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Abstract. A novel method is proposed for elastic matching of two data volumes.
A combination of mutual information, gradient information and smoothness of
transformation is used to guide the deformation of another of the volumes. The
deformation is accomplished in a multiresolution process by spheres containing
a vector field. Position and radius of the spheres are varied. The feasibility of the
method is demonstrated in two cases: matching inter-patient MR images of the
head and intra-patient cardiac MR and PET images.

1 Introduction

Proper interpretation and comparison of medical volumes from different modalities can
be accomplished by transforming all data into common spatial alignment, also referred
to as registration [1]. In many cases, a satisfactory solution can be found by using rigid
registration, i.e. a volume is only translated and rotated. The registration algorithms can
be coarsely divided into three groups which register: 1) a set of landmark points, such
as external markers and anatomic landmarks [2], 2) geometric image features, such as
edges [3], and 3) image intensity based similarity measures, such as mutual information
(MI) [4,5]. Algorithms combining these groups exist too, e.g. Pluim et al. [6] used
geometric features and intensity based similarity measures.

Elastic registration or matching is required as inter-patient volumes or regions con-
taining non-rigid objects are registered. The goal is to remove structural variation be-
tween the two volumes to be registered. Many approaches have been proposed for the
problem in recent years [7,8,9,10,11,12]. In the method proposed by Christensen et
al. [7], physical properties of either elastic solids or viscous fluids were simulated as
the model was deformed. The criterion for the deformation was to minimize the differ-
ence in voxel gray values between two volumes while constraining the transformation
to be smooth. Wang and Staib [8] used intensity similarity combined with statistical
shape information. The formulation of the elastic model was similar to the one used by
Christensen et al. but the information on typical deformations, derived from individuals,
was incorporated to guide the deformation. Thirion [9] developed a fast 3D matching
method based on Maxwellian demons. The displacement vectors for the model were
derived from an optical flow equation and smoothed by Gaussian filtering. MI was uti-
lized in non-rigid registration by Gaens et al. [10]. In their approach, neighborhood
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regions around each point of a discrete lattice were locally translated so that MI was in-
creased. Then, the calculated displacement, filtered by a Gaussian kernel, was applied
to the points in the neighborhood. The process was iterated by decreasing gradually the
size of the neighborhood and by using a multiresolution approach. Rueckert et al. [11]
proposed a method where they applied MI and imposed the smoothness of the transfor-
mation to constrain the matching. The deformation of data was accomplished using a
free-form deformation (FFD) deformation grid. Collins et al. [12] maximized a correla-
tion between voxels in two volumes while simultaneously smoothing the transformation
by the average displacement vector around each voxel of interest. FFD was used to de-
form the model. A multiresolution approach was applied.

If one volume to be registered is an atlas, i.e. a volume where the tissue classes of
the voxels are known, the result of elastic matching provides also a segmentation. The
use of elastic models or deformable models, such as snakes, in the segmentation is a
widely studied field in medical image processing [13].

We propose a method by which a model volume with gray-scale information or
an atlas consisting of gray-scale data and a set of triangulated surfaces is elastically
matched to a data volume. In order to perform the registration, a weighted sum of three
energy components is maximized. The first component is the MI between the images [4]
while the second component is derived from the intensity gradients of the images [6].
The third component controls either the smoothness of the transformation [11] or the
shape of the surfaces in the atlas [14]. The model is deformed using deformation spheres
where the transformation is computed only for the model points inside the spheres. A
high number of spheres with varying position and radius is used. In addition, a mul-
tiresolution approach is adopted.

2 Methods

In this study, the model used is a gray-scale volume taken from an individual. If the seg-
mentation of the objects of interest is available, triangulated surfaces of these objects
are incorporated in the model, i.e. the model is an atlas. In practice, the model con-
tains also a gradient volume computed from the gray-scale data using a Canny-Deriche
operator.

The multi-resolution approach is adopted. A low resolution volume is produced by
Gaussian filtering and subsampling a high resolution volume. The matching is done
first at the lowest resolution level. As the maximum energy is attained, the process is
repeated for a higher resolution level.

Rigid registration is required before elastic transformation if the two volumes have
significantly different initial positions. For reference, the mispositioning of the lungs by
5 cm was, however, recovered by the elastic matching in our tests.

In the following, the gray-scale volume of the model is referred to as a volume M,
and the data volume taken from a patient, and to which the model is matched, volume D.
Consequently, a sample point, i.e. a voxel, from the volume M is m = (m1, m2, m3)
and from the volume D d = (d1, d2, d3). The transformation applied to the sample
points in the model volume is denoted by T : (x, y, z) �→ (x′, y′, z′).
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2.1 Energy Function

The motivation in using more than one energy term is to create an energy function with
less local minima and therefore to make matching more robust [6]. The energy com-
ponents provide complementary information on the matching: the gradient component
incorporates spatial information while the regularization of the transformation aims to
preserve, in a way, the prior knowledge of the shape of the object.

