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Abstract. This paper studies security against truncated differential
cryptanalysis from the “designer’s” standpoint. In estimating the secu-
rity, we use the upper bound of truncated differential probability. Pre-
vious works, Knudsen, Matsui and Moriai et al., searched for effective
truncated differentials to attack byte-oriented block ciphers and com-
puted the exact probability of the differentials. In this paper, we discuss
the following items from the designer’s standpoint; (a) truncated differ-
ential probability of effective active-s-box, (b) XOR cancellation prob-
ability, and (c) effect of auxiliary functions, e.g., FL/FL−1-functions.
We then combine them with Matsui’s search algorithm and evaluate the
security of Camellia, jointly developed by NTT and Mitsubishi Elec-
tric Corporation, against truncated differential cryptanalysis. We prove
(from the designer’s standpoint) that variants of Camellia with more
than 11 rounds are secure against truncated differential cryptanalysis
even if weak-key FL/FL−1-functions are taken into consideration.

1 Introduction

At the second FSE in 1994, Knudsen proposed truncated differential cryptanal-
ysis [K95], as an extension of differential cryptanalysis [BS93]. He defined trun-
cated differentials as differentials where only a part of the difference in the ci-
phertexts (after a number of rounds) can be predicated. His first concept of
truncated differentials was quite wide. Generally speaking, truncated differen-
tials are now regarded as subsets of the characteristics that can be used to
attack the cipher by using information on whether several bits of the difference
are zero or not. In particular, “bytewise” truncated differentials, where one byte
of the difference is regarded as 1 (non-zero) or 0 (zero), are useful in attacking
byte-oriented block ciphers. For example, Knudsen and Berson attacked 5-round
SAFER [KB96], and Matsui, Tokita [MT99,M99] and Moriai et al. [MSA+99]
attacked the reduced version of E2 [KMA+00]. This means that we1 have de-
signed Camellia [AIK+00], jointly developed by NTT and Mitsubishi Electric
1 Kanda is a member of the Camellia design team.
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Corporation, while considering its immunity to bytewise truncated differential
cryptanalysis, since Camellia is a byte-oriented block cipher.

It is well known that there are two ways to estimate the security of ciphers
against cryptanalyses; i.e., security measures from the “attacker’s standpoint”
and those from the “designer’s standpoint.” For example, in the case of differen-
tial cryptanalysis, one former measure is the maximum differential characteristic
probability, and one of the latter is the upper bound of differential characteris-
tic probability. Researchers who intend to attack ciphers have to find effective
characteristic(s) and evaluate the exact characteristic probability from the at-
tacker’s standpoint in order to estimate the success rate of the attack and the
computational load. On the other hand, it is sufficient for designers to show that
the upper bound of the probability is low enough from the designer’s standpoint
in proving that the cipher is secure against differential cryptanalysis. This is be-
cause in such a case, all characteristics are useless in attacking the cipher, and it
is unnecessary to calculate the stricter characteristic probability. Indeed, many
recent ciphers have been designed on the basis of the upper bound of characteris-
tic probability, such as SHARK [RDP+96], Square [DKR97], Rijndael [DR98],
SERPENT [ABK98], E2, Camellia, and MISTY [M97].

In this paper, we study security against truncated differential cryptanalysis
from the designer’s standpoint. Our evaluation is based on the upper bound of
truncated differential probability.

First, we discuss the following items.

– How do effective active-s-boxes reduce truncated differential probability?
Knudsen, Matsui, and Moriai et al. regarded 8-bit effective active-s-boxes
as reducing the probability by 2−8, but is this right (from the designer’s
viewpoint)?

– How do XOR cancellations reduce truncated differential probability? Matsui
and Moriai et al. regarded them as reducing the probability by (2−8)h, where
h denotes the number of bytewise XOR cancellations. Is this right (from the
designer’s viewpoint)?

– How do auxiliary functions, e.g., FL/FL−1-functions, revise truncated dif-
ferential probability?

We then combine the above results with Matsui’s search algorithm [M99] and
evaluate the security of Camellia against truncated differential cryptanalysis.

This paper is organized as follows. In Sect. 2, we introduce some notations
and definitions. The above items are discussed in Sect. 3 to Sect. 5, respec-
tively. Finally, we show the security of Camellia against truncated differential
cryptanalysis in Sect. 6, and conclude with a summary in Sect. 7.

