requirements poses several challenges. To be compatible with
RMI, a suitable replacement for the standard RMI stub is needed. This stub
requires more logic than a normal RMI stub in order to determine whether
the stub should be passed as a reference, or if it should contain a cached RMI
object. Furthermore, a tool similar to the RMI stub generator, rmic, needs to
be designed to create these new stubs

20 J. Eberhard and A. Tripathi

3.3 Flexible Usage of Consistency Protocols

Another key requirement is that the caching mechanism should permit the in-
tegration of different kinds of consistency protocols, where each object can be
assigned a consistency protocol best suited to its behavior. When copies of an
object are located at several locations, in general, some mechanism must assure
that the various copies are consistent with each other. This can be accomplished
by assigning a consistency manager to each object cached on a client. Because it
is possible for the object to be accessed at the server, a consistency manager is
also required at the server. These consistency managers should be able to use a
variety of consistency protocols, permitting each object to use a protocol suited
to its semantics and usage.

Because objects differ widely in their usage and semantics, they have different
consistency requirements. Consequently, consistency managers should not be
tied to a specific consistency model or management protocol. When designing
protocols, it should be possible to use a given protocol with a wide variety
of objects. For each object in an application, the application developer should
be able to select or create a protocol that meets the object’s consistency and
performance requirements.

Consistency protocols use different and often conflicting techniques. Exam-
ples of these techniques[2][15] include cache invalidation versus cache update,
write through versus write back, and data shipping versus method shipping. Each
of these techniques performs well in some situations and poorly in other situa-
tions.

To support multiple consistency protocols, a proper design must permit con-
sistency managers to mediate access to an object and the cached copies of the
object. These consistency managers also need to be able to access the state of
the object. Developing consistency managers which can be generally applied to
a wide variety of objects, yet at the same time have intimate knowledge of the
structure of the object is a challenge to design and implement.

3.4 Minimize Cached Data

As mentioned earlier, a Java object may reference other objects. When caching
an object, caching all objects referenced by the object is not desirable. Only those
remote objects expected to be used should be cached. Other remote objects can
either continue to be accessed using RMI or the appropriate mechanisms should
be available to transparently cache the object either when it is first referenced
or when it is first used. Furthermore, when caching an object, it may not be
desirable to cache all contents of the object, since not all instance variables of an
object may be used at the client. Consequently, the object cached at the client
should only contain those instance variables that will be used.

The selective caching of objects and their instance variables provides effi-
ciency in two ways. First the network overhead of transferring the unused data
is eliminated. More important, the overhead of maintaining the consistency of
the data is also eliminated. Another reason not to cache an instance variable

Efficient Object Caching for Distributed Java RMI Applications 21

or object at the client is security. For example, if an instance variable or object
contains sensitive data, it should not be exposed to the client or the network.

To accomplish the selective caching of instance variables of an object, we
have developed the concept of a reduced object. A reduced object is a version
of an object where unused instance variables, as well as methods that use those
variables, have been removed. To effectively use reduced objects, several chal-
lenges had to be met. Mechanisms to generate the reduced object had to be
created, including mechanisms to determine what instance variables should be
included in a reduced object.

3.5 Cache Replacement

To simplify our design, we do not consider the issue of cache replacement. We
assume that the cache will be large enough to hold all objects that will be
cached. Gray and Shenoy suggest that because of the high latency of web access,
a “cache everything” strategy should be used when caching web pages[8]. The
same factors that influence the “cache everything” strategy for web pages will
influence the use of large caches for distributed objects. While we do not consider
the eviction of objects from the cache, in our design, objects in the cache are
removed by the Java garbage collector when they are no longer in use.

4 Caching Mechanisms

This section presents the mechanisms of our system satisfying the requirements
outlined in the previous section. These mechanisms are based on structures called
the cache template and server template, which respectively represent the RMI
object at the client and the server. The objects within the cache template and
server template work together to manage the global state of the object as well as
enable RMI compatibility. We also develop mechanisms that permit the devel-
opment of consistency protocols that are applicable to a wide variety of objects.

