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Abstract. We present a modification to the iterative closest point algorithm which
improves the algorithm’s robustness and precision. At the start of each iteration,
before point correspondence is calculated between the two feature sets, the algo-
rithm randomly perturbs the point positions in one feature set. These perturba-
tions allow the algorithm to move out of some local minima to find a minimum
with a lower residual error. The size of this perturbation is reduced during the reg-
istration process. The algorithm has been tested using multiple starting positions
to register three sets of data: a surface of a femur, a skull surface and a registration
to hepatic vessels and a liver surface. Our results show that, if local minima are
present, the stochastic ICP algorithm is more robust and is more precise than the
standard ICP algorithm.

1 Introduction

The iterative closest point (ICP) algorithm [1] has been used for a wide variety of ap-
plications both in the field of medical imaging [2,3] and engineering. We are primarily
concerned with using the ICP algorithm to register intraoperative ultrasound data to
preoperative 3D modalities for use in image-guided surgery or interventions. This can
enable surgeons or interventionists to navigate towards their surgical targets by view-
ing preoperative images which are spatially aligned with either the physical coordinate
system of the patient or the intraoperative modality.

The ICP algorithm is usually an efficient method to minimise the root mean square
(RMS) distance between two feature sets. However, it can be prone to finding local
minima, especially in noisy feature sets. Previous attempts have been made to increase
the robustness of the ICP algorithm. Masuda and Yokoyo [4] improve robustness by
using a random sample of points (rather than the whole dataset) which are altered at
each iteration. In Luck et al. [5] robustness is improved by using both a simulated
annealing and an ICP algorithm. Essentially the simulated annealing algorithm is used
to produce “good” starting points for the ICP algorithm.

We propose a novel approach to increase the robustness of the ICP algorithm by
adding random Gaussian noise to perturb the position of the features in one feature set.
The magnitude of the noise is reduced during the registration process until finally it is
set to zero when the algorithm reverts back to standard ICP.

The structure of our paper is as follows. We initially outline the standard ICP algo-
rithm and detail our modifications. We then describe our experiments to register three
sets of data: a femur, a skull and a liver dataset.
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2 Method

2.1 Outline of ICP Algorithm

The iterative closest point algorithm is widely used and well known, and so only a very
brief summary is given in this paper. Our description will concentrate on the case where
the source dataset consists of n points pj , j = 1, . . . , n , whereas the target feature set
can consist of points, lines or surfaces.

The algorithm registers two sets of features by repeating the following steps.

1. For each source point, calculate the closest point, or position on a line or surface in
the target dataset.

2. Calculate the transformation matrix T which minimises the RMS distance between
the two sets of corresponding points.

3. Repeat the above steps until a suitable stopping criterion is met.

2.2 Modifications to the Algorithm

We have modified the algorithm in two significant but related ways. The first is to intro-
duce an extra step to be carried out before point correspondence is calculated i.e. step 0
in the framework shown in section 2.1.

0. Add a random Gaussian perturbation to the position of the source points: p′
j =

pj + sj, j = 1, . . . , n, where sj represents a vector in a random direction, with a
magnitude which has standard deviation σ.

Steps 1 and 2 are now carried out using the perturbed p′
j rather than the original pj

source points.
The second alteration to the algorithm is to change the stopping criterion (step 3)

to be a set of criteria which define when the noise σ should be reduced. We would like
to reduce σ when the algorithm has reached an optimum position. In most cases the
algorithm tends to move towards the optimum position and then fluctuates about this
position. In our stochastICP algorithm, due to the random perturbations, the residual
error can both increase and decrease. Therefore, it is not obvious how the residual error
value can be used to define the noise reduction criterion. Instead we have used the fol-
lowing criterion which is based on the rigid body parameters E = (θx, θy, θz, X, Y, Z).
These parameters can be calculated by decomposing the transformation matrix T. The
values of these parameters are logged after each iteration and if the current set of pa-
rameters EN are within a certain threshold t of a previous set of parameters Ei then the
algorithm reduces the size of σ,