2 Preliminaries

2.1 Notations

– X = (x1, . . . , xm), xi ∈ ZZn
2 , (i = 1, . . . ,m) : vector X over GF(2n)m.

– ∆X = (∆x1, . . . , ∆xm), ∆xi ∈ ZZn
2 , (i = 1, . . . ,m) : difference of X.



288 M. Kanda and T. Matsumoto

– δX = (δx1, . . . , δxm), δxi ∈ ZZ2, (i = 1, . . . ,m) : truncated differential of
X.

– #{S} : A number of elements in set S.

2.2 Definitions

Definition 1. An active s-box is defined as an s-box given a non-zero input
difference. When the s-box is bijective, it yields a non-zero output difference.

Definition 2. An Effective active-s-box is defined as an active s-box which out-
puts some specified difference; i.e., the output difference is related to the output
difference(s) of other s-box(es). On the other hand, an active s-box which can
output any non-zero difference is called a non-effective active-s-box.

Definition 3. When two non-zero differences are input to an XOR (exclusive-
OR) operation but it outputs a zero difference, the XOR operation is called an
XOR cancellation.

Definition 4. For any given ∆x, ∆z ∈ ZZn
2 , the differential probability of s-box

ps(∆x → ∆z) is defined as:

ps(∆x → ∆z) = Pr
x∈ZZn

2

[s(x) ⊕ s(x⊕∆x) = ∆z]

=
#{x ∈ ZZn

2 |s(x) ⊕ s(x⊕∆x) = ∆z}
2n

Definition 5. For any given ∆X, ∆Y ∈ (ZZn
2 )

m, the differential probability of
F -function pF (∆X → ∆Y ) is defined as:

pF (∆X → ∆Y ) = Pr
x∈(ZZn

2 )
m
[F (X) ⊕ F (X ⊕∆X) = ∆Y ]

=
#{X ∈ (ZZn

2 )
m|F (X) ⊕ F (X ⊕∆X) = ∆Y }

(2n)m

Definition 6. For any given ∆x ∈ ZZn
2 , a function χ : GF(2n) → GF(2) is

defined as:

χ(∆x) = δx =
{
0 if ∆x = 0
1 if ∆x �= 0

Furthermore, for any given ∆X ∈ (ZZn
2 )

m, χ(∆X) = δX = (χ(∆x1), . . . ,
χ(∆xm)).
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Definition 7. For any given ∆X,∆Y ∈ GF(2n)m and δX, δY ∈ GF(2)m, the
truncated differential probability of F -function pF (δX → δY ) is defined as:

pF (δX → δY ) =

∑
χ(∆X) = δX
χ(∆Y ) = δY

Pr
X∈(ZZn

2 )
m
[F (X) ⊕ F (X ⊕∆X) = ∆Y ]

#{∆X|χ(∆X) = δX}
The following useful theorem can be obtained easily from Definition 7.

Theorem 1. The upper bound of the truncated differential probability of F -
function pF (δX → δY ) is denoted as:

max
∆X

χ(∆X) = δX

∑
χ(∆Y )=δY

Pr
X∈(ZZn

2 )
m
[F (X) ⊕ F (X ⊕∆X) = ∆Y ]

Theorem 1 means that the upper bound of truncated differential probabil-
ity pF (δX → δY ) is obtained from the case that some input difference ∆X,
which satisfies χ(∆X) = δX, yields the maximum value of the above equation.
Conversely, in order to prove immunity to truncated differential cryptanalysis,
the designer should consider the upper bound of the probability assuming that
difference ∆X which satisfies χ(∆X) = δX and yields the maximum value of
the above equation is input to the F -function.

2.3 Model

Throughout this paper, we consider Feistel ciphers with SPN round function (See
Fig. 1). A nonlinear layer that consists of m parallel s-boxes is called S-function
and a linear transformation layer is called P -function. Hereafter, we assume that
the s-boxes are 8-bit bijective substitution tables, since this eases the discussion.

