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Abstract. This work aims at providing a tool to assist the interpreta-
tion of SPECT images for the diagnosis of Alzheimer’s Disease (AD).
Our approach is to test classifiers, which uses the intensity values of the
images, without any prior information. Such a classifier is built upon a
training set, containing images with two different labels (AD patients
and normal subjects). It will then provide a classification for any new
unknown image. The main problem to be handled is the small number
of available images compared to the large number of features (here the
image’s voxels): the so-called small sample size problem. We evaluate
here the ability of two linear classifiers to correctly label a set of 79
images. Our experiments show promising results. They also show that
image classification based on intensity values only is possible and might
be used for other applications as well.

Clinical Context: Alzheimer’s Disease

Alzheimer’s disease (AD) is a neuro-degenerative disease that produces among
others memory loss, behavioural changes and cognitive impairment. Mainly el-
derly are affected by this disease. Because of the aging populations the number
of patients will probably rise in the coming years.

Single photon emission computed tomography (SPECT) is being largely used
for the study of cerebral blood flow (CBF). These studies provide unique infor-
mation for the identification of functional abnormalities relevant to Alzheimer’s
disease.

The process of diagnosing AD is based on a qualitative evaluation of neuro-
psychologic tests, combined with the analysis of SPECT images in case of serious
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suspicion. The aim of this work is to provide a tool which will assist the inter-
pretation of these images and, we hope, clarify the ambiguous cases. This is
especially important in the early stages of the disease, when the patient can
benefit most from drugs that may have an impact on the progression of the
disease, and to be able to support the development of such drugs.

1 Introduction

In the recent past a lot of research has been done on comparing groups to find
the areas where differences exist in the regional cerebral blood flow between
groups of AD and normal subjects. These results show on average significant
abnormalities in the parietotemporal regions between AD an normal subjects
[1]. But these typical patterns do not occur within all patients with probable
AD [2]. The majority of these results were obtained using techniques based
on statistical parametric mapping (SPM) [3] or on principal component analysis
(PCA)/singular value decomposition (SVD) [4,5,6]. However these methods only
give us a tool to find significant differences between groups of images. They were
not developed to give us information about individual subjects.

However, in this article we will explore the possibility to develop a classifier
that can classify a single SPECT image as being an image of a normal subject or
of a probable Alzheimer patient. As described in the previous section, defining
clear features on which a classification can be based is extremely hard. Therefore
we choose not to use any prior knowledge about AD in SPECT images. We
directly use the intensity values of the image as input to our classifier.

Yet, the number of available images to train such a classifier compared to
the number of voxels in the image is very small. This most often leads to very
poor classification performance. It is called the small sample size problem (see
section 2.2) in the pattern recognition literature [7].

In this article we will present and test two classifiers that are able to circum-
vent the small sample size problem. Herewith we will show that it is possible
to classify 3D images only using the intensity values. In our particular case this
provides us with a valuable tool for assisting the interpretation of SPECT images
for Alzheimer’s Disease diagnosis.

In the following section we first introduce the notations used throughout this
article and introduce briefly the concept of classification. This is followed by a
description and analysis of the small sample size problem (section 2.2). In section
2.3 two classifiers well adapted to our problem are presented.

Results based on the data described in section 3.1 are shown in section 3.3.
Finally we discuss our approach and give some directions for further research.

2 Methods

2.1 Classifiers

As pointed out in the introduction, we are looking for a classifier that will assign
one of the two possible class labels (AD or normal) to an image given as an
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input. This can be written as a function g(x), which returns a positive value for
one class and a negative value for the other class. x is a feature vector of length n
describing the object we want to classify. Our images (objects) are described by
simply putting the values of the n voxels in the feature vector. The objects can
thus be seen as points in IRn (the feature space), and g(x) as implicitly defining
a surface in IRn discriminating the two classes.

To define this surface a classi-

Fig. 1. Example of a normal (left) and an
AD (right) image shows the difficulty of vi-
sual interpretation.

fier needs to be trained. The train-
ing method is provided with a train-
ing set consisting of m example ob-
jects and their class labels. Once
the classifier has been trained, it
can be tested by comparing its re-
sults on a test set with the known
labels of each object of this set. To
make an unbiased estimation of the
error rate of the classifier, the test

set and the training set should be totally independent. In the ideal case, both sets
are created by taking randomly objects out of the N objects with known class
labels which form the total available object population. As might be expected
the accuracy of the classification error depends not only on the independence of
the test set but also on its size.

A classifier is said to have a good generalisation capability if it performs
well on previously unknown objects. In this case, it does not model the noise
of the learning set but the real structure of the data with respect to the class
differences.

In practice the number of available objects is often too small to select large
enough independent training and test sets. A number of alternative methods
have been proposed for estimating the classification error [8]. The most well
known method is the re-substitution method: both the training set and the test
set contain exactly the same objects and this method is therefore optimistically
biased. This measure does not say anything at all about the generalisation capa-
bilities of a classifier. In this work, we will use the leave one out error estimate
as described in section 3.2.

