
Bias in the LEVIATHAN Stream Cipher

Paul Crowley1� and Stefan Lucks2��

1 cryptolabs Amsterdam
paul@cryptolabs.org

2 University of Mannheim
lucks@weisskugel.informatik.uni-mannheim.de

Abstract. We show two methods of distinguishing the LEVIATHAN
stream cipher from a random stream using 236 bytes of output and pro-
portional effort; both arise from compression within the cipher. The first
models the cipher as two random functions in sequence, and shows that
the probability of a collision in 64-bit output blocks is doubled as a re-
sult; the second shows artifacts where the same inputs are presented to
the key-dependent S-boxes in the final stage of the cipher for two suc-
cessive outputs. Both distinguishers are demonstrated with experiments
on a reduced variant of the cipher.

1 Introduction

LEVIATHAN [5] is a stream cipher proposed by David McGrew and Scott
Fluhrer for the NESSIE project [6]. Like most stream ciphers, it maps a key onto
a pseudorandom keystream that can be XORed with the plaintext to generate
the ciphertext. But it is unusual in that the keystream need not be generated
in strict order from byte 0 onwards; arbitrary ranges of the keystream may be
generated efficiently without the cost of generating and discarding all prior val-
ues. In other words, the keystream is “seekable”. This property allows data from
any part of a large encrypted file to be retrieved efficiently, without decrypting
the whole file prior to the desired point; it is also useful for applications such
as IPsec [2]. Other stream ciphers with this property include block ciphers in
CTR mode [3]. LEVIATHAN draws ideas from the stream ciphers WAKE [9]
and SEAL [7], and the GGM pseudo-random function (PRF) construction [1].

The keystream is bounded at 250 bytes. Though the security goals are stated
in terms of key recovery, it is desirable that distinguishing this keystream from a
random binary string should be as computationally expensive as an exhaustive
search of the 128 or 256-bit keyspace. Keystream generation is best modelled as
a key-dependent function Lev : {0, 1}48 �→ {0, 1}32, mapping a location in the
stream to a 32-bit output word; catenating consecutive values of this function
from 0 gives the entire keystream:

Lev(0)|Lev(1)|Lev(2)| . . . |Lev(248 − 1)
� This research was supported by convergence integrated media GmbH

�� This research was supported by Deutsche Forschungsgemeinschaft (DFG) grant Kr
1521/2

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 211–218, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

212 P. Crowley and S. Lucks

Finding Lev(i) for arbitrary i is not especially fast. However, once this is
done, intermediate values can usually be reused to find Lev(i + 1),Lev(i + 2) . . .
much more efficiently. This is because the internal structure of the cipher is based
on a forest of 232 binary trees, each of which generates 216 words of output, as
shown in Figure 1.

V (t, 1) = (t, 0)

V (t, 10) V (t, 11)

V (t, 100) V (t, 101) V (t, 110) V (t, 111)

V (t, 1000) V (t, 1001) V (t, 1010) V (t, 1011) V (t, 1100) V (t, 1101) V (t, 1110) V (t, 1111)

Lev(t|000) Lev(t|001) Lev(t|010) Lev(t|011) Lev(t|100) Lev(t|101) Lev(t|110) Lev(t|111)

A1 B1

A10 B10 A11 B11

A100 B100 A101 B101 A110 B110 A111 B111

C C C C C C C C

Fig. 1. Computation of an entire output tree of 8 words with h = 3. In the full cipher,
h = 16 and the complete output is built from 232 such trees.

The notation we use to specify this function precisely is somewhat differ-
ent from that given in [5], but is convenient for our purposes; we treat z as a
parameter, rather than as a word of state. The cipher is parameterised on n
and h, where n is divisible by 4 and n ≥ h; LEVIATHAN sets n = 32 and
h = 16. | denotes catenation of bit strings, x bitwise complementation of x, ⊕
the XOR operation (addition in Zn

2 or Z
n/4
2 as appropriate), and + addition in

the group Z2n , treating the first bit of the bitstring as the most significant and
padding bitstrings shorter than n bits with zeroes on the left. We specify the
forest structure illustrated in Figure 1 recursively:

Lev : {0, 1}n+h �→ {0, 1}n

Lev(t|z) = C(V (t, 1|z)) (|t| = n, |z| = h)
V (t, 1) = (t, 0)

V (t, z|0) = Az(V (t, z))
V (t, z|1) = Bz(V (t, z))

The internal state that functions A, B, and C operate on (and the functions
D, F , G used to define them) is a 2-tuple of bitstrings (x, y); we treat this as
distinct from the catenated bitstring x|y. The functions L, R, and S operate on
bytes within a word: L and R are rotates, while S provides nonlinearity with
the key-dependent permutations S0...3 which map {0, 1}n/4 onto itself. These

Bias in the LEVIATHAN Stream Cipher 213

permutations are generated by the key schedule, which we omit. Note that F
and G operate on each word of the tuple independently; mixing is provided by
D.