Note that, since we assume that a round key, which is input to one round func-
tion, is generated independently and uniform randomly, and is bitwise XORed
with input data, we ignore the effect of the round key throughout this paper.
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3 Impact of Effective Active-s-Boxes

In this section, we study the effect of effective active-s-boxes.
As mentioned in Definition 1, an active s-box transforms a non-zero input

difference to a non-zero output difference with some differential probability com-
puted by Definition 4 because the s-box is bijective. Here, since the s-box is a
nonlinear transformation function, the differential probability is not one in gen-
eral. That is, ps(∆x → ∆z) < 1 for ∆x �= 0 and ∆z �= 0. This means that
an active s-box always reduces the probability of differential characteristics. Ac-
cordingly, one security measure against differential cryptanalysis is based on the
minimum number of active s-boxes in the cipher, which shows the upper bound
of differential characteristic probability.

A truncated differential just shows whether some bytewise difference is non-
zero or zero, while the bytewise difference itself has some non-zero value. Thus,
an active s-box that is bijective always transforms a non-zero bytewise input
truncated differential to a non-zero bytewise output truncated differential; i.e.,
ps(δx → δz) = 1 for δx �= 0 and δz �= 0. Such an active s-box is a non-
effective active-s-box, see Definition 2, since it does not reduce the probability
of truncated differentials. Accordingly, when each active s-box outputs a non-
zero output difference independently, all active s-boxes are non-effective active-
s-boxes and do not reduce any truncated differential probability.

On the other hand, how do active s-boxes reduce the truncated differential
probability if they output some dependent output difference(s)? Here, a depen-
dent output difference means the output difference that is determined by output
difference(s) of other active s-box(es). In this case, it is necessary to consider
the output difference(s) itself of the active s-box(es) and not the output trun-
cated differential(s). Such an active s-box is an effective active-s-box mentioned
in Definition 2, and it reduces the probability of truncated differentials in the
same way as an active s-box in differential cryptanalysis.

Hereafter, we show how effective active-s-boxes reduce the truncated differ-
ential probability.

It is well known that the inverse function in GF(28) provides the minimum
value of the maximum differential probability, i.e., 2−6. Thus, many ciphers
use s-boxes based on the inverse function in GF(28). Here, assume that all s-
boxes consist of combinations of the inverse function in GF(28) and an affine
transformation. δX, δZ denote an input truncated differential and an output
truncated differential of S-function, respectively.

Theorem 2. Assume that all s-boxes consist of combinations of the inverse
function in GF(28) and an affine transformation. Let the number of active s-
boxes be k (k ≥ 2). When all active s-boxes output the same output difference2,
the truncated differential probability of S-function pS(δX → δZ) satisfies the
following relationship.

pS(δX → δZ) ≤ 2−7(k−1)(1 + 2k−7 − 2−6)
2 In this case, the number of effective active-s-boxes is k − 1.
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Proof. It is easily confirmed that the difference distribution table of the inverse
function in GF(28) has one 4-possible pairs and 126 2-possible pairs in each col-
umn and each row. Furthermore, an affine transformation only interchanges the
columns of the difference distribution table. Thus, for each ∆z, the differential
probability of s-box ps(∆x → ∆z) is 2−6 for one entry and 2−7 for 126 entries
from 256 entries of ∆x, since the s-box consists of combinations of the inverse
function in GF(28) and an affine transformation.

Accordingly, in order to calculate the upper bounds of pS(δX → δZ) when
all active s-boxes output the same output difference ∆z, we should consider that
the same input difference ∆x is input to all s-boxes. This leads to the following
relationship.

pS(δX → δZ) ≤ max
∆x �=0

∑
∆z �=0

{ps(∆x → ∆z)}k = (2−6)k + 126 · (2−7)k

Q.E.D.

Theorem 2 can easily be extend for the generic case as follows.

Theorem 3. Assume that each row (∆x) of the difference distribution table of
an 8-bit s-box has ni 28−i-possible pairs (i = 0, 1, . . . , 7)3. Let the number of
active s-boxes be k (k ≥ 2). When all active s-boxes output the same output
difference4, the truncated differential probability of S-function pS(δX → δZ)
satisfies the following relationship.

pS(δX → δZ) ≤ max
∆x �=0

{
2−7(k−1) +

6∑
i=0

ni

2i

(
2−i(k−1) − 2−7(k−1)

)}

Proof. This theorem can be obtained easily from the following two equations.