4.1 Caching Structures

To assure consistency, all access to the copies of the object that reside at the
clients as well as access to the server object must be mediated and coordinated.
While some systems provide either virtual memory mechanisms, such as those
available in software distributed shared memory systems like DOSA[10], or re-
flective mechanisms, like in MetaJava [11], to assist in managing fine grained
access to an object, these mechanisms are not available in standard Java. To as-
sure consistency in our system, we use interposition, in which an object manager
is interposed between a copy of an object and the users of the object. We use
interposition on both the client and the server. The middleware described in this
paper uses two primary structures, one on the clients and one on the server, to
ensure that all access to the object is mediated. These structures are described
below.

22 J. Eberhard and A. Tripathi

Cache
Stub

Consistency
Server
Stub for

Manager

Client
Policy

Metadata

Cached
Object Callback

Proxy
Server

Policy
Server

Metadata
Server
Object

Modified

Client Program

Client
Consistency

Manager

Cache Template

Server Program

Consistency
Manager

Server Template

Server

Fig. 1. Cache Template and Server Template

Cache Template. The Cache Template is our mechanism to cache RMI objects
at a client. Its root object, the Cache Stub, replaces the standard RMI stub. The
cache template consists of a cacheable version of the RMI object, along with
accessory objects that manage the client’s access to the cached object. As shown
in Figure 1, the cache template consists of seven objects: the Cached Object,
the Client Consistency Manager, the Metadata, the Client Policy, the Stub for
Server Consistency Manager, the Callback, and the Cache Stub. Each of these
objects plays a role in satisfying the caching requirements previously described.

The central object in the cache template is the cached object. The cached ob-
ject is a copy of the object that resides at the server. This copy implements non-
Remote versions of the interfaces of the object being cached. These non-Remote
versions of the interfaces are identical to the interfaces of the object being cached
with the exception that the interfaces no longer extend the java.rmi.Remote in-
terface. This must be done because Java RMI will not serialize an object that
implements the java.rmi.Remote interface (instead it will attempt to serialize
the RMI stub for the object).

The cache object may be a reduced object. As mentioned earlier, a reduced
object contains a subset of the instance variables of the original RMI object. A
tool generates the classes needed for a reduced object. This tool is provided a list
of methods that should be enabled in the reduced object. The tool determines
which instance variables are needed by those methods and creates a new class
that contains only those variables. Because the reduced class must implement all
the interfaces of the object, all the method signatures are present. However, un-
supported methods are changed so that they throw a “Not Available” exception
if called. As explained below, the other objects in the cache template assure that
an unsupported method will not be called. The reduced object is also changed

Efficient Object Caching for Distributed Java RMI Applications 23

so that it properly supports the Java wait/notify mechanism. This is described
below in Section 4.3.

Because the access to the cached object is controlled by other objects in
the cache template, if any of the methods of the original object were declared
as synchronized, that synchronization is no longer needed. Any synchronized
methods of the original object have their synchronization removed from the
cached object. This implies that the client consistency manager and client policy,
described below, are responsible for the correct ordering of any methods invoked
on the cached object. This includes the assurance that the state of the cached
object is consistent.

Since other objects in the cache template need to update the fields of the
object, the fields must be accessible. This is accomplished by changing the access
privileges of any private fields in the RMI object to package private.

Since the cached object must be kept consistent with the object at the server,
a direct reference to the cached object is not provided to the client program. In-
stead, a client consistency manager is interposed between the client program and
the cached object. Like the cached object, the client consistency manager imple-
ments a non-Remote version of the interfaces of the object being cached. The
client consistency manager works in conjunction with a Client Policy to maintain
the consistency of the cached object. For each method invoked on the object,
the client consistency manager consults the client policy, which determines what
actions should take place to handle the method invocation. The client policy
directs the actions of the client consistency manager using an ActionsList, which
is discussed below. For a reduced object, the client policy assures that a method
that is not supported by the reduced object will be executed on the server in-
stead of on the client. In summary, the purpose of the client consistency manager
is to enable the use of a generic policy with a specific object.

The client policy needs information about the object to guide the actions of
the client consistency manager. This information is contained in the metadata
object. The metadata object describes each method of the reduced object in
terms of the instance variables which are accessed by the method and the manner
in which each instance variable is used. Using the information about how each
method uses the instance variables of the object, the metadata also classifies a
method into one of the following five categories:

– NONE
This type of method does not use any instance variables of the reduced
object. Consequently, this type of method may be safely invoked at any
time.