2.2 Small Sample Size Problem

Until recently it was believed that for classifiers trained with a number of train-
ing objects m smaller or around the dimensionality n of the feature space, no
generalisation capability could be expected. This was based on the idea that the
feature space needs to be well filled (curse of dimensionality). It principally came
from the statistical point of view of needing many samples for being able to get
good distribution estimates (see preface of [9]).

Logically it would seem that adding features to objects, and thus having
relatively more information for classification of the objects, should lead to better
results. The fact that it is often not the case, therefore leading to the small sample
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size problem, might be explained by the idea that a higher dimensional feature
space provides a classifier with more degrees of freedom, which can then exactly
model the training set. In this case, it does mainly model the objects of the
learning set and its associated noise but not the real structure of the data.

One way to solve the small sample size problem is to reduce the number
of features. On the contrary, modern approaches, that are aimed at finding the
inherent structure of the data instead of the parameters of an a-priori distribu-
tion, seem to be able to overcome the small sample size problem. An excellent
overview of this problem and several related classifiers are found in [7]. Some
classifiers which are proposed in the literature are the nearest mean classifier
(NMC) [10], several variants of the Fisher Linear Discriminant (FLD) [11,12],
and even highly nonlinear classifiers like the Parzen classifier [13] or the Support
Vector Classifier (SVC) [9].

2.3 Nearest Mean Classifier (NMC) and Pseudo Fisher Linear
Discriminant (PFLD)

Because of the extremely high number of features compared to the number of
available objects we chose to use classifiers with a low complexity. This leads to
linear discriminant classifiers, in other words classifiers defining one single hyper-
plane in feature space which separates the two classes. The most basic approach
is the nearest mean classifier (NMC), it classifies the object to the nearest class
mean:

gNMC(x) =
(
x − x̄(2)

)T (
x − x̄(2)

)
−

(
x − x̄(1)

)T (
x − x̄(1)

)
(1)

where x is the object to be classified, x̄(1) and x̄(2) are the means of the feature
vectors in the training set for the classes one and two respectively. It spans up
an equidistant hyperplane between both class means.

The probably most used classification rule is the Fisher Linear Discriminant
(FLD), it not only takes the class means into account but also the sample co-
variance S (assumed to be common to both classes):

gFLD(x) =
[
x − 1

2

(
x̄(1) + x̄(2)

)]T

S−1
(
x̄(1) − x̄(2)

)
(2)

Please note that the NMC is a special case of the FLD, when S is the identity
matrix the two classifiers are equivalent (Eq.(1)=Eq.(2) when S = λI).

When the number of training samples is smaller than the number of features
(m < n) the covariance matrix yields a singular matrix that cannot be inverted.
The Pseudo Fisher Linear Discriminant (PFLD) [11] is formed by replacing the
inverse of the covariance matrix by its pseudo inverse, (ST S)−1ST . The pseudo
inverse relies on the singular value decomposition of S and it becomes equal to
the inverse of S when m ≥ n. In this case, the PFLD is equivalent to the FLD.

Even though the FLD is seen in the classical way as designed for two mul-
tivariate Gaussian populations with equal prior probabilities differing in mean
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vectors, but sharing the same covariance matrix, the PFLD has also a more gen-
eral geometric interpretation [14]. It defines a hyper-plane that maximises the
distances to all given training objects. If m < n all the training objects are in
a linear subspace, and the discriminant is perpendicular to that subspace. This
makes sense as it corresponds with an indifference to directions for which no
training objects are given.

The PFLD is known to have very bad generalisation capabilities when m ≈ n
[11]. In this application, we assume this problem will not play a role because we
have m � n.

2.4 Preprocessing

This section describes the necessary pre-processing steps before using the images
as input to a classifier: the two first points consists in spatial and intensity
normalisation, while the third one is only necessary from a computational point
of view.

Spatial Normalisation: Registration Due to different positions of the sub-
jects in the scanner as well as differences of brain size and morphology between
subjects, the same voxel location in two images may not correspond to the same
anatomical position. Therefore image registration is necessary. Because global
intensity variations exist (see below) a robust approach is needed. We searched
for the affine transformations which maximise the correlation coefficient [15] us-
ing Powell’s optimisation method. We have also tested a non-rigid [16] approach,
but this did not improve classifier performance.