∃ i0 ∈ {1, . . . , N − 5} : max
k=1,...,6

|Ek
i0 − Ek

N | < t (1)

where Ek represents the individual elements in the 6-tuple E, i0 represents a particular
iteration and N equals the current number of iterations. The last five sets of parameters
are not included in the search i.e. only Ei, i = 1, . . . , N − 5 are used for the following
reason. By excluding the last five iterations we aim to distinguish between the following
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two cases. Firstly, where the algorithm is simply moving slowly through the search
space; in this case the algorithm is still moving towards the optimum position and so
we do not want to alter σ. Secondly, where the algorithm has revisited a position in
the 6-dimensional parameter space; this should indicate that the algorithm is fluctuating
about an optimum position and so σ should be reduced. The exclusion of the last five
parameters was empirically chosen.

For the experiments described in this paper we begin with σ =16mm. When the
noise reduction criterion is met σ is reduced by a factor of 1/

√
2 and the algorithm

continues until σ <0.25mm. At this point the noise is set to zero. The final stopping
criterion for the algorithm is a standard stopping criterion i.e. where the change in the
residual error falls below a threshold (10−4mm for the experiments described in this
paper).

The parameter t was set equal to σ/5 for the experiments using the femur and liver
datasets and was set equal to σ/50 for the experiments using the skull dataset. These
ratios were chosen empirically. Our reasons for choosing these values for t are as fol-
lows. The parameter t defines how precisely the algorithm must revisit a position for the
noise reduction criterion to be met. Our choice for the size of t depends on the size of
the variations in the values of the rigid body parameters E between different iterations.
If these parameters vary by a large amount, then t must also be fairly large, otherwise
the algorithm may take an extremely large number of iterations to reach registration.
However, if E varies by only a small amount, then t should also be small to prevent the
noise reduction criterion being met before the algorithm has reached an optimum posi-
tion. The rigid body parameters E vary due to two factors, the size of the noise σ and
the speed with which the algorithm moves towards the optimum position. We account
for the first of these factors by setting t to be a fraction of σ, therefore, the size of t is
reduced as the noise decreases. The two different values for this ratio were necessary
because the parameters E varied by a much smaller amounts between successive itera-
tions when registering the skull dataset, compared to the femur and liver datasets. This
is probably due to the almost constant curvature of the upper part of the cranium.

2.3 Experiments

Experiments have been carried out using three sets of data. We are primarily concerned
with the registration of intraoperative ultrasound data with preoperative 3D modalities
for use in image guided surgery or interventions. Consequently each dataset used in
this paper simulates ultrasound to CT or MR registration. However, our modifications
do not detract from the generic nature of the ICP algorithm and so it should be useful
for a wide range of registration problems.

The three target datasets were: a CT scan of a phantom femur (see figure 1), a MR
scan of a volunteer’s head and a MR scan of a volunteer’s liver. In each case the source
modality was freehand 3D ultrasound. The datasets are summarised in table 1. The 3D
surfaces were extracted using a marching cubes algorithm [6] implemented in VTK
[7] which was applied to binary images segmented from the 3D volumes. The binary
volumes were produced by applying a threshold to segment the femur surface from the
CT volume and by manual segmentation for the two MR volumes using the ANALYZE
software package (Biomedical Imaging Resource, Mayo Foundation, Rochester, MN,
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USA). The line features in the liver dataset were created from a number of manually
picked points which define the centrelines of blood vessels.

Fig. 1. Femur phantom (left) and a 10.5MHz ultrasound probe with infra-red LEDs
attached (right).

The source points were manually picked from sets of freehand 3D ultrasound im-
ages. A 10.5MHz ultrasound probe (see figure 1), tracked using an Optotrak 3020 opti-
cal tracking system from Northern Digital Inc., was used to acquire source bone points
for the femur and volunteer skull datasets. A 3.5MHz probe, tracked using a Polaris
optical tracking system from Northern Digital Inc., was used to acquire the liver sur-
face and midline of hepatic vessels for the liver dataset. The approximate 3D spatial
accuracy of the Optotrak and Polaris are 0.2mm and 0.35mm respectively.

