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Abstract. Two major problems in MR Diffusion Tensor Imaging, reg-
ularization and tracking are addressed. Regularization is performed on a
variance homogenizing transformation of the tensor field via a nonlinear
filter chain to preserve discontinuities. The suitability of the smoothing
procedure is validated by Monte Carlo simulations. For tracking, the
tensor field is diagonalized and a local bilinear interpolation of the cor-
responding direction field is performed. The track curves, which are not
restricted to the measured grid, are modeled by following stepwise the
interpolated directions. The presented methods are illustrated by appli-
cations to measured data.

1 Introduction

Diffusion Tensor Imaging, which can appreciably contribute to explore anatom-
ical connectivity, recently became a main topic in human brain mapping. Two
essential problems on the way to detect the flow of axon fibers are discussed in
this paper: Improvement of the low signal to noise ratio in the tensor field via
regularization and modeling of the axon bundle flow.

Regularization or, equivalently, smoothing including convenient priors is es-
sential for the quantification of anisotropy and direction of the diffusion field as
convenient measures are biased by low signal to noise ratio [1J2]. Smoothing can
be performed on different levels of description for the direction field, e.g., on
the diffusion weighted images of the measured signal [3], on the tensor field [4]
or on the vector field of the main diffusion directions [5]. Our approach regu-
larizes a variance homogenizing transformation of the tensor field, as the noise
variance of the tensor field is strongly dependent on measuring parameters and
the field amplitude. The signals in the tensor field show discontinuous patterns,
due to tissue or organ dependent changes in the anisotropy of diffusion. There-
fore, an edge preserving smoother which does not blur the field is applied. A
validation of this smoothing method is performed by a Monte Carlo simulation
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via the Stejskal-Tanner equations [6]. Our smoothing procedure concerns the in-
crease of signal to noise ratio on the measurement grid, so it concerns averaged
properties of the actual axon flow. Tracking on the other hand is regarded as
a way to model this flow below the grid scale. To achieve this, the smoothed
tensor field is diagonalized and the direction field of the principal eigenvectors
is further analyzed. For a given seed point in white matter, not necessarily on
the grid, the track of axon fibers is modeled. To do this, the direction field is
interpolated locally by a bilinear procedure, then the track is followed by dif-
ferential equation discretization. The method is applied to real data and results
concerning the corpus callosum region are presented. The diffusion tensor im-
ages were acquired on a 1.5T clinical scanner (Signa Echospeed, GE) using a
diffusion weighted EPI sequence with 6 non-collinear gradient orientations and
4 b-factors, byax=880s/ mm?. 24 contiguous slices with a spatial resolution of
1.875x1.875x3mm? were acquired.

2 Edge Preserving Regularization of the Diffusion Tensor
Field

Our approach to regularization or smoothing is similar to that of Basser et al. [4],
as we are essentially smoothing the tensor field [7]. However, in contrast to Basser
et al., who use linear B-Spline approximation which gives blurring of the resulting
fields, we use nonlinear filters which are edge preserving and homogenizing, as the
measured fields show clear discontinuities and as the curvature of the direction
field should be small [B]. This smoothing technique differs from that used by
Parker et al [3], who use the “Perona Malik-variant” of the diffusion equation. We
use a chain of three dimensional nonlinear Sigma filters, the “Aurich-chain” [g],
which is easy to implement and has suitable numerical and statistical properties.

According to the exponential behavior of the Stejskal-Tanner equations [9T|2],

Fi(x)/F°(2) = exp(~bG; * D() * Gy) (1)

where D(x) is the spatial tensor field, F?(z) = |Signal}(x) + ngre + inm| with
NRe, Mm € N(0,0), FO(x) is the Ty-weighted field, b > 0 is the diffusion weight-
ing parameter, and G 1,1 = 1,...,6 are normalized gradient vectors. For high
b-values the variance of the noise in the tensor field D(x) depends strongly on
the amplitude, see Fig. M for one dimensional simulated examples. Therefore, to
achieve noise homogeneity, an important prior condition for smoothing by filters,
filtering should not be performed on the coefficients Dy, Dy, etc. of the sym-
metric D(x) matrix directly but on it’s exponential, e. g. on f = exp(—bD,.(x)).