Mutual information. MI measures the degree of dependence between the volumes
M and D. MI is high if the gray-scale value of the voxel i in D can be estimated with a
high accuracy as the gray-scale value of the corresponding voxel in M is known. If the
gray-scale values of the volumes M and D are considered random variables A and B,
respectively, the MI, proposed in [4] and denoted here by energy EMI , is be computed
from the equation:

EMI =
∑

a,b

pAB(a, b)log
pAB(a, b)

pA(a)pB(b)
, (1)

where pA(a) and pB(b) are marginal probabilites and pAB(a, b) is the joint probability
distribution. pA(a) is the probability that the gray-scale value of a voxel is a in volume
M . pAB(a, b) is the probability that the corresponding voxels in the volumes M and D
have the gray-scale values a and b.
Joint gradient information. The points in the model should match similarly oriented
points in the data. The method used is a simplified version of [6]. The energy component
Egrad derived from the gradients is computed as follows:

Egrad =
1
N

∑

(m,d)∈(M∩D)

∇m · ∇d
|∇m||∇d|min(|∇m|, |∇d|). (2)

where N is the number of model points overlapping the volume D. Because a minimum
of gradients is used in two volumes, the intensity ranges need to be set nearly similar in
the both volumes.

Since the gray-scale value of a tissue depends on imaging sequence or imaging
modality, the gradients on the edges of the tissue may have opposite directions in dif-
ferent volumes. If this is the case with volumes M and D, Eq. 2 is modified by taking
an absolute value from the dot-product.
Regularization of transformation. The transformation T can be constrained to be
smooth by incorporating the energy component Emodel,1 [11]:

Emodel,1 =
1
N

∑

x,y,z

[(
∂2T
∂x2

)2+(
∂2T
∂y2

)2+(
∂2T
∂z2

)2+2(
∂2T
∂x∂y

)2+2(
∂2T
∂x∂z

)2+2(
∂2T
∂y∂z

)2],

(3)
where the sum is over all voxels in the model volume and N is the number of points
summed. The energy term is the 3D counterpart of the 2D bending energy associated to
a thin-plate metal. To speed up computations only three first terms are used in practice.

Alternatively, if the surface model is available, the smoothness of the transformation
can be controlled by constraining the change in the shape of the model surfaces. In our
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study [14] where a boundary element template was matched to volume data, various
regularization strategies were tested. The method with the aim of preserving the orien-
tation of the model’s surface normals was preferred. This method is applied also in this
study. The energy component is computed as follows:

Emodel,2 =
1

Ntr

Ntr∑

i=1

ni · no
i , (4)

where Ntr is the total number of triangles in the model, ni and no
i are the deformed and

the original directions of the normal of the triangle i, respectively.
Total energy. The model is deformed by maximizing the following energy function:

Etotal = EMI + αEgrad + βEmodel, (5)

where α and β are user-defined weight parameters for the energy components.

2.2 Model Deformation

In our earlier study [14], a boundary element template was deformed using a FFD grid.
Since the relative positions of the control points and the model points can not be arbi-
trarily chosen, the opportunity to control the transformation is limited. In this work, a
volumetric transformation is used but the transformation can be better focused on the
regions of interest. The potential of the method to include statistical shape information
on the deformation is discussed in Section 4.

All model points, including voxels and surface points, inside a deformation sphere
are transformed. The center c = (c1, c2, c3) and the radius r of the sphere can be
freely chosen. In practice, a high number of spheres (tens of thousands) are applied
sequentially. The transformation vector v for a model point at (x, y, z) inside the sphere
is computed as follows:

v =
e−k

(x−c1)2+(y−c2)2+(z−c3)2

r2 − e−k

1.0 − e−k
V, (6)

where V is a movement vector posed to the center of the sphere and k is a parame-
ter which specifies the sharpness of the weight function. A 2D version of the weight
function with k = 3 is visualized in Fig. 1.a.

The vector V is chosen in such a way that it maximizes the energy in Eq. 5. In
practice, the center of the sphere is displaced to several locations, the model is deformed
and energy computed, and the location having the highest energy is chosen. The user can
define the number of locations tested (Nloc) around the center as well as the maximum
displacement for the center (s), e.g. s = 0.3r. The six closest neighbors in 3D are
always included in the set of tested locations. In Fig. 1.b, the grid around the center
of the sphere, shown by a circle in 2D, represents the search space and visualizes the
possible new locations for the center. The locations tested are shown by gray squares
and the center by a black square. The motivation for testing several locations is that
the simple gradient descent method is known to attach relatively easily to local energy
minima or maxima. In this strategy, the energy function is maximized more globally.
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Fig. 1. (a) A 2D weight function for the deformation (r = 10). (b) A 2D search space
visualized in the center of the sphere (Nloc = 8).

