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LSIIT/GRI - UPRES-A CNRS 7005,
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Abstract. Analytical techniques applied to functional magnetic reso-
nance imaging (fMRI) data require restrictive assumptions about the
shape of the blood oxygenation level dependent (BOLD) time series ob-
served at each voxel in response to a stimulation paradigm. In this pa-
per, a radically different and fundamentally pattern recognition-oriented
fMRI brain activation mapping approach is proposed. Neural activity
is assessed at each voxel on a coupling distance principle between the
deterministic alternation sequence of the stimulation paradigm and the
sequence of BOLD response nonstationarities detected and character-
ized by a continuous wavelet transform (CWT). The voxel’s stimulation-
response coupling distance is measured using an adapted version of the
string edit distance algorithm. fMRI studies conducted on synthetic and
real data demonstrated the superiority of the ”coupling distance” brain
activation mapping approach over against the Student’s t-test.

1 Introduction

Through the BOLD effect that links neural activity to blood oxygenation levels
in the vessels near active neurons, fMRI enables to image and study functional
activity of the human brain. A typical fMRI experiment consists in alternating
the acquisition of blocks of Na images (Na∼10) of the brain while the subject
is in an active state, that is, performing a specific task, with the acquisition
of blocks of Nc images (Nc∼10) while the subject is in a control state. This
active-control or ON-OFF cycle, when repeated M times (M∼10), constitutes
the so-called stimulation paradigm.

Brain activation mapping consists in detecting regions of the brain activated
by the stimulation paradigm. In standard practice, activation mapping is per-
formed by means of the Student’s t-test (TT), the cross-correlation (CC) or the
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statistical parametric mapping (SPM) approach. All three techniques are vox-
elwise: each BOLD response is analyzed independently. Neural activity is then
declared at the voxel level if the corresponding BOLD response is determined
by the stimulation paradigm somehow.

In essence, the TT measures a distance between two sample sets, one cor-
responding to the active fMRI samples, the other to the samples observed in
the control state. The main drawback of the TT is that the time dimension of
the BOLD fMRI signal is lost as the only information taken into account is the
binary variable ”stimulated” or ”not stimulated”. CC techniques are computa-
tionally efficient but rely on a priori knowledge about the reference waveform to
be used. It can be either a boxcar function, a sine wave, or some mathematical
model representative of the expected BOLD response [1]. The selected wave-
form can have a profound effect on the activation mapping results. Moreover,
CC techniques consider the BOLD response as uniform across the brain. In the
SPM approach [2], the BOLD response is fitted to a set of basis functions using
a linear regression analysis. The basis functions are predefined according to the
experimental protocol. They model either effects of interest that are sought or
low frequency nuisance effects. A contrast map can then be obtained for any
combination of the basis functions of interest with respect to the ones of no
interest. SPM is a more poweful and versatile data processing approach than
CC. But like CC, SPM requires morphological assumptions about the BOLD re-
sponse which is unknown and may vary not only with the stimulation paradigm
but also spatially within the brain.

In this paper, a new voxelwise brain activation mapping approach is deve-
loped that keeps the time dimension of the analysis while relaxing as much as
possible traditional morphological assumptions about the ideal BOLD response
expected at each voxel. Rather than considering the shape of the local BOLD
response in its whole, the proposed approach focuses on its dynamics changes.
In the presence of a regional neural activity, these are assumed to be time-locked
to some extent onto the successive transitions of the stimulation paradigm.

2 Methods

A continuous wavelet transform (CWT) is first applied to each voxel’s fMRI
signal under test to detect and characterize dynamics changes of interest. The
derived sequence of events, R, is then compared to the deterministic event se-
quence, S, that models the successive transitions of the stimulation paradigm. A
”coupling distance”, dist(R → S), between the response R and the stimulation
S is finally worked out using a dynamic event matching procedure.