For the phantom femur dataset a “gold-standard” registration was calculated using
fiducial markers attached to the box which contained the femur. For the volunteer head
data a “gold-standard” registration was calculated by attaching a locking acrylic dental
stent (LADS) [8] to the volunteer. Markers attached to the LADS were used to calculate
a point based image to physical registration. No “gold-standard” was available for the
liver dataset.

Target Modality Target Feature Source Feature
CT 320×320×177 voxels femur surface 835 ultrasound bone points

1.094×1.094×3mm 11484 facets
MR 256×256×200 voxels skull surface 375 ultrasound bone points

0.898×0.898×1.2mm 12146 facets
MR 256×256×26 voxels liver surface (3044 facets) + 71 ultrasound liver surface

1.328×1.328×10mm hepatic vessels 46 ultrasound vessel points
(175 line segments)

Table 1. Summary of the datasets showing voxel sizes, image dimensions, type of
target feature and number of source points.
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One hundred registrations were carried out using each dataset. The starting positions
were the “gold-standard” registration position with random noise added to each of the
six rigid body degrees of freedom. The size of this perturbation was an estimation of
how accurately an approximate registration could be calculated during a procedure. The
random noise used was 15mm or degrees for the femur and skull datasets and 30mm or
degrees for the liver dataset. When registering using the liver dataset no “gold-standard”
registration was available. Instead an initial registration was estimated by placing the
probe on the inferior end of the volunteer’s sternum and acquiring an axial ultrasound
slice. This ultrasound slice was approximately registered to the MR volume by making
the following assumptions: that the x and y axes of the ultrasound image are parallel
to the x and y axes in the MR volume and that the centre of the ultrasound image
corresponds to the centre of the MR volume.

Registrations were carried out using our stochastICP algorithm and for comparison
the standard ICP algorithm was also used. The stopping criterion for the standard ICP
algorithm was identical to the final stopping criterion using the stochastICP algorithm
i.e. when the change in the residual error falls below 10−4mm.

3 Results

The registration results were analysed in the following ways. Firstly, failed registrations
were removed. A registration was deemed to be a failure if its mean target registration
error (TRE) [3] was greater than five times the minimum value of mean TRE over the
set of 100 registrations. It was not possible to calculate a TRE for the liver dataset as
there was no “gold-standard” registration, instead a registration was deemed to be a
failure if the residual error was more than 25% larger than the minimum residual error
for the set of 100 registrations.

A mean TRE was calculated by transforming a number of points, one for each voxel
within a region of interest, firstly by the “gold-standard” matrix and secondly by the
final registration matrices and calculating the RMS distance between the two positions.
The regions of interest chosen for the three datasets were all the voxels within either the
femur, the skull or the liver.

A RMS distance measure was also calculated to indicate the spread of the final reg-
istration positions (i.e. a measure of precision). This was calculated using the following
method. Each point within the region of interest was taken in turn and transformed using
each of the successful final registration matrices. For a given point the mean transfor-
mation position was determined and then the RMS distance to the mean position was
calculated. The RMS distance quoted is the RMS value of these RMS distances calcu-
lated over the entire region of interest.

The registration results are given in table 2. This table shows the mean residual
error, RMS distance, mean TRE and mean number of iterations for the successful regis-
trations. It also shows the algorithm failure rate. Renderings, showing the target features
and the final position of the source points for a typical successful registration, are shown
in figure 2.

The results for all three datasets showed that the algorithms produced very similar
residual error values. The stochastICP algorithm recorded lower RMS distance values
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Feature Algorithm Mean Residual RMS Distance (mm) Mean TRE (mm) Mean Fail
(mm) (precision measure) (accuracy measure) No. Iter. Rate (%)

Femur ICP 0.72 0.15 1.18 81 36
stochastICP 0.72 0.03 1.17 122 0

Skull ICP 0.86 1.98 2.89 357 1
stochastICP 0.86 1.57 2.65 479 1

Liver ICP 6.14 2.60 - 102 24
stochastICP 6.12 1.10 - 140 7

Table 2. Registration results, showing the mean residual, RMS distance, mean TRE and
mean number of iterations for the successful registrations. Failure rate is also shown.

and mean TRE values for all three datasets, in particular when using the liver dataset
where the RMS distance value was less than half that recorded using the standard ICP
algorithm.