– IMMUTABLE
This type of method only uses immutable instance variables of the reduced
object. Since immutable instance variables never change, they are always
valid if the object has been cached.

– READ-ONLY
This type of method only reads instance variables of the reduced object.
Since this type of method may read instance variables that may be changed

24 J. Eberhard and A. Tripathi

by other clients, the policy must assure that the instance variables read by
the method are consistent.

– READ-WRITE
This type of method both reads and writes instance variables of the reduced
object. Since this type of method may change an object, the policy must
assure that the invocation of this type of method will cause the object to
remain consistent.

– SERVER-ONLY
This type of method must be executed on the server because some instance
variables used by the method are not available in the reduced object. A client
policy will cause this type of method to be executed at the server.

The metadata for the reduced object is created by a tool which analyzes the
byte codes of a Java class to determine which instance variables of the object
are used by each supported method. Since an instance variables is only accessed
using the “PUTFIELD” and “GETFIELD” byte codes, this analysis is fairly
straight forward. Using this information, the methods of the reduced object are
categorized into one of the above categories.

The client consistency manager communicates with the server using a Stub
for the Server Consistency Manager. This object is a standard Java RMI stub
for an object on the server, the server consistency manager, which is described
below. It implements an interface that contains a modified version of all Remote
methods of the object being cached. For each method, two changes are made.
First, an additional client context parameter is added to the interface. The client
context passes information to the server about the context in which the method
is being called. This parameter is set by the client policy. One example of the
context, which is always passed to the server, is the identity of the client. The
second change to the interface is that an actions list is returned. This actions
list permits the server to control the behavior of the client consistency manager.
More details about the actions list are provided below.

Because the server may need to communicate with the client consistency
manager, the cache template contains a Callback object to which the server
may send requests. The callback object accepts remote requests from the server
and forwards those requests to the client consistency manager. This permits the
server to send requests such as cache updates and cache invalidations.

The client program accesses the object using a Cache Stub. The main purpose
of the cache stub is to ensure RMI transparency and compatibility. The cache
stub replaces the RMI stub found in standard RMI. The cache stub contains
logic to assure that it is serialized in the correct form when passed via an RMI
method. When passed to a client, the cache stub causes the sending of either an
entire cache template or a partial cache template, consisting only of the cache
stub and stub for server consistency manager. For example, if the cache stub is
being sent to the RMI name registry, then the partial cache template is sent.
Clients then receive the partial cache template when they lookup the object
from the name registry. If the partial cache template is accessed by a client, the
cache stub contains the logic needed to contact the server, using the stub for the

Efficient Object Caching for Distributed Java RMI Applications 25

Table 1. Primary Function of Objects in Cache Template

Object Primary Function
Cached Object Contains state of cached RMI object
Client Consistency Manager Manages access to the cache object

based on the client policy
Client Policy Defines in an object-independent manner

how object is managed
Metadata Describes the cached object
Callback Permits the server to contact the client
Stub for Server Consistency Manager Provides communication with the server
Cache Stub Provides RMI compatibility and object

faulting

server consistency manager, and request the object. This we refer to as object
fault handling.

The cache stub also overcomes one of the shortcomings of the current RMI
implementation. Suppose, a server receives through an RMI call, either as a pa-
rameter or return value, a reference to an RMI object residing at the server. If
the server uses this reference, which is an RMI stub, to access the object, the
communication overhead of RMI will be incurred. However, if a cache stub is
received on the server, its deserialization routine will use the ID of the cached
object to determine if it resides on the server. If so, it will allow itself to di-
rectly access the consistency manager for that object, thus avoiding unnecessary
communication overhead.

The classes for the cache stub, client consistency manager, cache object, and
stub for server consistency manager must be created for each class of object being
cached. To facilitate the creation of the appropriate classes, we have developed
suitable code generators. These generators use the Java class file of the remote
object as input and produce the necessary classes.

The objects in the cache template permit the caching of an RMI object and
control when a method is invoked on the cache object, assuring that the cache
object is in a consistent state. In summary, the objects in the cache template
and their functions are given in Table 1.

Server Template. The Server Template is the mechanism used to manage
the primary object residing at the server. As shown in Figure 1, it consists of
five objects. The original remote object is replaced by a modified server object.
Like the cache template, the server template also has consistency manager and
policy objects. To assure RMI compatibility, the server template also has a proxy
object.