C(x, y) = x ⊕ y

Az = F ◦ Dz

Bz = G ◦ Dz

Dz(x, y) = (2x+ y + 2z, x+ y + z)
F (x, y) = (L(S(L(S(x)))), S(R(S(R(y)))))
G(x, y) = (S(R(S(R(x)))), L(S(L(S(y)))))

L(x3|x2|x1|x0) = x2|x1|x0|x3 (|x3| = |x2| = |x1| = |x0| = n/4)
R(x3|x2|x1|x0) = x0|x3|x2|x1

S(x3|x2|x1|x0) = x3 ⊕ S3(x0)|x2 ⊕ S2(x0)|x1 ⊕ S1(x0)|S0(x0)

[5] gives a functionally different definition of D (Dz(x, y) = (2x+y+z, x+y+
z)); the one given here is that intended by the authors [4] and used to generate
the test vectors, though the difference is not relevant for our analysis.

We present two biases in the LEVIATHAN keystream that distinguish it
from a random bit string. We know of no other attacks against LEVIATHAN
more efficient than brute force.

2 PRF-PRF Attack

Both attacks focus on consecutive pairs of outputs generated by LevPair(i) =
(Lev(i|0),Lev(i|1)). Clearly, LevPair generates the same 250-byte keystream as
Lev, so a distinguisher for one is a distinguisher for the other. Such pairs are in-
teresting because they are the most closely related outputs in the tree structure;
[5] refers to attacks using such pairs as “up-and-down attacks”. We can expand
the formula for LevPair as follows:

LevPair(t|z) = (Lev(t|z|0),Lev(t|z|1))
= (C(V (t, 1|z|0)), C(V (t, 1|z|1)))
= (C(F (D1|z(V (t, 1|z)))), C(G(D1|z(V (t, 1|z)))))

From this we define functions LevAbove which generates the last common
ancestor of such an output pair as illustrated in Figure 2, and PairCom which
generates the output pair from the ancestor:

LevAbove(t|z) = D1|z(V (t, 1|z)) (|z| = h − 1)
PairCom(x, y) = (C(F (x, y)), C(G(x, y)))

from which we can see LevPair = PairCom ◦ LevAbove as stated. We model
LevAbove as a random function throughout, and focus on the properties of
PairCom.

214 P. Crowley and S. Lucks

V (t, 1|z)

LevAbove(t|z)

V (t, 1|z|0) V (t, 1|z|1)

Lev(t|z|0) Lev(t|z|1)

LevPair(t|z)

D1|z

F G

C C

Fig. 2. Final stage of LevPair output; LevAbove finds the last common ancestor of the
pair.

This structure gives us our first distinguisher. Though PairCom has the same
domain as range, it is not in general bijective; it can be modelled more accurately
as a random function. Thus a collision can occur in LevPair, given two distinct
inputs, if there is a collision either in LevAbove or in PairCom, and if we model
both as random functions the probability of an output collision for two random
distinct inputs to LevPair is thus approximately 2−2n +(1−2−2n)2−2n ≈ 21−2n,
twice what it should be if the keystream were a random binary string.

For n = 32, this increased probability of collisions between output word pairs
can be observed with a birthday attack after around 233 output pairs (236 bytes)
have been generated; the techniques of [8] may be used to reduce the memory
demands of this attack, though this slows the attack by a factor of approximately
(h+1)/4 = 4.25 where h is the height of the tree, since probes can no longer take
advantage of the higher efficiency of sampling consecutive values of LevPair.

3 S-Box Matching Attack

The definitions of the F and G functions are very similar; G is the same as F
except that it treats its inputs in the opposite order, and inverts one of them.
If G did not apply bitwise inversion to its first input (call this function G′),
then the two functions would be related by F ◦ Swap = Swap ◦ G′ (with Swap
having the obvious definition Swap(x, y) = (y, x)); this would mean in turn that
F (a, a) = Swap(G′(a, a)) for any a, and thus that C(F (a, a)) = C(G′(a, a)),
with the result, as we shall see, that repeating pairs were visible in the output
roughly twice as often as they should be. The inversion on the first input of G
breaks this symmetry; however, it turns out that it does not prevent a related
attack.

