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Abstract. This paper introduces two important issues of image regis-
tration. At first we want to recall the very general definition of mutual
information that allows the choice of various feature spaces to perform
image registration. Second we discuss the problem of finding the global
maximum in an arbitrary feature space. We used a very general parallel,
distributed memory, genetic optimization which turned out to be very
robust. We restrict the examples to the context of multi-modal medical
image registration but we want to point out that the approach is very
general and therefore applicable to a wide range of other applications.
The registration algorithm was analysed on a LINUX cluster.

1 Introduction

In the last years mutual information (MI) has had a large impact on multi-modal
signal processing in general and on medical image processing in particular. Since
the initial work of Viola et al. [1] and Maes et al. [2] several groups have analysed
the modification of the optimization objective MI itself. The work is so rich, that
a comprehensive overview would over-charge this paper. We still want to mention
the work of Studholme et al. [3] who introduced normalized mutual information
to rigidly register multi-modal images with different fields of view, Pluim et al.
] who added a gradient-based term to the MI in order to decrease the number of
local maxima and Rueckert et al. [5] who used second order entropy estimation
to model the dependency of a voxel’s gray value on the intensities of a local
neighborhood around that voxel.

On the other hand, several papers discuss image registration with image
features. Maintz et al. [6] studied different ridge detectors and used correlation
for multi-modal image registration. In [7], Rangarajan et al. discussed feature
point registration with MI. This direct combination of image features with MI
is very interesting as it fuses two approaches that have mostly been treated
independently in the literature. Our own work continues along this line and
merges most of the approaches mentioned above in one single formalism. For
this we simply used the fact that MI is defined on an arbitrary probability
space, i.e. an arbitrary feature space (Figure [).
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Unfortunately the behavior of MI in an arbitrary feature space is very hard
to predict. As a consequence, most optimization schemes would get stuck in local
maxima. Viola et al. [I] proposed stochastic gradient descent in order to avoid
local maxima. Nevertheless this approach avoids mainly maxima that are related
to imaging noise but is still just locally convergent. For example the symmetry
in brain images can cause stochastic gradient descent to fail (e.g. front/back and
left /right symmetry). This might be a minor problem in the context of brain
images, as a rough interactive registration can easily be performed in order to
avoid these local optima. When passing to more complex feature spaces than
the widely used intensity space, the number and positions of local maxima may
make this approach impossible.

Therefore we used genetic optimization for maximization of MI in a general
feature space. We propose a multi-scale genetic optimization and implemented a
master /slave parallelization scheme [§]. The genetic optimization itself is based
on the open source library written by Matthew Wall [9]. We added the commu-
nication utilities for distributed memory architectures using the MPICH imple-
mentation of the “Message Passing Interface” (MPI) [10], [1T].

2 Methods

2.1 Feature Space Mutual Information

MI is a widely used information theoretical distance measure between probabil-
ity densities [12]. Let’s shortly recall its definition: Let X and Y be two random
variables with marginal probability distributions p(z) and p(y), and joint prob-
ability distribution p(z,y), then the MI between X and Y is:

I(X;Y) = H(Y) - H(Y|X) (1)
o o) - loa( PEY)
(evt. discretisation) = ;p( ,y) -l g(p(x) p(y)) (2)

where H(.) stands for the Shannon-Wiener entropy of a continuous or discrete
random variable. X and Y are arbitrary random variables and can therefore
stand for discrete, continuous, single-variate or multi-variate variables. In order
to calculate the MI between two signals, a representative observation of the
signal has to be taken (choice of an adequate feature space). Then a probability
estimation will create a probabilistic model of the signal from the observation.
The sampling space is therefore arbitrary, but should be chosen to model the
signal as accurately as possible. This is summarized in figure [l

In [T], the measured features are simply the voxel intensities, in [5] the sam-
pling space is defined by the intensities of two neighbored voxels (i.e. a two-
dimensional feature space) and in [7] it is defined by the voxel being or not
being a particular feature point (i.e. a discrete feature space). For the latter, the
maximum entropy principle is used for density estimation [13].
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Fig.1. We show the general pipeline to estimate the MI of two signals. Instead of
modifying the MI itself, we analyse the choice of different sampling or feature spaces.
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In this paper, we restrict the discussion to a feature space that can be rep-
resented by continuous variables, called edgeness. We never conclude from this
measurement on whether a specific voxel is an edge or not. This fact allows us
to use joint-histogramming to estimate the joint probability of the two images.
The approach is very general and can easily be extended to other image features
or to the combination of different feature types.