∑
∆z �=0

{ps(∆x → ∆z)}k =
7∑

i=0

ni · 2−ik,

7∑
i=0

ni · 28−i = 256

Q.E.D.

Theorem 4. Assume that all s-boxes consist of combinations of the inverse
function in GF(28) and an affine transformation. Let the number of active s-
boxes be 3. Assume that an active s-box outputs the output difference denoted
by the XOR of two other output differences5. That is, these output differences
represent (α, β, α ⊕ β), α �= β. Then, the truncated differential probability of
S-function pS(δX → δZ) satisfies the following relationship.

pS(δX → δZ) ≤ 2−7 + 2−14 + 2−20 � 2−7

3 In the case of Theorem 2, n0 = n1 = n2 = n3 = n4 = n5 = 0, n6 = 1, n7 = 126.
4 In this case, the number of effective active-s-boxes is k − 1.
5 In this case, the number of effective active-s-boxes is 1.



292 M. Kanda and T. Matsumoto

Proof. As mentioned at the proof of Theorem 2, for each ∆z, the differential
probability of s-box ps(∆x → ∆z) is 2−6 for one entry and 2−7 for 126 entries
from 256 entries of ∆x. Also, for each ∆x, the differential probability is 2−6 for
one entry and 2−7 for 126 entries from 256 entries of ∆z.

Let ∆x1, ∆x2, ∆x3 denote input differences to active s-boxes. Without loss
of generality, we assume that ps(∆x1 → α0) = 2−6, ps(∆x2 → β0) = 2−6,
ps(∆x3 → α0 ⊕ β0) = 2−6, and α0 �= β0. The differential probability and the
entries of such probability are determined as follows by combinations of the
output differences (α, β, α⊕ β).
1. (∆x1, ∆x2, ∆x3) 
→ (α0, β0, α0 ⊕ β0) : the differential probability is (2−6)3

and the entry is 1.
2. (∆x1, ∆x2, ∆x3) 
→ (α0, β, α0 ⊕ β), β �= β0 : the differential probability is

2−6 · (2−7)2 and the entries are (at most) 126.
3. (∆x1, ∆x2, ∆x3) 
→ (α, β0, α ⊕ β0), α �= α0 : the differential probability is

2−6 · (2−7)2 and the entries are (at most) 126.
4. (∆x1, ∆x2, ∆x3) 
→ (α, α ⊕ α0 ⊕ β0, α0 ⊕ β0), α �= α0 : the differential

probability is 2−6 · (2−7)2 and the entries are (at most) 126.
5. (∆x1, ∆x2, ∆x3) 
→ (α, β, α ⊕ β), α �= α0, β �= β0, α ⊕ β �= α0 ⊕ β0 : the

differential probability is (2−7)3 and the entries are (at most) 126 · 125.
From the above, Theorem 1 leads to the following relationship.

pS(δX → δZ) ≤ max
(∆x1, ∆x2, ∆x3)

χ(∆X) = δX

∑
(α0, β0), (α0, β),

(α, β0), (α, β)

pS(∆X → ∆Z)

= 2−18 + 126 · 2−20 + 126 · 2−20 + 126 · 2−20 + 126 · 125 · 2−21

= 2−7 + 2−14 + 2−20

Q.E.D.

Theorem 5. Assume that all s-boxes consist of combinations of the inverse
function in GF(28) and an affine transformation. Let the number of active s-
boxes be 7. Assume that seven output differences represent (α, α, α, β, β, α⊕β, α⊕
β)6. Then, the truncated differential probability of S-function pS(δX → δZ)
satisfies the following relationship.

pS(δX → δZ) ≤ 2−35 + 2−38 − 2−40 − 2−44 + 3 · 2−48 � (2−7)5

Since the proof of this theorem is very similar to the proof of Theorem 4,
the proof is omitted here. From Theorem 2, Theorem 4, and Theorem 5, we can
obtain the following conjecture.