The modified server object is a slightly modified version of the original RMI
remote object. A modified version of the object is needed for many of the same
reasons that the client contains a modified version of the object. These rea-
sons include changing the access privileges of instance variables and replacing
synchronization primitives with primitives described in section 4.3.

26 J. Eberhard and A. Tripathi

Table 2. Primary Function of Objects in Server Template

Object Primary Function
Modified Server Object Maintains state of the object at the server
Server Consistency Manager Manages access to the modified server object
Server Policy Dictates in an object-independent manner

how object is managed
Metadata Describes the server object
Server Proxy Provides RMI compatibility

public void sampleMethod(String inputParm) {
actionsList = clientPolicy.getActionsList(methodId);
executeActionsList(actionsList);

}

Fig. 2. General Structure of a Method of the Client Consistency Manager

The server consistency manager plays the same role as the client consistency
manager on the client. It manages method requests from the server and clients.
Like the client consistency manager, on each request it consults a server policy.
The server policy returns an actions list to direct the behavior of the server
consistency manager. Like the client policy, the server policy uses a metadata
object to guide its decisions.

At the server, the object is accessed using the Server Proxy. The purpose of
the server proxy is to provide RMI compatibility. If it is passed via RMI, RMI
serialization will serialize the cache stub of the cache template. In other words,
the RMI system considers the server proxy to be a Remote object that has the
Cache Stub as its stub.

To use the cached template, minimal changes to the server are needed. First,
a modified server object must be created instead of the original RMI objects. Sec-
ond, instead of exporting the object using the export method of UnicastRemo-
teObject, the application must export the object using the export method of the
CacheableObject class, which we provide.

In summary, the objects in the server template and their functions are shown
in Table 2.

4.2 A Framework for Consistency Management

As mentioned earlier, the purpose of the client consistency manager is to in-
tercept, via interposition, each method invocation. It consults the client policy
for the actions to take to handle the method invocation. Figure 2 provides an
example of the structure of a method in the client consistency manager. This
method retrieves an actions list from the client policy and executes the actions
in this list.

An ActionsList is a list of actions that are to be executed by a client con-
sistency manager. We have identified several actions used to control a client
consistency manager. Some of these actions are listed in Table 3.

Efficient Object Caching for Distributed Java RMI Applications 27

Table 3. Actions Executable by Client Consistency Manager.

Action Description
1. Invoke method Invoke the method on the locally cached object.
2. Get actions list from server Contact the server, passing the method id and

the client context. Returns an action list.
3. Invoke method on server Invoke the method on the server using RMI, passing

method arguments and the client context. Returns
an action list.

4. Set return value Sets the return value of the method.
5. Update variable Updates an instance variable of the cached

object to a value.
6. Update policy state Updates the state of the client policy. (This

is explained in Section 4.2)

When a client policy is consulted by a client consistency manager, it considers
the state of the cached object as well as the characteristics of the method. If the
client policy determines that a method can be safely invoked (for example, the
method is an IMMUTABLE method), it returns the “Invoke Method” action.
Otherwise it may return an action to contact the server, either action 2 or 3 in
Table 3. For these actions, the server consistency manager returns an additional
actions list to be executed by the client consistency manager. For example, this
list could contain actions to set the return value of the method, to update the
instance variables of the cached object, and to update the state of the client
policy. For example, this state could be used to track which instance variables
of the cached object are valid.

Examples of actions executed by the client for certain scenarios are given
in Table 4. For example, in scenario 1, a method only uses immutable instance
variables. The client policy returns the action to invoke the method locally on
the cached object. In scenario 2, a method uses instance variables that are only
accessible at the server. The client policy returns an action to invoke the method
on the server. After executing the method, the server returns an action list to
set the return value of the method. In scenario 3, the object state used by the
method is invalid. The client policy returns an action to get an actions list
from the server. The server returns actions to update the instance variables of
the cached object, update the policy state to indicate that the cached object is
valid, and finally to invoke the method on the cached object.

The goal of the consistency mechanisms is to enable actions to be taken
both before and after the method on the cached object is invoked. The client
consistency manager is directed by the client policy as well as the server policy
objects. The policy objects at the client and the server cooperate to assure that
the consistency and synchronization requirements associated with the object are
met.