The fields in Eq. ([{l) show discontinuities, which are due to voxel wise changes
in diffusion anisotropy (caused, e.g., by tissue dependent anisotropy or by fiber
crossing creating partial volume effects), see Fig. [, Panel A. Therefore, nonlin-
ear edge preserving filtering is applied. For every field f the “Aurich-chain” is
formulated in three dimensions according to:
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Fig.1: A smooth tensor coefficient D(z) for one space dimension is assumed
as a step function. According to theMonte Carlo simulation described in text
o = 0.03F° complex Gaussian noise is added to the Signal and D(z) is plotted
for =100, 300, 500, and 700s/mm?. The variance depends strongly on b and
on the amplitude of the field
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where o is the voxel width and 7 is three times an estimate of the smallest step
in the field f which should be preserved. A lower bound of this step is given by
the standard deviation of the noise in f.

This algorithm is statistically robust with respect to noise details (deviations
from independent Gaussian noise), numerically stable, and computationally fast,
as tabulation methods can be used. See [10] for further details and for a review of
recent edge preserving smoothers. In Fig. Bl Panel B, some tensor coefficients of
the smoothed field are shown, three iterations in the chain gave a suitable flatness
of the resulting field, which is equivalent to a low curvature in the direction field.

In addition, to demonstrate the quality of our filter method, a validation
based on Monte Carlo simulation was performed. The smoothed three dimen-
sional tensor data around the corpus callosum which are partially shown in Fig. 2
Panel B, were used as reference. By Eq. () they were corrupted with noise via the
following steps: Assume FY=1000 and derive via Eq. () Signall}(m), for b=100,
300, 500, and 700s/mm? and G; = (1,0,0), G2 = (0,1,0), G3 = (0,0,1),
Gi = (1/V2,1/V2,0), Gs = (1/v/2,0,1/v/2), and G = (0,1//2,1//2). These
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smoothed raw data
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Fig. 2: In Panel A, axial slices of Dz (x) and D,.(x) for identical regions around
the corpus callosum are shown for raw data. Panel B presents the corresponding
smoothed fields. Panel C shows the noise corrupted fields of Panel B, see Monte
Carlo simulation in text for details. Panel D demonstrates that the applied
smoother indeed reproduces Panel B with high precision
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Fig. 3: Effect of the robust smoother on tensor coefficients (as in Fig. B))

25 fields, including F°, were then corrupted by complex Gaussian noise, N (0, ),
with 0=3% of F°(zx). The corresponding tensor field D(z) was calculated at ev-
ery space point via multivariate linear regression. This regression comprised all
24 linear equations corresponding to the logarithmic variant of Eq. () for the
four b-values. Some coefficients of the resulting noisy tensor field D(x) are shown
in Fig. 2] Panel C. Smoothing of D(x) was performed in the same way as for the
raw data, using b=400s/mm? in the exponential transformation, with results
shown in Fig. @, Panel D. The good agreement with the reference in Panel B
demonstrates the suitability of the applied filter method. In a second test the
raw data signals of Fig. B, Panel A were additionally corrupted by adding the
noise of Panel C, as shown in Fig. Bl Panel A. An application of the filter chain
demonstrates the robustness of the method as seen in Fig.[3, Panel B.

3 Tracking

To derive the main diffusion directions of the axon bundles the smoothed tensor
field, D(x), was numerically diagonalized by singular value decomposition at
every grid point x;, resulting in three eigenvalues and eigenvectors (orientations
modulo 7) for every voxel. The field of eigenvectors corresponding to the largest
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eigenvalue, é(x;), gives the main direction field. In Fig. Bl the positive effect of
smoothing on the main direction field is exemplified. Panel A illustrates the field
around a simulated three-dimensional, anisotropic spiral tract embedded in an
isotropic medium. Panel B shows the distributions of angular deviations from
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Fig. 4: Panel A shows a simulated direction field in space. In Panel B the
distributions of angular differences are given: broad bars correspond to angles
between uncorrupted and noisy directions on the spiral, small bars to angles
between uncorrupted and smoothed directions. Total frequencies versus angle

differences in degrees are given.

the ideal direction for voxels on the spiral.

As on the scale of the measured grid, the flow of axon bundles cannot be re-
solved completely, the regularization deals with averaged quantities. Correspond-
ingly, in regions of crossing or merging axon directions cancellation is possible,
leading to partial volume voxels with artificially low anisotropy. To introduce
the direction information into these voxels, a rotation algorithm was developed,

which proceeds essentially in two steps:
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Fig. 5: The anisotropy coeflicient Amajor € [0, 1] for the axial region of Fig. [}

left: based on raw data, right: based on smoothed tensor field
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1. According to the eigenvalues of the partial volume voxel, decide if the isotropy
is two or three dimensional by the following procedure: Sort the eigenvalues
in decreasing order and check if the first two or three eigenvalues are close
(if the local tensor is disk shaped or spherical).