Conjecture 1. Assume that all s-boxes consist of combinations of the inverse
function in GF(28) and an affine transformation. The upper bound of truncated
differential probability is reduced by approximately 2−7 per effective active-s-box7.
6 In this case, the number of effective active-s-boxes is 5.
7 It is expected that the stricter upper bound is 2−6.9.
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Knudsen, Matsui and Moriai et al. estimated that the truncated differential
probability is reduced by approximately 2−8 (exactly 1

255 ) per effective active-
s-box assuming that the output difference distribution of the s-box is uniform.
However, since the distribution of an even-bit s-box is not uniform, designers
should not ignore the case when truncated differential probability is reduced by
approximately 2−7 per effective active-s-box. Accordingly, we regard an effec-
tive active-s-box as reducing the probability by 2−7 to evaluate the security of
Camellia against truncated differential cryptanalysis.

4 XOR Cancellation Probability

Let ∆X(r−1), δX(r−1) be an input difference and an input truncated differential
in the (r − 1)-th round, respectively. Let ∆Y (r), δY (r) be an output differ-
ence and an output truncated differential in the r-th round, respectively. Here,
(∆X(0), ∆X(1)) denotes a difference of plaintexts.

∆X(r−1) = (∆x(r−1)
1 , . . . , ∆x(r−1)

m ) , δX(r−1) = (δx(r−1)
1 , . . . , δx(r−1)

m )

∆Y (r) = (∆y(r)1 , . . . , ∆y(r)m ) , δY (r) = (δy(r)1 , . . . , δy(r)m )

An input difference ∆X(r+1) and an input truncated differential δX(r+1) in
the (r + 1)-th round are obtained as follows.

∆X(r+1) = (∆x(r−1)
1 ⊕∆y(r)1 , . . . , ∆x(r−1)

m ⊕∆y(r)m )

δX(r+1) = (δx(r−1)
1 ⊕ δy(r)1 , . . . , δx(r−1)

m ⊕ δy(r)m )

Since an XOR cancellation occurs when ∆x(r−1)
i = ∆y

(r)
i (�= 0), XOR can-

cellation probability (of byte operation) is approximately 2−8 (exactly 1
255 )

if ∆x(r−1)
i and/or ∆y(r)i is determined uniform randomly. Thus, in the pre-

vious estimation, the XOR cancellation probability of truncated differentials
denotes (2−8)h, where h is the number of XOR cancellations. Here, h =
hw(δX(r−1)∨δY (r))−hw(δX(r+1)) (≤ hw(δX(r−1)∧δY (r))), and hw(X) denotes
the Hamming weight of X.

Note that, when the XOR cancellation probability is satisfied as mentioned
above, there is a tacit assumption that no relation exists between ∆x(r−1)

i and
∆x

(r−1)
j (i �= j) or between ∆y(r)i and ∆y(r)j (i �= j). Generally speaking, it is

expected that there is no relation between ∆x(r−1)
i and ∆x(r−1)

j (i �= j) if (r−1)
is large. However, this cannot be expected if (r− 1) is small. Accordingly, XOR
cancellation probability is dependent on whether there is a relation between
∆y

(r)
i and ∆y(r)j (i �= j) or not.
For example, consider E2 and Camellia as shown in Fig. 2. Since an S-P-

S structure is applied to the round function of E2, output difference ∆yi is
represented as follows.

∆yi = s(fi(s(∆x1), . . . , s(∆x8))), (i = 1, . . . , 8),



294 M. Kanda and T. Matsumoto

s

s

s

Linear
Trans.
Layer

s

s

s

Linear
Trans.
Layer

s

s

s

Fig. 2. Round Functions of E2 (left hand) and Camellia (right hand)

where s() denotes an s-box and fi() shows a linear transformation. It turns
out that, for any input difference ∆X belonging to the given input truncated
differential δX, there is no relation between ∆yi and ∆yj (i �= j) even if
fi(s(∆x1), . . . , s(∆x8)) = fj(s(∆x1), . . . , s(∆x8)) for some i, j. That is, all out-
put differences∆yi are determined independently. Accordingly, as in the previous
estimation, the XOR cancellation probability of E2 can be represented as (2−8)h,
where h denotes the number of bytewise XOR cancellations.

On the other hand, since an S-P structure is applied to the round function
of Camellia, output difference ∆yi is represented as follows.

∆yi = fi(s(∆x1), . . . , s(∆x8)), (i = 1, . . . , 8).

More concretely, we can rewrite as follows.