28 J. Eberhard and A. Tripathi

Table 4. Examples of actions executed by client consistency manager for particular
situations. Actions in small capital letters indicate actions from the client policy.
Actions with an asterisk (*) and in italics were received from the server.

Scenario Actions Executed by
Client Consistency Manager

1. Method uses immutable instance variables invoke method locally
2. Method uses instance variables only invoke method on server
available at server * Set return value

3. Method uses instance variables that get actions list from server
are not valid at the client * Update variable

* Update policy state
* Invoke method locally

4.3 Wait and Notify Support

This middleware assures consistency by controlling the principal entry points
into a cached object, namely the method entry and exit. However, an object
may be entered and exited in another manner. This is through the Java wait and
notify mechanisms. The system must ensure that the semantics of wait and notify
are preserved. To accomplish this, our tools modify the cached object (as well
as the server object) such that the invocations of the wait and notify methods
are respectively replaced by invocations of the handleWait and handleNotify
methods of the consistency manager.

When a handleWait method of the client consistency manager is invoked, it
asks the client policy object for an actions list. This actions list typically contains
an action to inform the server that a client object has executed the wait method.

The handleNotify method must be implemented differently. Java semantics
dictate that when a thread issues a notify, a waiting thread will awake and
acquire the monitor lock after the current thread releases the monitor lock. In
the most common case, this occurs when a synchronized method returns. For
this reason, the handleNotify method sets a flag to indicate that notify has
been invoked. After the method returns, if this flag is set, the client consistency
manager executes an actions list that it obtains from the client policy.

Figure 3 shows the sequence of method calls that take place in order to
handle wait and notify. In general, a wait invoked on a client causes that client
to wait. That client is awakened after another client invokes notify. For clarity,
interactions with client policy and server policy are not shown. In step 1, a
method of the cached object is called on client A. Where the original object
called wait, the cache object now invokes the handleWait method, as shown in
step 2. In step 3, the client consistency manager notifies the server that there is
a client waiting, returning any object state that has been modified at the client.
The method invocation of client A then blocks at the server. In step 4, the
client consistency manager of client B invokes a method on the cached object.
In step 5, this method invokes the handleNotify method in the place where the
original object called notify. As described above, a flag is set to indicate that a
notify is pending. In step 6, the object returns from the method that invoked

Efficient Object Caching for Distributed Java RMI Applications 29

1. methodCall

2. handleWait

3. clientWaiting

SERVER

Consistency
Server

Consistency
Manager

Client

Manager

Cached
Object

Client
Consistency

Manager
Object

Cached

9. return

4. method call

5. handleNotify

6. return

CLIENT BCLIENT A

7. clientNotify
8. return

Fig. 3. Sequence of Method Calls for Wait Notify

handleNotify. At this point, as shown in step 7, the client consistency manager
notifies the server that a notify has occurred, and passed any updates that have
been made. The server consistency manager then wakes up the waiting thread
of client A as shown in steps 8 and 9. The thread then continues executing after
the handleWait call in the cached object.

5 Experimental Results

To evaluate our mechanisms, we used two different RMI applications. The first is
a simple producer-consumer application that is used to determine compatibility
of our system with the Java wait/notify mechanisms. The second is a medium
size object benchmark similar to the TPC-C benchmark[21]. In this benchmark
we show the use of two different consistency policies and reduced objects. We use
these two applications to determine the baseline performance of RMI. We then
compare this baseline with the performance of these applications after caching
has been added.

5.1 Distributed Producer-Consumer Application

We use a simple producer-consumer application to evaluate our support for Java
wait-notify. In this application, a server exports a buffer object that is accessed
by two clients. The produce and consume methods of the buffer object are shown
in Figure 4.