Intensity Normalisation A basic problem in the use of SPECT HMPAO im-
ages is the lack of an absolute signal level. There are several sources of variation
of the measures signal among SPECT images. Global variations: they may be
caused by differences in the dose of the radioactive tracer being present at the
time of the image acquisition, scanner sensitivity, or the positioning of the pa-
tient with respect to the detectors. Local variations: differences occur normally
between different subjects as well as within the same subject over time. Of course
pathologies as AD do cause differences as well. Before analysis of the images
global variations have to be corrected whereas local variations, especially those
due to a pathology, should be preserved. The standard approach is to assume
the global CBF to be the same for all subjects. This leads to simply dividing
the intensities by the sum of the intensities in the brain. This approach is not
very robust in the case of strong local variations. Saxena [17] proposed to divide
by the mean of the top one percent intensities. Here, the assumption is that the
voxels with the highest intensities (denoting highest levels of perfusion) would be
in those areas that are relatively unaffected by AD. In our application choosing
either one of these two methods did not influence the classification results.
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Subsampling by Mean Filtering All images were subsampled by a certain
factor in each dimension by simply taking the mean of the implicated voxels.
This was done for the following reasons: firstly to obtain acceptable memory and
calculation time requirements; secondly to eliminate noise and compensate for
eventual registration imprecision. Misregistration can lead to two voxels at the
same position for different subjects not to represent exactly the same anatomical
position; this effect may be suppressed by the averaging of the voxels. Of course
only the image voxels being part of the brain were used for the classification.

3 Results

3.1 Materials

A set of 29 images of probable AD patients (mean Mini Mental Test score 23.5),
with clinically confirmed diagnosis were acquired as well as a set of 50 images of
normal subjects. This last set of images was made available by The Society of Nu-
clear Medicine Brain Imaging Council (http://brainscans.med.yale.edu/).
The rCBF was assessed with technetium-99m-D L-hexamethyl-propylene amine
oxime (Tc-99m HMPAO), a tracer that is trapped inside the brain in proportion
to the regional blood flow. All images were acquired using triple-head camera
systems (Picker Prism 3000 series). The cameras were equipped with fan beam
collimators.

Raw projection images were acquired in a 128 × 128 matrix. They were re-
constructed using a ramp filter and the resulting slices post-filtered using a
low-pass filter (Butterworth, order=6, cutoff=0.26). Chang attenuation correc-
tion [18] (cutoff=0.07) was applied to the filtered data. After registration and
reslicing all images had 1.8 mm cubic voxels and 93 axial slices.

3.2 Leave One Out Method

A widely used classification error estimate when the number of objects is very
small, is the leave one out method [8]. In this method all N available objects
are used. The classifier is trained N times on a training set of m = N − 1
objects leaving out a different object each time. This object is used to test the
classifier. This provides us with an unbiased error estimate if the observations
of the objects are statistically independent.

3.3 Experiments

Table 1 show results using the 79 images described in section 3.1. The success
rates were calculated using the leave one out method (see previous section). Note,
that due to roundoff effects when selecting the voxels being part of the brain, the
number of resulting features 4819 and 618 are not exactly 8 times more between
subsampling factors 4 and 8. The results show a little improvement when using
more features, probably some information is lost by too much subsampling. The
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Table 1. Percentages of successfully classified images obtained using the leave
one out method. Results are shown for all 79 images and for the two classes
individually (AD = Alzheimer’s Disease, NO = normal). Both the NMC and
PFLD were tested for subsampling factors 4 and 8, corresponding respectively
to 4819 and 618 features (i.e. voxels).

subsampling NMC PFLD
factor Total AD NO Total AD NO

4 84.8% 79.3% 88.0% 89.9% 82.8% 94.0%

8 81.0% 72.4% 86.0% 88.6% 82.8% 92.0%

PFLD outperforms the NMC, this can be explained by the fact that it also
takes the covariance into account, and thus the shape of the classes in feature
space. The differences in success rates between normal and AD images might
be explained by the presence of nearly two times more normal images than AD
images. We also investigated if using less training objects would increase the
performance of the PFLD. This was not the case and shows the assumption
made (number of features is sufficently different from the number of training
images) at the end of section 2.3 to hold for our data. Please note that four
highly experimented observers, who were presented the 29 AD images amidst
other images, classified on average only 66.4% of the AD images correctly (PFLD
and subsampling factor 4 resulted in 82.8% for AD images, see table 1).

4 Discussion and Conclusion

In this article, we have presented a general framework for using classifiers di-
rectly on 3D volumetric images without using prior knowledge based on recent
findings in the pattern recognition literature for the small sample size problem.
Promising results for use in AD were shown in the previous section, especially
when considering the difficulty human observers have in classifying this type of
images. Of course feature extraction (e.g. symmetry features, texture features)
may improve the results. But we have shown it feasible to do without. Our
further research will explore the possibilities for feature extraction as well as
using other well behaving classifiers in the small sample size problem. Another
important point will be to compare the performance of our classifiers to that
of human observers who do normally analyse this type of images. A classifier
that not only gives a binary result but also a rating which indicates a degree of
class-membership might provide an even more useful tool. It is important to no-
tice that this type of classification methods could be applied to a lot of different
applications in medical imaging. They can help to solve the problems related to
the often complex diagnosis making in 3D volumetric images.
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