2.1 Detection / Characterization of fMRI Signal Changes by CWT

Wavelet multiresolution analysis has been widely used in multiscale representa-
tion and analysis of signals and images [3]. The wavelet-based brain activation
mapping approach presented here differs significantly from the pioneering work
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of Ruttimann et al. [4]. Rather than detecting neural activity based on a discrete
wavelet transform of the average difference image from the input fMRI sequence
as proposed by Ruttimann et al., neural activity is detected here based on the
discrete space-time field of signal sharp variations underlying the raw 3-D fMRI
sequence. The ability of the CWT to detect and characterize such nonstatio-
narities in the time-scale domain is here of great interest. For any finite energy
signal f(t), the CWT is defined by [3]:

(Wψf)(a, b) =
1√
a

∫ +∞

−∞
f(t)ψ∗

(
t− b

a

)
dt (1)

The parameters a and b denote the scale and the translation parameter respec-
tively of the complex conjugate of the mother wavelet ψ(t) where:

ψ(t) =
{
C.(1 + cos 2πf0t).e2iπkf0t for |t| ≤ 1

2f0

0 elsewhere
(2)

k is set to 2 to satisfy with the required admissibility conditions while f0 denotes
the normalized frequency (0 < f0 < 1/2) and C a normalizing constant. ψ(t)
is chosen complex valued to benefit from the phase information of the fMRI
signal CWT. Indeed, it has been demonstrated in [3] that symmetry singula-
rities of a signal f(t) are associated with particular values of the phase of its
CWT. Specifically, a positive inflexion point at time t0 (f ′′(t−0 ) > 0, f ′′(t0) =
0, f ′′(t+0 ) < 0, f ′(t0) > 0) is associated at high resolution (i.e., small values of
the scale parameter ”a”) with phase value +π/2. Similarly, a negative inflexion
point at time t0 (f ′′(t−0 ) < 0, f ′′(t0) = 0, f ′′(t+0 ) > 0, f ′(t0) < 0) corresponds at
high resolution to phase value −π/2. Then, assuming that the fMRI dynamics
changes of interest exhibit a local positive or negative inflection point, detecting
the occurrence times of these changes can be performed at a sufficient high scale
of resolution by detecting the ±π/2 crossings of the phase of the fMRI signal
CWT. Moreover, while moving towards finest scales of analysis, ±π/2 crossing
points are increasing while describing curves known as fingerprints in pattern
recognition. The length of a fingerprint, expressed in terms of the number of
scales crossed from the finest scale of detection, is characteristic of the impor-
tance of the fMRI dynamics change associated with. Finally, as stated in [3],
±π/2 crossing points correspond to maxima of the square modulus of the fMRI
signal CWT.

As an example, the phase of the CWTs of an activated and a non-activated
fMRI signal are plotted in figure 1. The horizontal time axis is indexed by the
scan number in the fMRI sequence while the scale index i is reported on the
vertical axis of figures 1c-d. The frequency f0 = 0.04 and the scale parameters
are ai = f0/(f0 − |i − 1|.∆), with ∆ = 0.002, 1 ≤ |i| ≤ 15. Color jumps from
white to black correspond to +π/2 crossings for i ≤ −1 and −π/2 crossings
for i ≥ 1 so that the color jumps at the virtual scale i = 0 correspond to the
occurrence times of the detected dynamics changes of interest.

In practice, a feature vector v = (v1, · · · , vK) is derived for each dynamics
change detection point. Two features are retained, namely, v1, the length of the
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Fig. 1. Phase information of real fMRI data CWT.

corresponding fingerprint, starting at scale i = ±1 and corresponding to the
integer number of associated levels of decomposition, and v2, the sum of the
square modulus along the fingerprint. Then, the event r = (t, p,v) is formed by
appending v to the pair (t, p) of integers where t and p denote the occurrence
time and the ”polarity” of the change, respectively. That is, p takes the value
±1 according to the ±π/2 value of the phase crossing at t. Finally, an ordered
event sequence R = r1, r2, · · · , rI of length |R| = I is produced for every fMRI
signal.

2.2 Modeling of the Stimulation Paradigm Dynamics

Dynamics modeling of a two states-based stimulation paradigm is straightfor-
ward. Every transition is modeled by an event s = (t′, p′) where t′ and p′ repre-
sent the occurrence time and the ”polarity” of the transition in the stimulation
paradigm, respectively. As p, p′ takes the arbitrary +1 or -1 value according
to the OFF-ON or ON-OFF nature of the transition, respectively. Thus, the
stimulation paradigm dynamics is modeled by the deterministic event sequence
S = s1, s2, · · · , sJ of fixed length |S| = J , where sj = (t′j , p

′
j) models the j-th

transition of the paradigm. By contrast to the multiple response sequences, it
can be noticed that the stimulation sequence S is unique.