Computation of PairCom requires 32 S-box lookups, but for each compu-
tation of the S function the same 8-bit index, drawn from the least significant
byte, is fed to each of the four S-boxes. Changes to the other bytes carry di-
rectly into the output of S, without nonlinearity or mixing; in other words,

Bias in the LEVIATHAN Stream Cipher 215

a3
−a2

−a1 a0 a3 a2 a1 a0

a3
−a2

−a1 a0

S

−
b2

−
b1 b0 b3

S

−c1 c0 c3
−c2

a3 a2 a1 a0

S

b0′ b3′ b2′ b1′

S

c1′ c0′ c3′ c2′

−
d1 d0 d3

−
d2

−a3 a2 a1
−a0

S

−
b0′
−
b3′ b2′ b1′

S

c1′
−
c0′
−
c3′ c2′

a3 a2 a1 a0

S

b2 b1 b0 b3

S

c1 c0 c3 c2

d1
−
d0

−
d3 d2

81 81 81 81

Fig. 3. S-box matching input to C ◦ PairCom. The function F is on the left, G on
the right, and C underneath; dotted lines indicate bitwise inversion (the first step of
the G function) and the “⊕ ⊕ ⊕S” symbol represents the function S(x3|x2|x1|x0) =
x3 ⊕ S3(x0)|x2 ⊕ S2(x0)|x1 ⊕ S1(x0)|S0(x0).

where ∆x = ∆x3|∆x2|∆x1|0n/4, we find S(x ⊕ ∆x) = S(x) ⊕ ∆x. We call this
least significant byte the index to the S-box. If (x, y) is the input to PairCom,
only bytes x3, x0 of x are indices to S-boxes in F , and only bytes x2, x1 are
indices in G; by inverting only these two bytes in our pair (a, a), we can avoid
the symmetry-breaking effect of the inversion as far as the nonlinear components
are concerned, which results in the same four S-box indices being used in both
the F and G branches of PairCom.

216 P. Crowley and S. Lucks

Figure 3 illustrates this attack. For an arbitrary n-bit string a = a3|a2|a1|a0,
we define symbols for intermediate values in F (a, a):

b3|b2|b1|b0 = S(a3|a2|a1|a0)
b′
0|b′

3|b′
2|b′

1 = S(a0|a3|a2|a1)
c2|c1|c0|c3 = S(b2|b1|b0|b3)
c′
1|c′

0|c′
3|c′

2 = S(b′
1|b′

0|b′
3|b′

2)
d3|d2|d1|d0 = (c3|c2|c1|c0)⊕ (c′

3|c′
2|c′

1|c′
0)

With these definitions, we find that PairCom(a3|a2|a1|a0, a3|a2|a1|a0) =
(d1|d0|d3|d2, d1|d0|d3|d2):

C(F (x, y)) = C(L(S(L(S(x)))), S(R(S(R(y)))))
= C(L(S(L(S(a3|a2|a1|a0)))), S(R(S(R(a3|a2|a1|a0)))))
= C(L(S(L(b3|b2|b1|b0))), S(R(S(a0|a3|a2|a1))))
= C(L(S(b2|b1|b0|b3)), S(R(b′

0|b′
3|b′

2|b′
1)))

= C(L(c2|c1|c0|c3), S(b′
1|b′

0|b′
3|b′

2))
= C(c1|c0|c3|c2, c′

1|c′
0|c′

3|c′
2)

= d1|d0|d3|d2
C(G(x, y)) = C(S(R(S(R(x)))), L(S(L(S(y)))))

= C(S(R(S(R(a3|a2|a1|a0)))), L(S(L(S(a3|a2|a1|a0)))))
= C(S(R(S(a0|a3|a2|a1))), L(S(L(b3|b2|b1|b0))))
= C(S(R(b′

0|b′
3|b′

2|b′
1)), L(S(b2|b1|b0|b3)))

= C(S(b′
1|b′

0|b′
3|b′

2), L(c2|c1|c0|c3))
= C(c′

1|c′
0|c′

3|c′
2, c1|c0|c3|c2)

= d1|d0|d3|d2
From this it is clear that for any input of the appropriate form, one output

word is the inverse of the other; or in other words, if we now XOR the two word
outputs from PairCom together (which, conveniently, is the same as applying
the LEVIATHAN compression function C a second time), we find

C(PairCom(a3|a2|a1|a0, a3|a2|a1|a0)) = d1|d0|d3|d2 ⊕ d1|d0|d3|d2 = 1n

for all values of a3...0.
Since we model LevAbove as a random function we conclude that inputs to

PairCom have probability 2−n of matching this form in the normal calculation
of LevPair. Where inputs do not match this form, we assume that PairCom
behaves as a random function and therefore that for random (x, y) not matching
this form, Pr (C(PairCom(x, y)) = 1n) = 2−n; this assumption is borne out by
experiment. From this we conclude that LevPair is twice as likely as a random
function to produce an output (x0, x1) such that C(x0, x1) = 1n

Pr (C(LevPair(t|z)) = 1n) = 2−n + (1− 2−n)2−n ≈ 21−n

Bias in the LEVIATHAN Stream Cipher 217

which in turn implies that 64-bit aligned segments of keystream of this form are
twice as frequent as they should be, yielding another distinguisher.