The largest differences between the two algorithms occurred in terms of the num-
ber of iterations required to reach registration and the failure rate. The stochastICP
algorithm produced a much lower failure rate when using the femur and liver datasets,
however, it required between 34% – 51% more iterations to reach registration.

Fig. 2. Registration results from a typical successful registration position showing the
source points overlaid onto the target surface and line features.

4 Discussion

The results using both the femur and the liver datasets show that the stochastICP al-
gorithm is more robust than the standard ICP algorithm. The likely reason for this im-
provement is the presence of local minima in these datasets. It is clear that the standard
ICP algorithm is not able to manoeuvre out of a local minimum, whereas the stochas-
tICP algorithm, due to the random perturbations added to the point positions, can escape
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from some local minima. In the case of the femur data the standard ICP algorithm re-
sulted in solutions which were a long way from the “gold-standard” position. Figure
3 shows a rendering of the source points and target surface for one of the failed regis-
trations using the standard ICP algorithm. This local minimum is caused by the points
from the ultrasound images, which were mainly acquired from the anterior surface of
the femur (as the posterior surface can be more difficult to image in a patient), crossing
over to register to opposite sides of the femur surface. Because the femur is a long thin
structure a very small rotational misalignment can place the feature sets in such a local
minimum.

Fig. 3. A rendering of the source points and target surface femur dataset showing a
misregistration position found using the standard ICP algorithm. The opacity of the
femur surface has been reduced to show target points within the centre of the femur.
The final registration position had a residual error of 5.54mm and a TRE of 18.74mm.

In the case of the liver data there are some local minima a long distance away from
the registration position which caused some registrations to fail. Again the stochastICP
algorithm was less affected by these local minima than the standard ICP algorithm.
In both the liver and the skull datasets there are a number of local minima clustered
around the global minimum. The lower RMS distance value when using the stochastICP
algorithm is believed to be because this algorithm was able to skip over or climb out of
these local minima, whereas the standard ICP algorithm tended to become trapped in
the first local minimum which was encountered.

The usual method of avoiding local minima using the standard ICP algorithm is to
use a number of starting positions. Therefore, although the stochastICP algorithm re-
quires more iterations, its increased robustness should mean that fewer starting positions
are required and so the stochastICP algorithm may be ultimately more computationally
efficient.

Our stochastICP method could be thought of as combining a simulated annealing
optimisation method [9] with the ICP algorithm, where the size of perturbation is anal-
ogous to the temperature parameter. This is a much more integrated combination of the
two types of algorithm than the method proposed by Luck et al. [5], where a simulated
annealing algorithm is used to provide good starting estimates for an ICP algorithm. Our
method could also be thought of as combining a multi-scale or multi-resolution optimi-
sation method (which have been found to be robust methods for voxel based registration
[10]) with the ICP algorithm. In this case the size of the perturbation is analogous to the
size of the blurring kernel used.
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Future work on the stochastICP algorithm will include an investigation into the
factors affecting the values of the additional parameters, in particular, σ and t. The
values of these parameters are expected to be influenced by factors such as the shape
of the object being registered and also the amount of noise in the source and target
datasets. Work is also required to investigate the robustness of the algorithm to changes
in these parameters. We also intend to extend our validation of the algorithm by greatly
increasing the number of datasets used in our investigation and to compare the algorithm
with other, more robust, ICP algorithms [4,5].

5 Conclusions

We have developed a stochastic ICP algorithm. From our results using three datasets it
appears that, although our stochastICP algorithm requires more iterations, in the pres-
ence of local minima it is more robust (i.e. yields fewer failures) and more precise than
the standard ICP algorithm.
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