2.2 Edgeness Measure

We have tested two different edgeness measures. The first is simply the norm of
the gradients. The second is slightly more complex, as it considers the intensity
variance within a variable distance from the voxel. Let’s call d a fixed radius and
dg the coordinate vector of a voxel. It’s edgeness is defined as:

c(do) = > lg(ds) —g(do)] (3)

|di—d0|<d

where g(.) stands for the image intensities. Figures @ a) through d) show an
output from this operator. Other edgeness operators are possible.

2.3 Parallel Genetic Optimization

So far, the presented approach is very similar to the well known maximization
of MI, except that we recalled that MI is by far not restricted to the intensity
space. The problem with other spaces is the presence of local maxima which
will cause local optimization algorithms to fail. Let’s underline the fact that
stochastic gradient descent does not solve this problem, as the local maxima are
effectively present in the feature space MI and are not due to imaging noise.
Figure 2 should clarify the problem.

In order to find the global maximum, we have to use a globally convergent
algorithm. We employed Matthew Wall’s genetic algorithm library [9], but won’t
discuss genetic optimization in this text. [I4] is a good introductory reference.
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Fig. 2. To show the problem of feature space MI for affine registration, we present two
template images of concentric circles (a and b) as well as their edgeness images (¢ and
d) defined by equation [J respectively. We see that both, the intensity based MI (e) as
well as the edgeness MI (f) have local maxima. But the edgeness based measure has
more and very pronounced local maxima, which underlines the necessity of a globally
convergent optimization scheme.

We will neither discuss the parallelization scheme which we added on top of
the genetic optimization. Let’s just mention that it’s known as a master/slave
parallelization [§] with a SPMD (Single Program Multiple Data) model. The
parallelization is independent of the objective function to be optimized and can
therefore be used for any chosen feature space. For further speed-up we used a
multi-scale genetic optimization.

3 Results

3.1 Affine, Multi-modal, Inter-patient Image Registration

Multi-modal affine registration is a very important task for image registration
as it gives a good initialization for several non-rigid registration algorithms [I5],
[16]. In this study, we registered MR-scans onto a CT reference image of another
patient (inter-patient) and compared the gradient based MI with the intensity
based MI. The results for two MR-scans are shown in figure Bl Their interpreta-
tion, in particular of the images e/f) and 1/m) resp., is presented in Al

3.2 Angiograms of the Retinal Blood Vessels

In this study, we show that the presented feature space MI combined with the
globally convergent genetic optimization can extend the MI based image regis-
tration to other medical applications.
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Fig. 3. a) is the CT-target image. In b), the contours of the target image are super-
posed on the floating MR-scan. In ¢) and d) we see the results after a rigid optimization,
when using resp. the intensity based MI and the edgeness MI. In e) and f) we show
the corresponding results for affine registration. Figures g) through m) show the re-
sults for a second MR-scan. In €) and f) (resp. 1) and m)) we recognize a significiant
improvement with the edgeness based MI; resp. that the global maximum of intensity
based MI doesn’t correspond to good registration.
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Fig. 4. The figures a), b) and c) had first to be registered in order to reconstruct the
extended view shown in d).

In figure [@ we show how three partial views of the retinal vascular system
can be combined to provide a virtually extended view. The different intensity
distributions in the images are caused by an injected contrast agent which enables
the study of the retinal blood flow for diabetic retinopathy. The feature space of
choice was the edgeness defined in eq. Blwith an atom radius d of 5 pixels.

3.3 Genetic Optimization

We ran the parallel, genetic optimization algorithm on a LINUX cluster (10
bi-processor PCs: 2x PIII 550MHz each. Memory: 7x 512MByte, 2x 256 MByte
and 1x 384MByte). For the results of section [3.l the execution time for all 20
processors was about 30 minutes (image size: 256x256x123) and for the results
of section[3.2 about 90 seconds (image size: 451x367) wall clock time.

4 Discussion

In section Bl we have compared the gradient based MI with intensity based MI.
For rigid registration the quality of the results is comparable, while for affine
transformations the global maximum of intensity based MI might not correspond
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to good registration and the presented feature space defines a much better result.
The edgeness defined by the gradient emphasizes contours in the medical images
while the intensity based MI over-emphasizes the volumetric information in the
scans and therefore risks to neglect finer but important features in the images.
An example is the skull and the brain: The brain covers lots of volume while the
human skull is a relatively fine but anatomically important structure. Therefore
the intensity based registration favors the statistical matching of the brain. On
the other hand the gradient based MI reflects the statistical presence of surfaces.
As a result, the skull and the brain have about the same importance and a
compromise for their fitting is obtained. Figure[3, in particular the images e/f)
and 1/m) resp., shows a significant improvement with this approach.