To cache this object, we designed client policy and server policy objects that
ensure that the buffer can only be cached at one client at a time. These policy
objects were also designed to minimize communication with the server, when the

30 J. Eberhard and A. Tripathi

synchronized public void produce(Object item) {
while (produceAt >= (consumeAt + items.length)) wait();
items[produceAt % items.length] = item;
produceAt++;
notify();

}
synchronized public Object consume() {

while (consumeAt == produceAt) wait();
Object item = items[consumeAt % items.length];
consumeAt++;
notify();
return item;

}

Fig. 4. Producer Consumer Object

Table 5. Performance of Producer Consumer Application

Buffer Size RMI Caching
64 4311 ms 3893 ms
512 4202 ms 3450 ms
2048 4281 ms 2824 ms

buffer methods are invoked by a producer and a consumer. A wait method is
processed as shown in Figure 3. However, the sending of a clientNotify message
is deferred until either a wait method is called or until the object has not be
used for 100 milliseconds. At that time, the cached object is invalidated and the
changes to the object are returned to the server. Overall, this protocol permits
the producer to produce many objects before the cached object is returned to
the server. The server then updates the buffer at the consumer and the consumer
can consume many objects before releasing the object. We call this policy the
delayed notify policy.

For our experiments, the producer creates 4096 string objects. We measure
the time from when the producer deposits the first item to the time when the
consumer retrieves the last item. We verify correctness by assuring the sequence
of objects consumed is the same as the sequence of objects produced.

We evaluated the performance of our caching mechanism in a LAN environ-
ment, using various buffer sizes in the object. In this environment, the server,
producer, and consumer were connected via a 100 Mbps switched Ethernet con-
nection. We compared the performance of RMI with the performance of our
caching system. The results of our experiments are shown in Table 5.

As seen in the table, the use of caching improves performance as the buffer
size increases. This is because with larger buffer sizes, network interactions are
reduced. With a buffer size of 64, the performance improved by 10% and with a
buffer size of 2048, the performance gain was 34%.

Efficient Object Caching for Distributed Java RMI Applications 31

ItemCompany

History

StockWarehouse

District NewOrder

OrderCustomer

Orderline

1

1

1

1

1

1

1
1

1

*

*

*

*

*

*

*

*

*

*

1

1 1

Fig. 5. Objects in the rmiBOB Benchmark

5.2 Object Benchmark

To measure the performance of our mechanism, we created rmiBOB, a port
(using Java RMI) of the Business Object Benchmark (BOB) benchmark from
the book Enterprise Java Performance [9]. The benchmark implements the busi-
ness logic in the TPC-C benchmark[21]. The benchmark creates a “company”
and associated objects. The benchmark measures the performance of a set of
“transaction” operations on the objects.

We ported the BOB benchmark to RMI by changing the primary objects in
the application to be RMI objects. The primary objects in the benchmark are
shown in Figure 5. There is one company object that has the items sold by the
company as well as a history of payments made by customer. This company has
warehouses that stock the items sold by the company. Each warehouse has sales
districts, with customers assigned to each sales districts. Each district has orders
that are placed by customers, and each order contains a number of order lines.
For our tests, we used an initial population of 6,141 objects, as shown in Table 6.

The benchmark executes five types of “transaction” operations on these ob-
jects. The transactions are executed such that for every 23 transactions the
following number of transactions are executed: 10 new order, 10 payment, 1
order status, 1 delivery, and 1 stock level.

We modified the benchmark to run 1000 transactions. To verify that the
consistency protocols were working correctly, we enabled screen writes and saved
the output to a file. At the end of the run, we compare the output to a previous
RMI run to assure that the results are correct.

5.3 Baseline Performance

To get an idea of the overhead of the architecture, we performed two experi-
ments. We first measured the performance when the benchmark used RMI. We

32 J. Eberhard and A. Tripathi

Table 6. Initial Number of Objects

Class Count
Company 1

Item 1000
History 300

Warehouse 1
Stock 1000
District 10
Customer 300
NewOrder 210
Order 300

Orderline 3019
Total 6141

Table 7. Performance Comparison of RMI and the Middleware with Caching Disabled

configuration average server average
transaction calls server call

rmi 187.947 ms - -
middleware with no caching 187.561 ms 79632 2.589ms

then measured the performance when the benchmark used our mechanisms with
caching disabled. We disabled caching by using a client policy that causes all
method invocations to go to the server. The performance of these two configu-
rations is shown in Table 7. The reader will notice that our mechanism performs
slightly better than the RMI version. This improvement is due to the benefit,
described in section 4.1, of directly accessing the object when a cache stub is
returned to the server.

5.4 Caching Using Consistency Protocols

To experiment with our mechanisms, we implemented two simple consistency
protocols. These protocols ensure serial consistency by assuring that all writes
and reads are coordinated.