∆y1 = s(∆x1) ⊕ s(∆x3) ⊕ s(∆x4) ⊕ s(∆x6) ⊕ s(∆x7) ⊕ s(∆x8)
∆y2 = s(∆x1) ⊕ s(∆x2) ⊕ s(∆x4) ⊕ s(∆x5) ⊕ s(∆x7) ⊕ s(∆x8)
∆y3 = s(∆x1) ⊕ s(∆x2) ⊕ s(∆x3) ⊕ s(∆x5) ⊕ s(∆x6) ⊕ s(∆x8)
∆y4 = s(∆x2) ⊕ s(∆x3) ⊕ s(∆x4) ⊕ s(∆x5) ⊕ s(∆x6) ⊕ s(∆x7)
∆y5 = s(∆x1) ⊕ s(∆x2) ⊕ s(∆x6) ⊕ s(∆x7) ⊕ s(∆x8)
∆y6 = s(∆x2) ⊕ s(∆x3) ⊕ s(∆x5) ⊕ s(∆x7) ⊕ s(∆x8)
∆y7 = s(∆x3) ⊕ s(∆x4) ⊕ s(∆x5) ⊕ s(∆x6) ⊕ s(∆x8)
∆y8 = s(∆x1) ⊕ s(∆x4) ⊕ s(∆x5) ⊕ s(∆x6) ⊕ s(∆x7)

Now, let an input truncated differential be δX = (10001000). The above
equations are represented as;

∆y1 = ∆y5 = s(∆x1),
∆y2 = ∆y3 = ∆y8 = s(∆x1) ⊕ s(∆x5),
∆y4 = ∆y6 = ∆y7 = s(∆x5).

This means that the relation between ∆y1 and ∆y5 is always satisfied re-
gardless of input difference ∆x1. so also are the relations between ∆y2, ∆y3 and
∆y8, and between ∆y4, ∆y6 and ∆y7.

Let δX(r) = (10001000), δX(r−1) = (01100001), and ∆x(r−1)
2 = ∆x

(r−1)
3 =

∆x
(r−1)
8 = α, for example. If an input truncated differential of the (r + 1)-th
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round satisfies δX(r+1) = (10011110), then the XOR cancellation probability is
2−8, not (2−8)3, since it is sufficient to satisfy s(∆x1)⊕s(∆x5) = α. Accordingly,
we obtain the following theorem.

Theorem 6. Let input truncated differentials of the (r − 1)-th round and the
(r + 1)-th round be δX(r−1) and δX(r+1), respectively. Also, let an output trun-
cated differential and an output difference of the r-th round be δY (r) and ∆Y (r),
respectively. Furthermore, an (i, j) element of m × m matrix D is determined
by;

dii =
{
1 if δx

(r−1)
i · δy(r)i = 1 ∩ δx(r+1)i = 0

0 otherwise
dij = 0 if i �= j

D ·∆Y (r) picks up the value(s) which leads to XOR cancellation. The same
value of D · ∆Y (r) means that there is a relation between the output differ-
ences. Accordingly, XOR cancellation probability is represented as approximately
(2−8)k, where k is the rank of D ·∆Y (r). Note that, since S-P-S round function
always makes the rank k = h, the previous estimation is a special case of this
theorem.

5 Impact of Auxiliary Functions

Auxiliary functions, which are heterogeneous functions from round function (core
structure), are inserted before and after the core and/or at the inside of the core.
Generally speaking, it is expected that auxiliary functions improve the security.
Thus, if the core has sufficient immunity to cryptanalyses, it is considered that
the cipher, which has the core and auxiliary functions, is also secure. However,
if an auxiliary function is a key-dependent linear transformation such as the
FL/FL−1-function of Camellia, there is some possibility of generating weak-key
auxiliary functions. That is, whether an auxiliary function decreases the security
depends on the key used. This means that designers should estimate the security
of the cipher assuming the use of weak-key auxiliary functions.

In this section, we study an effect on security when inserting key-dependent
linear transformation functions as auxiliary functions. Here, we focus on the FL-
function of Camellia. The differential transition of the FL-function is described
as follows.