For n = 32, a test for the presence of this bias should therefore take on the
order of 233 samples of LevPair, ie 236 bytes, as for the previous attack.

4 Experiments

We looked for these biases on a reduced version of LEVIATHAN with n =
16, h = 16.

For the PRF-PRF attack, we ran over 256 distinct keys generating N =
6291456 32-bit LevPair outputs for each, and sorting them to find collisions.
We count as a collision each instance where a distinct pair of inputs result
in the same output; thus, where m > 2 outputs have the same value, we
count this as m(m − 1)/2 distinct collisions. For a random function we would
expect to find approximately1 256(N(N − 1)/2)/22n ≈ 1179678 collisions in
total across all keys, while the PRF-PRF attack would predict an expected
256(N(N − 1)/2)/22n−1 ≈ 2359296. The experiment found 2350336 collisions;
this is 1077.9 standard deviations (SDs) from the expected value in the random
function model, and 5.83 SDs from the expected value in the model provided by
the PRF-PRF attack. This shows that this model identifies a substantial bias
in the cipher, but there is a further bias in the collision probability of roughly
0.38% yet to be accounted for.

For the S-box matching attack, we generated N = 16777216 LevPair out-
puts for each of 256 keys, counting outputs with the C(x, y) = 132 property. A
random function would generate an expected 256N/216 = 65536 such outputs,
while the S-box matching attack predicts that LevPair will generate an expected
256N/215 = 131072 such outputs. The experiment found 135872 such outputs;
this is 274.8 SDs from the expected value in the random function model, and
13.26 SDs from the expected value in the model provided by the S-box matching
attack. Again, this shows that while a substantial source of bias has been iden-
tified, there is still a bias of 3.66% yet to be accounted for. Scott Fluhrer has re-
ported finding this attack effective in experiments against the full LEVIATHAN
with n = 32, h = 16.

5 Conclusions

We have shown two forms of bias in the output of the LEVIATHAN keystream
generator, either of which distinguish it from a random function with 236 known
bytes of output; we have not as yet found a way to recover key material us-
ing these distinguishers. These distinguishers can both be applied to the same
1 The approximation E (|{{x, y} : f(x) = f(y)}|) ≈ |A| (|A| − 1) /2 |B| for the number
of collisions in a random function f : A �→ B is very precise where |B| is large; where
we refer to the predictions of the random function model, it is the model with this
approximation.

218 P. Crowley and S. Lucks

portion of keystream for greater statistical significance. Both make use of com-
pression in the PairCom function.

Despite these attacks, LEVIATHAN demonstrates that a tree-based cipher
could offer many advantages. It is to be hoped that similar designs, offering
the same speed and flexibility but resistant to this and other attacks, will be
forthcoming.

Acknowledgements. Thanks to Rüdiger Weis for helpful commentary and
suggestions, and to the LEVIATHAN authors for providing an implementation
of the first experiment and for useful discussion.

References

1. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, 1986.

2. IP security protocol (ipsec).
http://www.ietf.org/html.charters/ipsec-charter.html.

3. Helger Lipmaa, Philip Rogaway, and David Wagner. Comments to NIST concern-
ing AES modes of operation: CTR-mode encryption, 2000.

4. David A. McGrew. Re: Possible problems with leviathan? Personal email, Novem-
ber 2000.

5. David A. McGrew and Scott R. Fluhrer. The stream cipher LEVIATHAN. NESSIE
project submission, October 2000.

6. NESSIE: New European schemes for signatures, integrity, and encryption.
http://www.cryptonessie.org/.

7. Phillip Rogaway and Don Coppersmith. A software-optimized encryption algo-
rithm. In Ross Anderson, editor, Fast Software Encryption, pages 56–63. Springer-
Verlag, 1994.

8. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-
analytic applications. Journal of Cryptology, 12(1):1–28, 1999.

9. David Wheeler. A bulk data encryption algorithm. In Bart Preneel, editor,
Fast Software Encryption: Second International Workshop, volume 1008 of Lecture
Notes in Computer Science, Leuven, Belgium, 14–16 December 1994. Springer-
Verlag. Published 1995.

URL for this paper: http://www.ciphergoth.org/crypto/leviathan

http://www.ietf.org/html.charters/ipsec-charter.html
http://www.cryptonessie.org/
http://www.ciphergoth.org/crypto/leviathan

	Introduction
	PRF-PRF Attack
	S-Box Matching Attack
	Experiments
	Conclusions