The first protocol we implemented is a server-write protocol. In this protocol,
all methods that change the state of an object are considered write methods.
All write methods go to the server, which invalidates all clients using the object.
The updates to the object are returned to the client which called the method.
Other clients are updated when they access the object.

The second protocol we implemented is a multiple-readers / single-writer
(MRSW) protocol. If a client accesses an object in write mode, it implicitly
obtains a lock for the object and can write the object locally. If the server or
another client then accesses the object, the lock is recalled by the server using
the callback object and the updates are returned to the server.

We experimented with these protocols to select the most appropriate proto-
cols for each object. In our application, since all the objects of the same class

Efficient Object Caching for Distributed Java RMI Applications 33

Table 8. Consistency Protocols Used for Caching Objects

Object Class Protocol
Company Server Write
Warehouse Server Write

Stock Server Write
Customer MRSW
Orderline ServerWrite

Table 9. Performance of Caching and Reduced Objects

configuration average server average
transaction calls server call

caching 126.060 ms 15931 9.744 ms
reduced object 117.524 ms 14681 8.90 ms

were used in the same manner, we used the class as the basis for selecting the
protocol. We selected the combination shown in Table 8 as the best mix. The
results of this combination is shown in Table 9. Using this mix, we measured an
average transaction cost of 126.06 ms, which is 33% less than the RMI transac-
tion cost.

5.5 Benefits of Reduced Object

We then performed an experiment to determine the benefit of reduced object
caching. We first ran our benchmark using a client policy that recorded which
methods where being used on the cached objects. Then, using the list of methods
used by each object as input to our tools, we created reduced objects for the
objects in Table 8. The results of the experiment are shown in Table 9. The use
of reduced objects had the following impacts. The average transaction cost fell
to 117.524 milliseconds, which is 37% less than the RMI cost. When compared to
caching without reduced objects, the number of server calls dropped by 8% and
the average cost of a call to the server dropped by 9%. This improvement is due
to the removal of false sharing between the client and the server. Since reduced
objects were used, the cached items were not invalidated when the server used
portions of the object that were not cached at the client. Since the client cache
was not invalidated, the client did not need to contact the server to request a
valid copy before executing a method locally.

6 Conclusion

In this paper, we have presented requirements and mechanisms for efficient
caching of objects for Java RMI applications. Using these mechanisms, caching
can be easily and transparently added to existing RMI applications, while pre-
serving RMI compatibility. This includes the ability to support the Java wait
and notify mechanisms. No changes are required to existing clients and only

34 J. Eberhard and A. Tripathi

minimal changes are required at the server. The central mechanism on the client
is the cache template containing three important objects: a cache stub ensuring
RMI compatibility, a client policy implementing a consistency protocol, and a
reduced object containing a subset of the state of the object being cached. On
the server, similar objects exist in the server template.

Using these mechanisms in conjunction with appropriate consistency and
caching policies, we illustrated the benefits of caching using two RMI applica-
tions. Our first experiment used a delayed notify policy to improve the per-
formance of a producer-consumer application by 34%. Our second experiment
involved a medium sized object benchmark. We showed how server write and
multiple reader single writer protocols could be used on the same application to
improve performance by 33%. We also show how using a reduced object improved
performance by 37%.

These mechanisms serve as the basis of our ongoing research in caching of
Java objects. While our experience showed performance improvements in a LAN
environment, we can expect better performance when using caching in wide-area
networks. We plan to expand our work to include consistency protocols suitable
for use in a wide-area network environment, including the support of distributed
collaborative applications. We also plan to expand our work to permit the
reduced object to change dynamically as the client’s usage of the object changes.

References

1. Aldrich, J., Chambers, C., Sirer, E. G., and Eggers, S. Static analyses
for eliminating unnecessary synchronization from Java programs. In Proceedings
of the Sixth International Static Analysis Symposium (Venezia, Italy, Sept. 1999),
pp. 19–38.

2. Archibald, J., and Baer, J.-L. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Transactions on Computer Systems 4, 4
(Nov. 1986), 278–298.

3. Aridor, Y., Factor, M., Teperman, A., Eliam, T., and Schuster, A. A high
performance cluster JVM presenting a pure single system image. In Proc of 2000
Java grande conference (San Francisco, CA, June 2000), pp. 168–177.