By default, the maximum displacement s is equal in all directions. In other words,
the search space is cubic. However, many methods applying deformable models prefer
deformations in the direction of the surface normals. This approach can be followed, if
the surface is available in the model. The approach is accomplished as follows. First, de-
fine all surface points inside the sphere and compute the average of the surface normals
by weighting each normal according to the weight in Eq. 6. Denote the length of the
average vector by q. Then, define s = s in the direction of the average and s = (1− q)s
in orthogonal directions. In Fig. 1.b, the surface is represented in 2D by the contour
around the light gray object. Since the average of the surface normals inside the sphere
is approximately in the diagonal direction, the value of q ≈ 1. Therefore, the search
space is highly anisotropic and the diagonal displacements are privileged.

By default, the locations of the spheres are randomly chosen inside the model vol-
ume M . However, if the surface information is included in the model, the locations
are randomly chosen at the positions of the surface points. The model should contain
surfaces for the regions which are required to be well matched in the final result. For
example, if the lung borders are to be segmented from the image, the transformation
inside and outside the borders are not of great interest. The use of the surfaces locates
the deformation to the most interesting regions, and it speeds up the process because a
great part of the volume is excluded, such as background. However, the spheres used
at the lowest resolutions levels contain usually the whole or the most of the model, and
allow therefore global transformation also for the regions far from the edges.

In the beginning of the deformation, the radius of the spheres is high. As the energy
does not change more than a user-specified limit ε during an iteration, the radius of the
sphere is reduced. The user can set the maximum and minimum radius. The number
of spheres used in one iteration is relative to the volume of the model divided by the
volume of the sphere.
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Fig. 2. Matching of two T1-weighted MR volumes from the head. The top row shows
the model and patient data interlaced before matching and the bottom row after elastic
matching.

3 Results

The method was developed for two purposes. 1) An automated method was needed
by which individualized geometric models can be built for bioelectromagnetic inverse
problems from magnetic resonance (MR) images. 2) Elastic matching of cardiac MR
and positron emission tomography (PET) images taken from a patient was also needed.

In Fig. 2, the top row shows the original model and patient data interlaced us-
ing a chessboard visualization. The bottom row presents the same volumes after the
model was elastically matched with the patient data. By visual inspection the edges of
anatomic objects appear well aligned after elastic matching, i.e. edges are reasonably
continuous between the chess-boxes. The typical run time of the program is 5–15 min-
utes using a 600 MHz Pentium as the size of the volumes is about 128 × 128 × 100.
In this case, the surface information was available and four resolution levels were used.
The weights used in Eq. 5 were α = 2 and β = 10. However, the result does not change
appreciably as the weight values several times higher or lower are used. The radius of
deformation spheres varied from 20 to 6 voxels.

Fig. 3 visualizes a result for cardiac MR-PET matching as the MR volume was the
model. The top row shows the volume interlaced before elastic matching and the bottom
row after matching. The left ventricle is matched reasonably well, e.g. the matching of
the septum is indicated by the white arrows. In this case, the images were not rigidly
registered before elastic matching. As the rigid registration is used, the images appear
often well aligned already before the elastic transformation. The accurate assessment of
the result is difficult because of highly blurred PET images. Therefore, the conditions
for the use of elastic matching should be carefully evaluated in future studies.
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Fig. 3. Matching of cardiac MR and PET volumes from the left ventricle. The top row
shows the model and patient data interlaced before elastic matching and the bottom
row after matching.

4 Discussion

Elastic matching and segmentation of data volumes is often a pre-requisite for a suc-
cessful diagnosis and treatment of a patient. This work proposes a method by which this
image processing problem can be solved with a reasonable accuracy in a few minutes.
So far, the method has been, however, tested only for a few volumes and the results are
therefore preliminary.

Although the program allows several parameters to tune the matching, the values
do not need to be often varied in practice. Proper parameter values for the energy com-
ponents depend on imaging modality. If intra-modality anatomic images, such as MRI
or computerized tomography (CT), are used, gradient information is weighted more
in Eq. 5. However, mutual information should have a major impact on images which
have very smooth gradients, such as PET images. The more pathologic the images are,
i.e. the images to be matched are highly different or noisy, the more the transformation
should be regulated.

Two methods to compute Emodel was presented. If a surface is not included in
the model, only the smoothness of the transformation can be controlled. If the surface
is available, the method regulating the normal directions is recommended, because it
makes the run time remarkably shorter.

The method will be further improved by including statistical shape information.
This can be done by defining typical transformations for various positions of the model.
In the current version of the method, the deformations in the direction of the surface
normals are preferred. However, information could be incorporated from test data for
which the typical transformations are known, and constrain deformations to typical ori-
entations. In the current version, all transformation vectors inside the sphere are parallel.
Typical transformations could be better simulated, if curved transformations inside the
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sphere were applied. In addition, more general shapes than a sphere could be used to
bound deformation regions, such as a “banana-shaped” object. This would allow con-
straining the deformation to a more specific region if necessary.
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