2. Then, two or three directions are mapped to this voxel by an algorithm which
minimizes (modulo 7r) the mean angular deviation of a rotating vector to the
main streams of directions in the neighborhood. In case of a two dimensional
isotropy, the corresponding eigenvectors define the rotation plane of the vec-
tor, in case of three dimensions the rotation covers a sphere.

To model the direction of the axon bundles below the grid resolution, a local
bilinear interpolation of the discrete direction field was performed, according to:

é(z) = 3 ée(x) - ‘1 - %

«; €8—neighborhood(x)

)

3)
where Az, Ay, and Az are the grid lengths.

If a partial volume voxel which includes several directions is in the 8-neigh-
borhood, that direction which is closest to those of the neighboring standard
voxels is chosen. The standard voxels have a cigar shaped tensor and are chosen
by an anisotropy coefficient above a certain threshold. Anisotropy coefficients
are strongly biased by noise, a review of recent coefficients and a discussion of
their noise dependence is given in [2]. The effect of the presented regularization
on the coefficient

A :)\1—()\2+)\3)/2
major )\1 +/\2 +>\3

.‘1 ly — vil .
Ay

‘1|zzl|

Az

for sorted eigenvalues A1 > Ag > A3 (4)

is shown in Fig. Bl where the anisotropy for the raw data is compared to those
of the smoothed tensor field, the region presented is the same as in Fig. 2l

On the basis of this interpolated direction field, tracks of axon bundles can
be calculated as follows:

1. Choose the seed point of the track and the initial orientation via the nearest
standard voxel.

2. Align the neighboring directions according to the initial orientation and cal-
culate the interpolated direction by Eq. (B).

3. Proceed with a fixed step length As in this direction.

4. If the anisotropy is above the threshold, use the new position as seed point,
the direction of step 3 to determine the initial orientation for the next iter-
ation, and continue with step 2.

For As — 0, this procedure essentially approaches an initial value problem
for differential equations [4], according to this in step 3 a Runge-Kutta procedure
gives more stable results. In Fig. B the direction field of the smoothed tensors
is shown for 5 axial slices around the corpus callosum for A;‘%’jgﬁhed data > (.3,
Several calculated tracks in are included.
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Fig. 6: The direction field around the corpus callosum as in Fig. 2 for 5 con-

tiguous axial slices. Voxels for Amajor > 0.3, based on the smoothed tensor field,
are shown. Several calculated tracks are included
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4 Conclusion

Spatially smoothing the tensor field is equivalent to a homogenization of the
directions of the eigenvectors and of the eigenvalues which are derived by diag-
onalization. Therefore smoothing has an important impact on anisotropy coeffi-
cients and on tracking. For anatomical and geometrical reasons, the tensor field
shows discontinuous patterns. In the corpus callosum region, anatomy gives rise
to abrupt changes in the anisotropy signal from one voxel to the next. Similarly,
for crossing or merging fiber tracks, the finite grid resolution can produce voxel-
wise changes in anisotropy or partial volume effects. Therefore, edge preserving
smoothing is the method of choice to regularize diffusion signals or their tensor
fields. The proposed tracking method was tested in model cases and by appli-
cation to real data. Near the corpus callosum, where we found only standard
voxels, reasonable results were achieved. Crossing and partial volume situations
were up to now studied only by model simulations, more analyses are necessary
to adapt the proposed method, which can handle only isolated, non-standard
voxels, to realistic situations. The present tracking algorithm uses local infor-
mation of the direction field only and proceeds in the frame of an initial value
problem. To explore anatomical connectivity boundary value conditions which
introduce anatomical knowledge about the starting and ending regions of the
tracks should also be treatable. Furthermore, it seems to be experimentally ev-
ident that partial volume voxels with crossing tracks can also appear as groups
or larger clusters in white matter [LI]. For both reasons more global tracking
methods than the present ones should additionally be applied. This could be
achieved, e.g., by optimization methods of variational calculus which offer a
flexible tool to combine global aspects with convenient priors.
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