4. Bakker, A., van Steen, M., and Tanenbaum, A. S. From remote objects to
physically distributed objects. In Proceedings of the 7th IEEE Workshop on Future
Trends of Distributed Computing Systems (Cape Town, South Africa, Dec. 1999),
pp. 47–52.

5. Bogda, J., and Hölzle, U. Removing unnecessary synchronization in Java. In
Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) (Denver, Col-
orado, Nov. 1999), pp. 35–46.

6. Dahm, M. Byte code engineering with the JavaClass API. Tech. Rep. B-17-98,
Freie Universitat Berlin, July 1999.

7. Garbinato, B., Guerraoui, R., and Masouni, K. R. Implementation of the
GARF replicated objects platform. Distributed Systems Engineering Journal 1, 1
(Mar. 1995).

Efficient Object Caching for Distributed Java RMI Applications 35

8. Gray, J., and Shenoy, P. Rules of thumb in data engineering. In Proceedings
of the 16th International Conference on Data Engineering (San Diego, CA, Feb.
2000), pp. 3–12.

9. Halter, S. L., and Munroe, S. J. Enterprise Java Performance. Prentice Hall
PTR, 2000.

10. Hu, Y. C., Yu, W., Cox, A., Wallach, D., and Zwaenepoel, W. Runtime
support for distributed sharing in typed languages. In Proceedings of LCR2000:
The Fifth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers (Rochester, NY, May 2000).

11. Kleinöder, J., and Golm, M. MetaJava: An efficient run-time meta architecture
for Java. In Proceedings of the Fifth Workshop on Object-Orientation in Operating
Systems (IWOOOS ’96) (Seattle, Washington, Oct. 1996), pp. 54–61.

12. Krintz, C., Calder, B., and Hölzle, U. Reducing transfer delay using Java
class file splitting and prefetching. In Proceedings of the 14th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA) (Denver, Colorado, Nov. 1999), pp. 276–291.

13. Krishnaswamy, V., Ganev, I. B., Dharap, J. M., and Ahamad, M. Dis-
tributed object implementations for interactive application. In Proceeeding of Mid-
dleware 2000 (New York, New York, Apr. 2000), pp. 45–70.

14. Krishnaswamy, V., Walther, D., Bhola, S., Bommaiah, E., Riley, G.,
Topol, B., and Ahamad, M. Efficient implementation of Java remote method in-
vocation (RMI). In Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS) (Sante Fe, New Mexico, Apr. 1998).

15. Levy, E., and Silberschatz, A. Distributed file systems: concepts and examples.
ACM Computing Surveys 22, 4 (Dec. 1990), 321–374.

16. Lipkind, I., Pechtchanski, I., and Karamcheti, V. Object views: Language
support for intelligent object caching in parallel and distributed computations. In
Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA) (Denver, Col-
orado, November 1999), pp. 447–460.

17. Liskov, B., Castro, M., Shrira, L., and Adya, A. Providing persistent objects
in distributed systems. In Proceedings of ECOOP’99 (Lisbon, Portugal, June
1999), pp. 230–257.

18. Nester, C., Philippsen, M., and Haumacher, B. A more efficient RMI for
Java. In Proceedings of The ACM 1999 Java Grande Conference (San Francisco,
June 1999), pp. 153–159.

19. Shapiro, M. Structure and encapuslation in distributed system – the proxy princi-
ple. In Proceedings of the Sixth International Conference on Distributed Computing
Systems (May 1986).

20. SUN Microsystems. Java remote method invocation specification, 1997.
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.html

21. Transaction Processing Performance Council. TPC benchmark C.
http://www.tpc.org/cspec.html, 1999.

22. van Steen, M., Homburg, P., and Tanenbaum, A. S. Globe: A wide-area
distributed system. IEEE Concurrency 7, 1 (Mar. 1999), 70–78.

	Introduction
	Related Work
	Background and Requirements
	Object Model
	RMI Compatibility
	Flexible Usage of Consistency Protocols
	Minimize Cached Data
	Cache Replacement

	Caching Mechanisms
	Caching Structures
	A Framework for Consistency Management
	Wait and Notify Support

	Experimental Results
	Distributed Producer-Consumer Application
	Object Benchmark
	Baseline Performance
	Caching Using Consistency Protocols
	Benefits of Reduced Object

	Conclusion