FL : GF(232)4 → GF(232)2;
(∆A,∆B, k1, k2) 
→ (∆C,∆D),
∆D = ((∆A ∧ k1) <<< 1) ⊕∆B),
∆C = ∆A⊕ (∆D ∧ k2),

where <<< 1 denotes one-bit right circular rotation, k1, k2 are subkeys, and
k2 represents the complement of k2. Thus, through the FL-function, an input
difference of the FL-function (∆A,∆B) is mapped to some output difference
(∆C,∆D) by;

(∆A,∆B) = (0, 0)
k1,k2
−→ (∆C,∆D) = (0, 0),

(∆A,∆B) �= (0, 0)
k1,k2
−→ (∆C,∆D) ∈ GF(232)2\(0, 0).
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Since (∆A,∆B) �= (0, 0) is transformed to some (∆C,∆D) ∈
GF(232)2\(0, 0), there is some possibility of transforming (∆A′, ∆B′) with rel-
atively high differential probability to (∆C,∆D) �= (0, 0), even if (∆C,∆D) �=
(0, 0) has low differential probability before applying a weak-key FL-function.
This means that taking the weak-key FL-function into consideration is equiv-
alent to regarding the probability of all non-zero output differences of the FL-
function as the maximum probability of non-zero input difference of the FL-
function.

The above statement is applicable to the FL−1-function of Camellia. Ac-
cordingly, we define the effect of FL/FL−1-function as follows.

Definition 8. Let δI, δO be an input truncated differential and an output trun-
cated differential of FL/FL−1-function, respectively. The effect of FL/FL−1-
function is that the probability of non-zero truncated differentials is changed to;

∀δO �= 0, Pr((δX(0), δX(1)) → δO) = max
δI �=0

Pr((δX(0), δX(1)) → δI),

where (δX(0), δX(1)) is a truncated differential of plaintexts.

6 Upper Bound of Best Bytewise Characteristics of
Camellia

In this section, we look for the upper bound of best bytewise characteristics of
Camellia. Our search algorithm is based on Matsui’s search algorithm (width
first basis) [M99], and we modify his algorithm at the following points.

Step 1: Generation of Truncated Differential Probability of
F -Function

In [M99], since he assumed that a difference distribution table of s-box was
uniform, he regarded the truncated differential probability as reducing 2−8 per
effective active-s-box. As mentioned in Sect. 3, however, the difference distribu-
tion table of the s-box which consists of combinations of the inverse function
in GF(28) and an affine transformation is not uniform, and the upper bound of
truncated differential probability is reduced by approximately 2−7 per effective
active-s-box. Thus, we regard the upper bound of truncated differential probabil-
ity of F -function as being 2−7r, where r is the number of effective active-s-boxes
of F -function. r is obtained as follows for given input truncated differential δX
and output truncated differential δY .

r = rank(F(δY )PδX),

where δY is the complement of δY , P denotes the matrix of the linear transfor-
mation in GF(2), and F(δY ) represents the 8 × 8 diagonal matrix whose (i, i)
component equals δyi for i = 1, . . . , 8.
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Step 2: Generation of Truncated Differential Probability of Round
Function

In [M99], since he assumed that there was no relation among bytewise output
differences of F -function, he regarded the XOR cancellation probability as being
2−8n, where n is the number of XOR cancellation. As mentioned in Sect. 4, how-
ever, there are some relations among bytewise output differences of F -function,
since the F -function of Camellia consists of S-P structure. Thus, Theorem 6
makes XOR cancellation probability 2−8k, where k is the rank of D ·∆Y .

The simple calculation on the rank of D ·∆Y is shown below.

Definition 9. Let A, B, C and D denote 4-bit independent difference patterns,
i.e, A = 0001, B = 0010, C = 0100, and D = 1000. Furthermore, assume that
a given output difference ∆Z = (∆z1, . . . , ∆z8) can be labeled by combinations
of the difference patterns A,B,C, and D. Rank representation of ∆Z is defined
as the description of how each Deltazi(�= 0), (i = 1, . . . , 8) is represented by a
combination of A,B,C, and D.

For example, let a difference ∆Z be ∆Z = (∆z1, ∆z2, 0, 0, ∆z5, 0, ∆z7, ∆z8),
and the three following relations exist; ∆z1 = ∆z5, ∆z2 = ∆z8, ∆z7 = ∆z1 ⊕
∆z2. When difference patterns are labeled as A = ∆z1 and B = ∆z2, the
rank representation of ∆Z is (A,B, 0, 0, A, 0, A ⊕ B,B). Strict speaking, it is
(0001, 0010, 0000, 0000, 0001, 0000, 0011, 0010).