2.3 Matching of Event Sequences

The coupling distance between the stimulation sequence S and a response se-
quence R has been developed based on the string edit distance used in text
processing [5,6]. First, ”matching” operations are introduced in place of the well-
known ”edit” operations. A matching operation m is a pair (x → y) 
= (∅ → ∅)
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where x (y) denotes either an event ri of R (an event sj of S) or the NULL
event ∅, in place of the NULL string. Three matching operations can then be
defined, namely, the insertion (ins), the deletion (del) and the valid matching
(vm) which take the general forms (∅ → sj), (ri → ∅), (ri → sj), respectively.

As in the string edit distance, a specific cost c(m) is assigned to each matching
operation m∈{ins, del, vm}. An insertion can be considered as a misdetection of
a fMRI dynamics change of interest in response to the paradigm transition sj .
Similarly, a deletion can be viewed as a false alarm. Defining the cost of a valid
matching operation is less straightforward for many reasons. First, matching a
fMRI dynamics change with a paradigm transition of opposite polarity is clearly
unnatural and must be unvalidated as such. Second, one will assign a cost all the
more low as the dynamics change to be matched is important in terms of feature
magnitudes. Third, an activation delay d at a particular voxel has to be modeled.
Based on these remarks, the costs of an insertion, a deletion and a valid matching
operation are respectively defined by c(ins) = wmd, c(del) = wfa, and c(vm|d) =
α0.c0(d, ti, t′j)+

∑K
k=1 αk.ck(vk) where the misdetection weight wmd and the false

alarm weight wfa are preset constants. {αk} are weighting coefficients verifying∑K
k=0 αk = 1 while {ck(.)} are positive cost functions selected ad hoc and upper

bounded (sup (ck(.)) = wmax, ∀k). For any valid matching vm, wmax must verify
wmax≤wmd + wfa. Indeed, depending on the feature magnitudes, if wmax >
wmd +wfa, it could be never useful to match two events, one can always delete
and insert an event, instead. The cost functions used in our approach are simple
and are plotted in figure 2. W models the detected change occurrence time
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Fig. 2. Cost functions used for a valid event matching.

jitter allowed around the given delay d. S denotes the highest scale index of the
CWT. A1 and A2 are real parameters arbritarily set to the µ−σ and µ+σ values
respectively where µ and σ represent the mean and the standard deviation of
the feature v2 estimated from the input voxel’s sequence R.

Now, to measure the coupling distance between the stimulation sequence S
and a response sequence R, one will typically need to successively apply different
event matching operations. LetM = m1, · · · ,ml, · · · ,mL be a matching sequence
of length L where ml∈{ins, del, vm}. Then, the cost of M , c(M), is defined as
the sum of the costs of the elementary matching operationsml making up the se-
quence, that is, c(M) =

∑L
l=1 c(ml). Given R and S, there may be more than one
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matching sequence M that couples R to S. If MR→S denotes the set of all such
sequences, then the coupling distance dist(R → S) is given by the matching se-
quence with the minimum cost, that is, dist(R → S) = min[c(M)|M∈MR→S ].
In practice, dist(R → S) is computed based on dynamic programming [5,6].
Given the activation delay d∈D = [dmin, dmax], let δ(i, j, d) denote the partial
minimum cost needed to match the first i events of R with the first j events of
S. δ(i, j, d) is computed as follows:

for i=1 to I do
for j=1 to J do
for d=dmin to dmax do

if ((ti > t′j + d−W ) and (ti < t′j + d+W ) and (pi = p′j)) then
w(i, j, d) = c(ri → sj|d);

else
w(i, j, d) = wmd + wfa;

endif
δ(i, j, d) = min(δ(i− 1, j, d) + wfa, δ(i, j − 1, d) + wmd,

δ(i− 1, j − 1, d) + w(i, j, d))
endfor
endfor
endfor

The initialisations are i)δ(0, 0, d) = 0, ∀d, ii)δ(i, 0, d) = i.wfa, ∀i, iii)δ(0, j, d) =
j.wmd, ∀j. Then, the coupling distance dist(R → S) is obtained by dist(R →
S) = mind∈D δ(I, J, d), where I = |R| and J = |S| as stated previously.