In section we have shown an additional application of image registration
where the chosen feature space has been adapted to the image contents. The
example also underlines the importance of a globally convergent optimization
scheme as the fine blood vessels in the retina give rise to local optima due
to "accidental” partial matching of non-corresponding short vessel segments.
The global optimization forces convergence to maximum matching and therefore
towards correct registration of the entire vessels and not just vessel segments.

Finally the timing results showed that the genetic optimization can be com-
petitive when a parallel implementation is used. From a practical point of view,
optimal results can be obtained when a local optimization refines the output of
the genetic optimization.

5 Conclusion

This paper shows that specifically designed feature space MI out-performs the
widely used intensity based MI optimization for several medical registration
tasks. The mathematical expression of MI itself doesn’t constrain the choice of
feature spaces and therefore incorporates the described approach.

The described drawback of local maxima in the optimization objective can be
solved by globally convergent genetic optimization. A parallel implementation
provides a powerful algorithm for a wide range of optimization tasks.

Future work will study and compare additional feature spaces (e.g. multi-
dimensional spaces) and its applications to other registration tasks. It’s impor-
tant to note that the curse of dimensionality in multi-variate density estimation
[I7] limits the maximum possible dimension of the chosen feature space.

6 Acknowledgements

We want to thank Conor Heneghan, Ph.D., (Digital Signal Processing Labo-
ratory, University College Dublin) for providing the fundus images of section
0. 2l



556

T. Butz and J.-P. Thiran

References

1]

2]

8]

[4]

[5]

[6]

[7]

8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

W.M. Wells II1, P. Viola, H. Atsumi S. Nakajima, and R. Kikinis, “Multi-modal
volume registration by maximization of mutual information,” Medical Image Anal-
ysis, vol. 1, no. 1, pp. 35-51, March 1996.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Mul-
timodality image registration by maximization of mutual information,” IFEFE
Transactions on Medical Imaging, vol. 16, no. 2, pp. 187-198, April 1997.

C. Studholme, D.J. Hawkes, and D.L.G. Hill, “An overlap invariant entropy
measure of 3d medical image alignment,” Pattern Recognition, vol. 32, pp. 71-86,
1999.

Josien P.W. Pluim, J.B. Antoine Maintz, and Max A. Viergever, “Image registra-
tion by maximization of combined mutual information and gradient information,”
October 2000, vol. 1935, pp. 452-461.

D. Rueckert, M.J.Clarkson, D.L.G. Hill, and D.J. Hawkes, “Non-rigid registration
using higher-order mutual information,” in Proceedings of SPIE 2000, February
2000, pp. 438-447.

J.B. Maintz, Petra A. van den Elsen, and Max A. Viergever, “Evaluation of ridge
seeking operators for multimodality medical image matching,” Transactions on
Pattern Analysis and Machine Intelligence, vol. 18, no. 4, pp. 353-365, April 1996.
Anand Rangarajan, Haili Chui, and James S. Duncan, “Rigid point feature reg-
istration using mutual information,” Medical Image Analysis, vol. 3, no. 4, pp.
425-440, 1999.

Erick Cantu-Paz, “A survey of parallel genetic algorithms,” Tech. Rep.,
The University of Illinois, 1997, IiGAL Report No. 97003, ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IliGALs/97003.ps.Z.

Matthew Wall, GAlib 2.4.5: A C++ Library of Genetic Algorithm Components,
Massachusetts Institute of Technology, http://lancet.mit.edu/ga/.

W. Gropp and E. Lusk, User’s Guide for mpich, a Portable Implementation of
MPI Version 1.2.1, http://www-unix.mcs.anl.gov/mpi/mpich/.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming
With the Message-Passing Interface, MIT Press, second edition, 1999.

T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley &
Sons, Inc., 1991.

E.T. Jaynes, “On the rationale of maximum-entropy methods,” Proceedings of
the IEEE, vol. 70, no. 9, pp. 939-952, 1982.

David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company, Inc., 1989.

A. Guimond, A. Roche, A. Ayache, and J. Meunier, “Multimodal brain warping
using the demons algorithm and adaptative intensity corrections,” Tech. Rep.,
Inst. National de Recherche en Informatique et en Automatique, Sophia Antipolis,
1999.

Jean-Philippe Thiran and Torsten Butz, “Fast non-rigid registration and model-
based segmentation of 3d images using mutual information,” in Medical Imaging,
2000, pp. 1504-1515.

L. Devroye, A Course in Density Estimation, Birkh&user, 1987.



	Introduction
	Methods
	Feature Space Mutual Information
	Edgeness Measure
	Parallel Genetic Optimization

	Results
	Affine, Multi-modal, Inter-patient Image Registration
	Angiograms of the Retinal Blood Vessels
	Genetic Optimization

	Discussion
	Conclusion
	Acknowledgements