Algorithm 1 (Simple calculation method on the rank of D ·∆Y )

S1 Make a rank representation of an output difference of S-function ∆Z for a
given input truncated differential δX.

S2 Transform the rank representation of ∆Z to a rank representation of output
difference of F -function ∆Y by P -function.

S3 Hold the rank representation of ∆Y that coincides with given output trun-
cated differential δY as a candidate of ∆Y . If there are several candidates,
do the following checks.
– Discard all but one candidate, when their rank representations are the

same8.
– Keep the candidates whose rank is minimum.
– Keep the candidates whose number of the same difference patterns in the

rank representation9 is maximum, if there are several candidates whose
rank is the same.

– Hold all the candidates that survive the above checks.
S4 Repeat S2 and S3 for other rank representations of ∆Z. After finishing the

above process for all rank representations, all the candidates are regarded as
(candidates of) ∆Y .

8 The meaning of the same rank representations is that there is the same rela-
tions between output differences among the candidates; e.g., (A, A, B, A ⊕ B) and
(B, B, A ⊕ B, A).

9 For example, the numbers of the same difference patterns in (A, A, B, A⊕B, A⊕B)
and (A, B, B, B, A) are 2 and 3, respectively.
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Table 1. Upper Bound of Bytewise Characteristic Probability of Camellia (log2 rep-
resentation)

Rounds 1 2 3 4 5 6 7 8 9 10 11
without FL/FL−1-func. 0 0 -7 -21 -36 -51 -73 -93 — — —
with FL/FL−1-func. 0 0 -7 -21 -36 -51 -51 -59 -59 -103 —

S5 Generate an 8× 8 matrix D by following Theorem 6, and calculate the rank
of D ·∆Y for every ∆Y .

Step 3: Search Truncated Differential Characteristics of N Rounds

There is basically no modification of Matsui’s search algorithm. The one modifi-
cation is that, if FL/FL−1 functions are inserted, truncated differential proba-
bility is changed by following Definition 8 whenever truncated differentials pass
through FL/FL−1 functions.

The search algorithm is terminated when (the upper bound of) truncated
differentials become indistinguishable from random permutations. That is, the
final round is the r-th round whose (upper bound of) maximum truncated dif-
ferential probability is lower than 2−128+8h, where h is the Hamming weight of
the truncated differential (δX(r), δX(r+1)); i.e., h = hw(δX(r)) + hw(δX(r+1)).
Note that, a random permutation outputs the same form of truncated differential
(δX(r), δX(r+1)) with probability 2−128+8h.

As shown in Table 1, we obtained the upper bound of best bytewise char-
acteristic probability using the modified search algorithm. Table 1 shows that,
if the number of rounds is more than 11, (reduced versions of) Camellia with
FL/FL−1 functions is indistinguishable from random permutations in terms of
truncated differential cryptanalysis. An interested thing is that Table 1 doesn’t
increase from the eighth round to the ninth round if FL/FL−1-functions are
present. This is because the input truncated differential of the ninth round be-
comes zero by XOR cancellation at the eighth round with probability 2−8.

Thus, it is proven (from the designer’s standpoint) that variants of Camellia
with more than 11 rounds are secure against truncated differential cryptanalysis
even if weak-key FL/FL−1 functions are taken into consideration. Note that,
since the probability shown in Table 1 is the upper bound, we believe that
Camellia is more secure than our estimation indicates.

7 Conclusion

In this paper, we studied security against truncated differential cryptanalysis
from the “designer’s” standpoint. Our evaluation is based on the upper bound
of truncated differential probability, and we evaluated the security of Camel-
lia against truncated differential cryptanalysis by using a modified version of
Matsui’s search algorithm.
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We proved (from the designer’s standpoint) that variants of Camellia with
more than 11 rounds are secure against truncated differential cryptanalysis even
if weak-key FL/FL−1 functions are taken into consideration. Note that, our
result does NOT mean that 10-round variant of Camellia is breakable by trun-
cated differential cryptanalysis, since the probability shown in Table 1 is the
upper bound. That is, we did not show whether such effective truncated differ-
entials exist.
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