3 Results and Discussion

A synthetic fMRI data set was first generated. To simulate distinct activated
BOLD responses, a square wave, a sinus wave and a periodic Poisson signal in
additive white gaussian noise were used. The period of each waveform was set
to T = 16 (Na = Nc = M = 8) so that |S| = J = 16 given a 145 fMRI sam-
ples time-series. The fluctuation of the synthetic BOLD response with respect
to the constant baseline of magnitude 0.5 was set to ±10%. The noise variance
was set so that the SNR=20dB in the overall experiment. To simulate activa-
tion delay, the phase had a spatial random fluctuation uniformly distributed
over T/3, along with a constant phase shift for any given activated voxel’s time-
series. The lag parameter of the Poisson waveform was arbitrarily set to λ = 5.
The parameters used for the CWT were those mentionned in section 2.1. As a
preliminary evaluation, the parameters of the coupling distance algorithm were
set to (wmd, wfa, wmax)=(100,100,200) and (W,dmin, dmax)=(4,-2,13) in accor-
dance with the period T . Synthetic neural activity detection results obtained by
the proposed method have been compared to those obtained by the Student’s
t-test. The corresponding ROC curves are plotted in figure 3. In all cases, the
coupling distance method outperforms the t-test. However, the characterization
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Fig. 3. Neural activity detection ROC curves obtained from synthetic fMRI data
by the t-test (.) and the coupling distance method with (α0, α1, α2) = (1, 0, 0)(∗),
(.5, .5, 0)(+), (.5, 0, .5)(x), (.34, .33, .33)(o).

of the detected dynamics changes appears inadequate since the ROC curves
for (α0, α1, α2) = (1, 0, 0) remain all maximum compared with other triplets of
values.

Language fMRI studies have also been conducted. Images were acquired
with a 2T whole body S200 Bruker MRI system with a head volume coil. fMRI
images were obtained with echo-planar imaging (EPI) using an axial slice orien-
tation (32 slices,64x64 pixels,voxel size=4x4x4mm,TE=10ms,TR=5s). All fMRI
images were registered to the first image in the series. Three testing procedures
were designed to determine the cortical areas involved in word finding, auditory
and visual lexical processing. Activation maps obtained for the verb generation
task are compared in figure 4. Coupling distance activation maps demonstrated
all together the ability of the method to detect additional activated regions with
respect to the standard t-test. From a signal processing point of view, true-
activated fMRI signals declared non-activated by the t-test where essentially
corrupted by impulsive noise or baseline drift, or exhibited activation delays
along with low SNRs.

4 Conclusion and Future Work

A new method for detecting activated voxels in fMRI brain activation studies
has been presented. Unlike other methods, no a priori knowledge is required
about the shape of the BOLD response expected at each voxel. In the pres-
ence of neural activity, BOLD response dynamics changes are assumed to be
time-locked to some extent onto the active-control transitions of the stimulation
paradigm. Time-locking is expressed in terms of a coupling distance between
the sequence of dynamics changes of interest detected and characterized by a
CWT and the deterministic transition sequence of the stimulation paradigm.
The coupling distance is computed based on a modified version of the string edit
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Fig. 4. Results on real fMRI data. Left side, from top to bottom: fMRI slice,
coupling distance activation map, t-test activation map, copy of the coupling
distance activation map with one common (circle) and three additional (rectan-
gles) activated regions detected. Right side: a) paradigm transitions, b-c) two
activated fMRI signals picked up from the rectangles of the coupling distance
activation map.

distance algorithm used in text processing. The method has been compared to
the standard Student’s t-test on synthetic and real fMRI data. Results obtained
in both cases demonstrated the superiority of the ”coupling distance” approach.

The proposed method has now to be compared further. In addition, we
plan to introduce spatial information in the measure of the coupling distance
by reformulating the approach in terms of multiple dynamics change sequence
alignment.
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